用户名: 密码: 验证码:
米仓山构造带构造特征及中—新生代构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造山带与沉积地的耦合过程是21世纪以来构造地质学研究的一个热点。山耦合研究是建立在冲断带和沉积地动态演化基础之上,并结合二者之间的物质能量交换过程而展开的全方位研究工作。论文选择扬子北缘的米仓山构造带及毗邻的沉积地为研究对象,以板块构造理论为纲,以活动论和大陆动力学为指导思想,从构造解析角度出发,综合运用构造地质学、沉积学、构造年代学、地震地质学、成动力学和-山耦合的理论,通过地表地质调查,并结合钻井、地震资料,对米仓山构造带的几何学、运动学、变形学特征及地充填序列、沉降历史等展开讨论。在此基础上,重点讨论了米仓山构造带的构造期次,山转换过程及中-新生代构造演化史,并对其形成机制进行了探索。
     位于扬子板块北缘的米仓山构造带,西邻龙门山陆内复合造山带,北侧为秦岭造山带和汉南隆起,东与大巴山前陆冲断带相接,南与四川地毗邻。野外的地质调查表明,米仓山构造带为典型的复合叠加构造。早期的走向近东西的褶皱构造和冲断作用受控于扬子板块和华北板块的碰撞作用;后期的北东走向的断裂构造受控于扬子板块向秦岭造山带的楔入作用。且晚期构造复合叠加于早期的构造之上,表现为后期构造迁就利用和切割早期构造。
     地震资料和地表调查研究表明,米仓山构造带发育典型基底卷入式厚皮构造,同时发育以中下三叠统滑脱面为顶板反冲断层、以基底岩系内20km±深度的滑脱面为底板断层的被动顶板双重构造,其整体的构造样式类似于阿尔伯达型构造三角带。古应力分析表明米仓山地区经历了包括两期南北向、一期北西-南东向、一期北东-南西向、一期东西向在内的至少5期应力场。显微构造及有限应变测量表明米仓山构造带应变样式多为拉长型。同时,多重热年代学分析结果表明米仓山构造带与汉南隆起具有不同步的隆升过程,米仓山快速隆升大致开始于138Ma,比汉南隆起晚约22Ma。
     通过米仓山前缘地层接触关系、地充填序列、物源分析等表明米仓山南缘地不具有典型的前陆地特征。且该地在中生代以来与米仓山构造带不具有横向上物质交换的耦合过程。相反,与米仓山构造带以北的秦岭造山带和汉南隆起具有较好的耦合过程。
     通过对扬子板块北缘和西缘的龙门山陆内复合造山带、米仓山构造带、大巴山前陆冲断带的对比研究,表明这三大造山带是在扬子板块向北俯冲至华北板块之下,并顺时针旋转的统一板块运动背景下,不规则板块几何边界所控制而产生的不同方向的造山带。由于板块的穿时碰撞和陆内变形的不等时性,米仓山构造带构造一方面对两侧的造山带起限制作用,另一方面,两侧造山带构造对米仓山构造带构造产生叠加改造。
     通过沉积学、构造年代学、构造交切关系、古应力场综合分析,重建了米仓山构造带中—新生代构造演化史。可以概括为6个主要的阶段:①前碰撞期,晚三叠世之前,米仓山构造带地区为特提斯南秦岭洋南侧的扬子板块北部的被动大陆边缘;②同碰撞阶段,晚三叠世至早侏罗世,由于扬子板块与华北板块由东向西的穿时碰撞,米仓山北侧的汉南及秦岭造山带构造活动强烈,而米仓山地区构造作用微弱,表现为轻微的水下隆起特征,仍继续接受沉积;③构造平静期,中侏罗世—早白垩世早期,米仓山地区构造作用微弱,表现为轻微的由北而南的掀斜过程;④陆内变形阶段,白垩纪期间,伴随着扬子板块向秦岭造山带的楔入作用,米仓山构造带发生强烈的陆内变形,首先形成了东西向由北而南的冲断构造级褶皱构造,随后形成北东向走滑构造,并左旋错断前期的东西向构造体系,此时米仓山主体构造基本定型;⑤叠加构造变形阶段,古新世至始新世早期,米仓山构造带两侧的构造带向内的扩展变形作用复合叠加于米仓山构造带周缘的沉积盖层区的前期构造之上;⑥整体隆升阶段,始新世晚期以来,受青藏高原隆升的影响,米仓山构造带及毗邻地整体性由西向东隆升,遭受剥蚀。
The couple between orogen and sedimentary basin has been one of hotspots in tectonic geology since 21st century. It is based on the dynamic evolution processes of thrust belt and its periphery sedimentary basin, and the material-energy exchanging process between them. As a typical example, we conduct structural and sedimentary investigations on the Micang Ms. and Northern Sichuan basin located in the north Yangtze plate, guided by the theories of continental dynamics and plate tectonics. Our methods are included of fields, boreholes, seismic data, geochronology, etc. Thus, the objects of our study are focus on three points. (1) Multistage deformation. (2) The dynamic evolution processes in orogen-basin system during Meso-Cenozoic. (3) The evolutional mechanism of Micang Ms.
     Micang Ms. Structural Zone is located in the northern margin of Yangtze plate and Sichuan basin, connected with Longmen Ms. orogen belt to the west, Daba Ms. foreland-thrust belt to the east, and Qinling orogen belt and Hannan uplift to the north, respectively. Based on field investigation, Micang Ms. is characteristic by typical superimposed structures with obvious three-episode. The first stage is characteristic with E-W striking structures (e.g., anticlines, thrust-faults), under the control of the collision between the Yangtze and the North China plates. The second stage is characteristic with NE-strike structures controlled by the wedging process of the Yangtze plate into Qinling orogen. Furthermore, the last stage is characteristic with typical superimposed structures on the former structures, and penetratively reworked older structures.
     The seismic data and field investigations show that it developed typical thick-skinned structures with involved basement, duplex-thrust with roof thrust and floor thrust in the Lower Triassic and the basement with depth of ~20km, respectively. Of which the structural style is much similar to Alberta-style triangle zone. Moreover, paleostress analysis indicates there are at least 5 episodes stress field in region, including two episodes of N-S trending, one episode of NW-SE, one episode of NE-SW and one episode of E-W trending. Microstructures and finite strain measurement suggest that an elongation of triaxial-prolate ellipsoid pattern predominantly take place in Micang Ms. Meanwhile, the results of multiple thermochronology analysis prove that MiCang Ms tectonic belt and Hannan uplift process is asynchronous. The rapid uplifting time of MiCang Ms began in ca.138Ma, 22Ma later than Hannan.
     Sedimentology investigations (e.g., stratigraphic contacts, basin filling sequence, provenance) in Micang Ms. and its periphery suggest that the Northern Sichuan basin which located in the south edge of Micang Ms. and don't have characters of typical forland basin. Moreover, the basin has not any exchange of material with Micang Ms. since Mesozoic in space. On the contrary, there is an obvious coupling process between Qinling orogen with Hanan uplift during the same time.
     According to the comparative researches among Longmen Ms., Micang Ms. and Daba Ms., it indicates that the formation of Micang Ms. is under the control both of irregular geometry boundaries in the northern margin of Yangtze plate, and diachronous collision process between the Yangtze and the North China plates. Thus, there are two significant roles of the Micang Ms., one is as a rheologically strong basement to block the deformation of its peripheral orogens, and another is a superimposed block by the multistage deformation from its peripheral orogens.
     By comprehensive analysis of sedimentology, geochronology, cross-cutting relations in structures and palaeostress, it suggests that the Micang Ms. has been experienced six episodes of tectonic evolution. (1) Pre-collision stage before Late Triassic, Micang Ms. was a passive continental margin of the north Yangtze plate located at the south of Qinling Paleotethys. (2) Syn-collision stage from Late Triassic to Early Jurassic, because of diachronous collision between the Yangtze and the North China plates from east to west, Hannan area and Qinling orogen underwent strong tectonism. However, Micang Ms. slightly underwent tectonism, more probably, to form an underwater uplift and partially deposit. (3) Tectonic Quiescence from Middle Jurassic to Early Cretaceous, Micang Ms. was characteristic with a faintly N-S ward tilting process. (4) Intracontinental deformation stage during Cretaceous, under the control of Yangtze plate wedging into Qinling orogen, strong intracontinental deformation took place here. Firstly, the E-W trending thrust structures formed, and then to form strike-slip structures with NE-striking that superimposed the former structures. The main structures of Micang Ms. were basically stereotyped until now. (5) Superimposed deformation stage from Paleocene to Early Eocene, the tectonic belts on both sides of Micang Ms. was expanded and deformed to within the basin, which superimposed on the earlier structures of sedimentary cap rock around its periphery. (6) Uplift stage since Late Eocene, influenced by eastward growth of the Qinghai-Tibet plateau, Micang Ms. and its periphery was entirely uplifted from west to east and suffered from denudation.
引文
[1] Allen P A, Homewood P, Covey M. The evolution of foreland basins to steady state: evidence from the western Taiwan foreland basins[M]. International Association of Sedimentologists, 1986,77-90.
    [2] Allmendinger R W,Zapata T,Manceda R,et al. Trishear kinematic modeling of structure, with examples from the Neuquen Basin,Argentina[J], Thrust tectonics and hydrocarbon syst- ems[C].AAPG Memoir,2004,82:356-371.
    [3] Allmendinger R W.Inverse and forward numerical modeling of trishear fault-propagation fo- lds[J].Tectonics,1998,17: 640-656.
    [4] Ames L,Zhou G Z,Xiong B C.Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, centr- al China [J].Tectonics,1996,15(2): 472-489.
    [5] Ampferer O. Uber das Bewegungsbild von Faltengebirgen[J]. Jb. Geol. R A. Wien, 1906, 56:539-622.
    [6] Bahattacharya A R,Weber K.Fabric development during shear deformation in the Main Cen- tral Thrust Zone,NW Himalaya,India[J].Tectonophsics,2004,387:23-46.
    [7] Bally A W, Snelson S. Realms of subsidence. In: Facts and Principles of World Petroleum O- ccurrence (Ed. by A.D. Miall) [C]. Can.Soc.Petrol.Geol.Mem,1980,6:9-75.
    [8] Bally A W.Basins and subsidence - a summary.In: Dynamics of Plate Interiors [C].Geodyn,1980,1: 5-20.
    [9] Banks C J ,Warburton J.Passive-roof duplex geometry in the frontal structures of the Kirthar and Sulaiman mountain belts, Pakistan[J]. Journal of Structural Geology,1986,8: 229-237.
    [10]Bates R L, Jackson J A. Glossary of geology[M]. American Geological Institute, Alexandria, 1987,p788.
    [11]Beaumont C, Kooi H, Willett S. Progress in coupled tectonic-surface process models with applications to rifted margins and collisional orogens[J], in Summerfield M A ed, Geomorphol- ogy and global tectonics[C]. New York,John Wiley,2000,29–55.
    [12]Beaumont C,Fullsack P,Hamilton J H.Erosional control of active compressional orogens[J], in K.R. McClay ed, Thrust tectonics[C]. London, Chapman & Hall,1992,377–390.
    [13]Beaumont C.Foreland basins[J]. Geophys,1981,65:291-329.
    [14]Beaumont.C, Mu?oz.J.A, Hamilton.J, Fullsack.P. Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models[J]. Journal of Geophysical Research,2000,105: 8121–8145.
    [15]Bendick.R, L.Flesch. Reconciling lithospheric deformation and lower crustal flow beneath c- entral Tibet[J]. Geology,2007,35: 895 - 898.
    [16]Bertrand M. Rapports de structure des Alpes de Glaris et du basin houiller du Nord[J]. Bull. Soc. geol. France, Paris, 1884, 12(3):318-330.
    [17]Boyer S E, Elliott D. Thrust systems[J]. AAPG, 1982,66:1196-1230.
    [18]Boyer.S.E. Styles of folding within thrust sheets: examples from the Appalachian and Rocky Mountains of the U.S.A. and Canada[J]. Journal of Structural Geology,1986,8:325-339.
    [19]Brett C E, Goodman W M, Loduca S T. Sequences, cycles, and basin dynamics in the Silur- ian of the Appalachian foreland basin[J].Sedimentary Geology, 1990, 69(3):191-244.
    [20]Brett.C.E, Goodman.W.M, LoDuca.S.T. Sequences, cycles, and basin dynamics in the Si- lurian of the Appalachian Foreland Basin[J]. Sedimentary Geology,1990,69(3-4): 191-244.
    [21]Brown.R.L. Thrust-belt accretion and hinterland underplating of orogenic wedges—An ex- ample from the Canadian Cordillera,Thrust tectonics and hydrocarbon systems[C]. AAPG Memoir,2004,82:1-65.
    [22]Burbank.D.W, Anderson.R.S. Tectonic geomorphology[M]. Blackwell Science,2001, 274.
    [23]Burchfiel B C. Structural geology of the Earth's exterior[J]. PANS,1979,76(9): 4201-4207.
    [24]Butler.R.W.H, Mazzoli.S, Corrado.S, et al. Applying thickskinned tectonic models to the Ap- ennine thrust belt of Italy Limitations and implications[A], Thrust tectonics and hydrocarbon systems[C], AAPG Memoir,2004,82:647-667.
    [25]Chester.J.S, Cheste.F.M, Fault-propagation folds above thrusts with constant dip[J]. Journal of Structural Geology,1990,12(7):903-910.
    [26]Clark M, Royden L. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology,2000,28: 703-706.
    [27]Cloetingh S, Bada G, Matenco L, et al. Modes of basin (de)formation, lithospheric strength and vertical motions in the Pannonian-Carpathian system: inferences from thermo-mecha- nical modelling[J]. Geological Society, London, Memoirs, 2006, 32: 207-221.
    [28]Cloetingh S, Lankreijer A. Lithospheric memory and stress Field controls on polyphase deformation of the Pannonian basin±Carpathian system[J]. Marine and Petroleum Geology,2001,18:3-11.
    [29]Cloetingh S. Intraplate stresses: A tectonic cause for third order cycles in apparent sea level?[J]. Society of Economic Paleontologists and Mineralogists Special Publication 42, 1988, 19-29.
    [30]Cooper.M.A, Williams.G.D. Inversion Tectonics[M]. Geological Society Special Publicati- on,1989,44:375.
    [31]Couzens.B.A, Wiltschko.D.V. The control of mechanical stratigraphy on the formation of triangle zones[J]. Bulletin of Canadian Petroleum Geology,1996,44:165-179.
    [32]Coward.M.P, De Donatis.M, Mazzoli.S, Paltrinieri.W, Wezel.F.C. Frontal part of the northern Apennines fold and thrust belt in the Romagna-Marche area (Italy): Shallow and deep struc- tural styles[J]. Tectonics,1999,18:559–574.
    [33]Coward.M.P. Thrust tectonics, thin skinned or thick skinned, and the continuation of thrusts to deep in the crust[J]. Journal of Strutural Geology, 1983, 5:113-123.
    [34]Dahlen.F.A, Critical taper model of fold-and-thrust belts and accretionary wedges[J]. Annual Review of Earth and Planetary Sciences,1990,18: 55–99.
    [35]Dahlen.F.A, Suppe.J, Davis.D. Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory [J]. Journal of Geophysical Research, 1984,89: 10087-10101.
    [36]Dahlstrom.C.D.A. Balanced cross sections[J]. Canadian Journal of Earth Sciences, 1970,18: 332-406.
    [37]Davis D, Suppe. J,Dahlen.F.A , 1983, Mechanics of fold/thrust belts and accretionary wedges: Journal of Geophysical Research, 88: 1153–1172.
    [38]DeCelles.P.G, Giles.K.A. Foreland basin systems[J]. Basin Research,1996,8:105-123.
    [39]Dickinson W R, Basin geodynamics[J]. Basin Research,I993,5: 195-196.
    [40]Dickinson W R, Snyder.W.S, Plate tectonics of the laramide orogeny[J]. Geological Society of American memoir,1978,151:355-366.
    [41]Dickinson W R, Suczek.C.A, Plate tectonics and sandstone compositions[J]. AAPG Bulle- tin,1979,63(12): 2164-2182.
    [42]Dickinson W R. Plate tectonics and sedimentation[M]. Tectonics and Sedimentation, SPEM Special Publication,1974,22: 1-27.
    [43]Enkin R J, Courtillot V, Leloup P, et al. The paleomagnetic record of uppermost Permian, lo- wer Triassic rocks from the south China block[J]. Geophysical Research Letters, 1992, 19 (21): 2147-2150.
    [44]Epard, Groshong. Kinematic model of detachment folding including limb rotation, fixed hi- nges, and layer-parallel strain[J]. Tectonophysics,1995,85-103.
    [45]Epard.J.L, Escher A. Transition from basement to cover: a geometric model[J]. Journal of S- tructural Geol,1996,18(5):533-548.
    [46]Erslev.E.A, Mayborn.K.R. Multiple geometries and modes of fault-propagation folding in the Canadian thrust belt[J]. Journal of Structural Geology,1997,19:321-335.
    [47]Erslev.E.A, Rogers.J.L. Basement cover geometry of Laramide fault-propagation folds. In: L- aramide Basement Deformation in the Rocky Mountain Foreland of the Western United Stat- es[J]. Geological Society of America Special Paper,1993,280:125-146.
    [48]Erslev.E.A. Trishear fault-propagation folding[J]. Geology,1991,19:617-620.
    [49]Escher.A, Masson.H, Steck.A. Nappe geometry in the Western Swiss Alps[J]. Journal of Str- uctural Geology,1993,15(3-5): 501-509.
    [50]Eshcer A, Beaumont C. Formation,burial and exhumation of basement nappes at crustal sc- ale:A geometric model based on the western Swiss-Italian Alps[J].J.Struct.Geol., 1997, 19(7):955-974.
    [51]Eva Enkelmann, Lothar Ratschbacher, Raymond Jonckheere, et al. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin?[J]. Geological Society of America Bulletin,2006,118: 651 - 671.
    [52]Fischer.M.P, Woodward.N.B, Mitchell.M.M. The kinematics of break-thrust folds[J]. Journal of Structural Geology, 1992,14:451-460.
    [53]Flemings.P.B, Jordan.T.E. A synthetic stratigraphic model of foreland basins development[J]. Journal of Geophysical Research,1989,94: 3851-3866.
    [54]Ford.M, Edward.A,Williams,Artoni.A, Vergés.J,Hardy.S. Progressive evolution of a fault- related fold pair from growth strata geometries, Sant Lloren? de Morunys, SE Pyrenees[J]. Journal of Structural Geology,1997,19(3-4):413-442.
    [55]Fran?oise Roger, Marc Jolivet, Jacques Malavieille. The tectonic evolution of the Songpan- Garzê(North Tibet) and adjacent areas from Proterozoic to Present: A synthesis[J].Journal of Asian Earth Sciences, 2010 (39) 254-269.
    [56]Gao.S, Zhang.B-R, Wang.D-P, et al. Geochemical evidence for the Proterozoic tectonic ev- olution of the Qinling orogenic and its adjacent margins of the North China and Yangtze Cratons[J]. Precambrian Research,1996,80:23-48.
    [57]Gordy P L,Frey F R,Norris D K. Geological guide for the C.S.P.G. and Waterton Glacier Park field conference. Calgery Cannadian Soc. Petrol. Geol., 1977, 93.
    [58]Gretener P E. Pore pressure: fundamentals, general ramifications and implications for struct- ural geology (revised)[J]: AAPG Continuing Education Course Note Series, 1979, 4: 131.
    [59]Hardy, Poblet. Geometric and numerical model of progressive limb rotation in detachment folds[J]. Geology,1994,22: 371-374.
    [60]Hardy.S, C.Duncan, J.Masek,et al. Minimum work, fault activity and the growth of critical wedges in fold-and-thrust belts[J]. Basin Research,1998,10:365-373.
    [61]Hardy.S, Ford.M. Numerical modeling of trishear fault propagation folding[J]. Tectonics, 1997,16:841-854.
    [62]Hardy.S, Poblet.J. The velocity description of deformation, Paper 2: Sediment geometries associated with fault-bend and fault-propagation folds[J]. Marine and Petroleum Geology, 1995,12: 165-176.
    [63]Harris N. Channel flow and the Himalayan-Tibetan orogen: a critical review[J]. Journal of Geologic Society, London,2007,164: 511-523.
    [64]Hatcher R.D, Hooper R.J. Evolution of crystalline thrust sheets in the internal parts of mou- ntain belts[J]. Thrust Tectonics, 1992,217–233.
    [65]Hatcher.R.D.Jr, Williams.R.T. Mechanical model for single thrust sheets,Part I:Crystalline thrust sheets and their relationships to the mechanical/thermal behavior of orogenic belts[J]. Geological Society of American Bulletin,1986,97:975-985.
    [66]Hatcher.R.D.Jr. Properties of thrusts and upper bounds for the size of thrust sheets.Thrust tectonics and hydrocarbon systems[C]. AAPG Memoir,2004,82:18-29.
    [67]Heim A.Untersuchungenüber den Mechanismus der Gebrigsbildung im Abschluβan die geologische Monographie der Tǒdi-Windgǎllen Gruppe[M].Atlas,Basel,1978.
    [68]Homza, Wallace, T.X.Homza,et al. Geometric and kinematic models for detachment folds with fixed and variable detachment depths[J]. Journal of Structural Geology,1995, 17(4): 575-588.
    [69]Homza.T.K, Wallace.W.K. Detachment folds with fixed hinges and variable detachment depth, northeastern Brooks Range, Alaska[J]. Journal of Structural Geology,1997,19 (3–4): 337-354.
    [70]Huang K, Opdyke N D. Paleomagnetism of cretaceous to lower Tertiary rocks from sout- hwestern Sichuan - a review [J]. Earth and Planetary Science Letters,1992,112(1-4): 29-40.
    [71]Hubbert.M.K, Rubey.W.W. Role of fluid pressures in mechanics of overthrust faulting[J].Geological Society of America Bulletin,1959,70:115-166.
    [72]Jamison.W.R. Geometry analysis of fold development in overthrust terranes[J]. Journal of Structural Geology,1987,9 (2):207–219.
    [73]Jess King, Nigel Harris, Tom Argles, et al. First field evidence of southward ductile flow of Asian crust beneath southern Tibet[J]. Geology, 2007,35:727-730.
    [74]Johnson.D.D, Beaumont.C. Preliminary results from a planform kinematic model of orogen evolution, surface processes and the development of clastic foreland basin stratigraphy, in Dorobek, S.L, and Ross.G.M eds, Stratigraphic Evolution of Foreland Basins[M]. SEPM Special Publication,1995,52:3-24.
    [75]Jones.P.B. Oil and gas beneath east-dipping underthrust faults in the Alberta Foothills,in Powers,R.B.ed,Geological studies of the Cordilleran thrust belt[J]. Rocky Mountain Ass- ociation of Petroleum Geologists,1982,1:61-74.
    [76]Jordan.T.E. Thrust loads and foreland basin evolution, Cretaceous, western United State[J]. American Association of Petroleoum Geologists Bulletin,1981,65:2506-2520.
    [77]Klemperer S L. Crustal flow in Tibet: geological evidence for the physical state of Tibetan li- thosphere, in Channel Flow, Ductile Ex-trusion and Exhumation of Lower Mid-Crust in Con- tinental Collision Zones[J]. Geol Soc London,2006,268: 39-70.
    [78]Koons.P.O. Two-sided orogens:Collision and erosion from sandbox to the Sourth Alps.New Zealand[J]. Geology,1990,18:679-682.
    [79]Leckie.D.A, Smith.D.G. Regional setting evolution and depositional cycles of the Western C- anada foreland basin[C]. American Association of Petroleoum Geologists Memoir, 1992, 55: 9-46.
    [80]Lee Y S,Nishimura S,Min K D.Paleomagnetotectonics of East Asia in the Proto-Tethys Ocean[J]. Tectonophsics,1997,270:157-166.
    [81]Lee, J.,Whitehouse, M.2007.Onset of middle crustal ductile ?ow in southern Tibet: ev- idence from U/Pb zircon ages.Geology, 35, 45–48.
    [82]Li Jinyi,Wang Zongqi,Zhao Min. 40Ar—39Ar thermochronological constraints on the timing of collisional orogeny in the Mian-Lue collision belt,southern Qinlling Mountains[J]. Acta Geologica Sinica,1999,73(2):208~215.
    [83]Li Sanzhong, M. Kusky Timothy, Wang Lu, et al. Collision leading to multiple-stage large- scale extrusion in the Qinling orogen: Insights from the Mianlue suture[J]. Gondwana Rese- arch,2007,12:121-141.
    [84]Lin Y.F, Zeng X.P, Guo Q.H. Analysis of secular variations of non-dipole geomagnetic-field in east-Asia [J]. Acta Geophysica Sinica,1985,28(5): 482-496.
    [85]Liu Shaofeng, Ronald Steel , Zhang Guowei. Mesozoic sedimentary basin development and tectonic implication,northern Yangtze Block, eastern China: record of continent–continent c- ollision[J]. Journal of Asian Earth Sciences,2005,25:9-27.
    [86]Liu Shaofeng, Zhang Guowei and Dai Shaowu. Evolution of Qinling Mianlue Belt: Evidence from Sedimentology and Tectonics of the Northern Yangtze, China[J]. Gondwana Researc- h,2001,l4(4): 690-691.
    [87]Liu Shaofeng, Zhang Guowei. Process of Rifting and Collision along Plate Margins of the Q- inling Orogenic Belt and Its Geodynamic[J]. Acta Geologica Sinica,1999,73(3):275~287.
    [88]M P Coward, J Deramond.Thrusting and deformation [M].Oxford u.a. : Pergamon, 1986.
    [89]McClay. K.R. Thrust tectonics and hydrocarbon systems[C].AAPG Memoir 82,2004.
    [90]McClay.K.R, PRICE.N.J. Thrust and Nappe Tectonics, London[J]. The Geological Society of London,1981.
    [91]McClay.K.R, Whitehouse.P. Analogue modelling of thrust belts formed by oblique subducti- on[J]. Marine and Petroleum Geology,2004 ,21:857-877.
    [92]McClay.K.R, Whitehouse.P.S, Dooley.T, et al. 3D evolution of fold and thrust belts formed by oblique convergence[J]. Marine and Petroleum Geology,2004,21:857-877.
    [93]McClay.K.R. Thrust Tectonics[M]. London:Chapman & hall,1992.
    [94]Mcelhinny.M.W, Embleton.B, Ma.X.H, et al. Fragmentation of Asia in the Permian [J]. Nat- ure, 1981,293(5829): 212-214.
    [95]Medwedeff.D.A. Growth Fault-Bend Folding at Southeast Lost Hills, San Joaquin Valley, C-alifornia[J]. AAPG Bulletin,1989,73:54-67.
    [96]Medwedeff.D.W, Suppe.J. Multibend fault-bend folding[J]. Journal of Structual Geology, 1997,19(3-4): 279-292.
    [97]Meigs, A.J, Verges.J, Burbank.D.W. Tenmillion-year history of a thrust sheet[J]. Geological Society of America Bulletin,1996,108:1608–1625.
    [98]Meng Q R, Wang E Q, Hu J M. Mesozoic sedimentary evolution of the northwest Sichuan b- asin;Implication for continued clockwise rotation of the south China block[J]. GSA Bulletin, 2005,117(3/4):396-410.
    [99]Meng Q R, Zhang G W. Geologic framework and tectonic evolution of the Qinling orogen, Central China[J]. Tectonophysics,2000,323(3-4): 183-196.
    [100]Meng Q R, Zhang G W. Timing of collision of the North and South China blocks: Contro- versy and reconciliation[J]. Geology,1999,27(2): 123-126.
    [101]Miall A D. Collision-related foreland basins.In: Busby C J, Ingersoll R V, eds, Tectonics of Sedimentary Basins, Blackwell Science, 1995,393-424.
    [102]Mitra. Fault-propagation folds: Geometry and kinematic evolution and hydrocarbon traps[J]. Bulletin of the American Association of Petroleum Geologists,1990,74 :921-945.
    [103]Mitra.S, 1986, Duplex structures and imbricate thrust systems: Geometry structural position and hydrocarbon potential: American Association of Petroleum Geologists Bulletin, 70: 1087-1112.
    [104]Mosar.J, Suppe.J. Role of shear in fault-propagation folds, in McClay.K.R, ed, Thrust tecto- nics[M]. London, Chapman & Hall,1992,123-132.
    [105]Mugnier.J.L, Huyghe.P, Leturmy.P,et al. Episodicity and rates of thrust-sheet motion in the Himalayas (Western Nepa)[A]. Thrust tectonics and hydrocarbon systems[C]. AAPG Memoir, 2004,82:91-114.
    [106]Okay A I, Sengor A, Satir M. Tectonics of an ultrahigh-pressure metamorphic terrane - the Dabie - Shan Tongbai-Shan Orogen, China[J]. Tectonics,1993,12(6): 1320-1334.
    [107]Peltzer G, Tapponnier P. Formation and evolution of strike slip faults, rifts and basins during the India-Asia collision—An experimental approach[J]. Journal of Geophysical Research , 1988,93 (B12):15085-15117.
    [108]Poblet, Josep.A, Mu?oz. A.T, et al. Quantifying the kinematics of detachment folds using th- ree-dimensional geometry: Application to the Mediano anticline (Pyrenees, Spain)[J].Geological Society of America Bulletin January,1998,110 :111-125.
    [109]Poblet.J, Bulnes.M, McClay.K, et al. Plots of crestal structural relief and fold area versus shortening—A graphical Technique to unravel the kinematics of thrust-related folds[A], Thrust tectonics and hydrocarbon systems[C]. AAPG Memoir,2004,82:372-399.
    [110]Poblet.J, McClay.K, Storti.F, Mu?oz.J.A. Geometries of syntectonic sediments associated with single-layer detachment folds[J]. Journal of Structural Geology,1997,19(3-4):369-381.
    [111]Price R.The southeastern Canadian CORdillera:thrust faulting,tectonic weding, and delam- ination of the lithosphere.Journal of Structual Geology,1986, 8:239-254.
    [112]Price, R.A. The Cordilleran foreland thrust and fold belt in the southern Canadian Rockies, in K.R.McClay and N.J.Price, eds.Thrust and nappe tectonics[J]. Geological Society of Lo- ndon Special Publication,1981,9:427–448.
    [113]Price.N.J, McClay.K. Thrust & nappe tectonics[J]. Blackwell Scientific Publications, 1981, 1-6.
    [114]Price.R.A, E.W.Mountjoy. Geologic structure of the Canadian Rocky Mountains between B-
    [115]ow and Athabaska Rivers—A progress report: Geological Association of Canada Special Pa- per[C],1970,6:7–25.
    [116]Price.R.A, Mountjoy.E.W. Geology Barrier Mountain (east half)[M]. Geological Survey of Canada map,1971:1273A.
    [117]Price.R.A. Large-scale gravitational flow of supra-crustal rocks, southern Canadian Rockies. In: Gravity and tectonics[M],1973,491-502.
    [118]Puigdefabregas C, Munoz J A, Marzo M. Thrust belt development in the eastern Pyrenees a- nd related depositional sequences in the southern foreland basins. In: Allen P A,Homewood P, eds, Foreland basins[M]. Special Publication Number 8 of the International Association of S- edimentologists,1986,229-246.
    [119]Qin JiangFeng, Lai ShaoCong, Rodney Grapes, et al. Origin of LateTriassic high-Mg adaki- tic granitoid rocks from the Dongjiangkou area, Qinling orogen, central China: Implications for subduction of continental crust[J]. Lithos ,2010,120:347–367.
    [120]Quinlan.G, Beaumont.C. Appalachian thrusting, lithospheric flexure and the Paleozoic stra- tigraphy of the eastern interior of North America[J]. Canadian Journal of Earth Sciences, 1984, 21: 973-996.
    [121]Macqueen R W; Leckie D A.Foreland basins and fold belts [M]. Tulsa, Okla:American. 2001.
    [122]Ramsay G J, Hbuber M I.刘瑞勋,常志忠,张荣昌,译.现代构造地质学方法第一卷:应变分析[M].北京:地质出版社,1991:1-338.
    [123]Rodgers John.Mechanics of Appalachian foreland folding in Pennsylvania and West Virginia [J]. AAPG Bulletin, 1963, 47:1527-1536.
    [124]Rowley D B. Age of initiation of collision between India and Asia: A review of stratigraphic data[J]. Earth Planet Science Letters,1996,145:1-13.
    [125]Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science,1997,276: 788-790.
    [126]Schardt H. "Sur l’origine des Préalpes romandes". Eclogae geologicae Helvetiae.1893,4: 129–142.
    [127]Seeber L, Gornitz V.River. profiles along the Himalayan arc as indicators of active tectonics [J]. Tectonophysics,1983,92:335-467.
    [128]Sengor A. East Asian tectonic college[J]. Nature, 1985,318(6041): 16-17.
    [129]Shaw J H, Novoa E,Connors C D. Structural controls on growth stratigraphy in contractional fault related folds[M]. Thrust tectonics and hydrocarbon systems, AAPG Memoir 82, 2004, 400-412.
    [130]Shaw J, J Suppe. Active faulting and growth folding in the eastern Santa Barbara Channel, C-alifornia[J]. Geological Society of America,1994,106: 607-626.
    [131]Sibson R H. Frictional Mechanics of Seismogenic Thrust Systems in the Upper Continental Crust—Implications for Fluid Overpressures and Redistribution[M]. in K. R. McClay, ed., Th- rust tectonics and hydrocarbon systems: AAPG Memoir 82, 1–17.
    [132]Storti.F, Poblet.J. Growth stratal architectures associated to decollement folds and fault-pro- pagation folds. Inferences on fold kinematics[J]. Tectonophysics,1997, 282(1-4):353-373.
    [133]Strayer L M, Erickson S G, Suppe J. Influence of growth strata on the evolution of fault-rela- ted folds—Distinct-element models, in McClay K R ed, Thrust tectonics and hydrocarbon sy- stems[M]: AAPG Memoir 82, 2004, 413–437.
    [134]Sun Y, Lu X.X, Han S, et al. Composition and formation of Paleozoic Erlangping ophiolitic slab, North Qinling: evidence from geology and geochemistry[J]. Sci Sinica,1996,39: 50-59.
    [135]Suppe J, Chou G T, Hook S C. Rates of folding and faulting determined from growth strata In: McClay K R, ed, Thrust Tectonics[M], New York: Chapman and Hall,1992,105-121.
    [136]Suppe J, Medwedeff D A. Fault-propagation folding[J]. Geological Society of America A- bstracts with Programs ,1984,16:670.
    [137]Suppe J, Medwedeff D A. Geometry and kinematics of fault-propagation folding[J]. Eclogae geologicae Helvetiae,1990,83 (3): 409-454.
    [138]Suppe J. Geometry and kinematics of fault-bend folding[J]. American Journal of Science, 1983,283: 684-721.
    [139]Swift D J P, Oertel, G F, Tillman R W, et al. Shelf Sand and Sandstone Bodies: Geometry Facies and Sequence Stratigraphy. Spec. Publ. Int. Assoc. Sedimentol.1987, 14:189–255.
    [140]Takeshita T. Estimate of physical conditions for deformation based on c-axis transition in naturally deformed quartzite[J]. Journal of the Geological Society of Japan,1996,102(3): 211-222.
    [141]Tan Xiaodong, Kodama Kenneth P, Gilder Stuart. Paleomagnetic evidence and tectonic ori- gin of clockwise rotation in the Yangtze fold belt, sourth China Block[J]. Geophysical Jour- nal International,2007,168:48-58.
    [142]Tankard A J. On the depositional response to thrusting and lithospheric flexuring:Examples from the Appalachians and the Rocky Mountain basin, in Allen P A and Homewood P,eds. Foreland basins[M]. International Association of Sedimentologists Special Publication , 1986,8:369-394.
    [143]Tapponnier P, Molnar P. Active faulting and Cenozoic tectonics of the Tien Shan , Mongolia and Baykal regions[J]. Journal of Geophysical Research,1979,84 (B7) : 3425-3459.
    [144]Tapponnier P, Molnar P. Active faulting and tectonics in China[J]. Journal of Geophysical R- esearch,1977,82 (20) : 2905-2930.
    [145]Tapponnier P, Molnar P. Slip2line field theory and large scale continental tectonics[J]. Natu- re,1976,264 (5584) : 319-324.
    [146]Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia [J]. Geol Soc London,1986,19: 113-157.
    [147]Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating ext rusion tectonics in Asia: New insights from simple experiment swit hplasticine[J]. Geology,1982,10:611-616.
    [148]Tapponnier P, Xu Z, Roger F, et al. Oblique stepwise rise and growth of the Tibet plateau[J]. Science,2001,294: 1671-1677.
    [149]Toy V G, Prioer D J, Norris R J. Quartz fabric in the Alpine Fault mylonites:Influence of pre-exiting preferred orientation on fabric development during progressive uplift[J]. Journal of Structural Geology,2008,30:602-621.
    [150]Tozer R S J, Butler R W H, Corrado S. Comparing thin-and thick-skinned thrust tectonic m- odels of the Central Apennines, Italy[J]. EGU Stephan Mueller Special Publication Series, 2002, 1:181–194.
    [151]Wallace.W.K,Homza.T.K. Detachment folds versus fault-propagation folds and their trunca- tion by thrust faults, In: K.R.McClay, Editor, Thrust Tectonics and Hydrocarbon Systems[J]. AAPG Memoir82,2004,82:324–355.
    [152]Wickham.J. Fault displacement-gradient folds and the structure at Lost Hills, California (U. S.A.)[J]. Journal of Structural Geology,1995,17:1293-1302.
    [153]Willett.S, Beaumont.C, Fullsack.P. Mechanical model for the tectonics of doubly vergent co- mpressional orogens[J]. Geology,1993,21:371-374.
    [154]Woodward N B, Boyer S E, Supp J. Balanced Geological Cross-sections [M]. American Ge- ophysical Union Short Course in Geology,1989.
    [155]Woodward.N.B. Low-amplitude evolution of break-thrust folding[J]. Journal of Structural Geology,1997,19(3-4):293-301.
    [156]Xue F, Rowley D B, Baker J. Refolded syn-ultrahigh-pressure thrust sheets in the south Da- bie complex, China: Field evidence and tectonic implications[J]. Geology,1996,24(5): 455- 458.
    [157]Yin A, Nie S Y. An indentation model for the North and South China collision and the deve- lopment of the Tan-Lu And Honam Fault systems, Eastern Asia[J]. Tectonics, 1993,12(4): 801-813.
    [158]Yin A, Nie S Y. History of northeastern Tibetan Plateau before India-Asia collision; format- ion of the Songpan-Ganzi flysch sequence and exhumation of the Dabie Shan ultra-high pressure rocks[J]. Tectonics,1993,12( 4): 801-813.
    [159]Yokoyama Masahiko,Liu Yuyan, Halim Nadir, et al. Paleomagnetic study of Upper Jurassic rocks from the Sichuan Basin:tectonic aspects for the collision between the Yangtze Block a- nd the North China[J]. Earth and Planetary Science Letters,2001,193:273-285.
    [160]Zhang Guowei. The major suture zone of the Qinling belt orogenic belt[J]. Joural of sourthe- ast Asian Earth Sciences,1989,3(1-4):63-76.
    [161]Zhang H.F, Gao S, Zhang B.R, et al. Pb isotopes of granitoids suggest Devonian accretion of the Yangtze (South China) to North China cratons[J]. Geology, 1997, 25:1015–1018.
    [162]Zhang K J. North and South China collision along the eastern and southern North China ma- rgin[J]. Tectonophysics,1997,270:145-156.
    [163]Zhang Y Q, Ma Y S, Yang N, et al. Cenozoic extensional stress evolution in North China[J]. Journal of Geodynamics,2003b,36: 591-613.
    [164]Zhang Y Q,Dong S W,Shi W. Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern China[J]. Tectonophysics,2003a,363: 243-258.
    [165]Zhang Y.H, Lin G, Roberts. Numerical modelling of deformation and fluid flow in the Shui- koushan district, Hunan Province, South China[J]. Ore Geology Reviews,2007,31: 261-278.
    [166]Zhao X X, Coe R S. Paleomagnetic constraints on the collision and rotation of North and S- outh China[J].Nature,1987,327(6118): 141-144.
    [167]边千韬,罗小全,李涤徽.青海省阿尼玛卿带布青山蛇绿混杂岩的地球化学性质及形成环境[J].地质学报,2001,75(1):45-55.
    [168]常远,许长海,Peterw,等.米仓山—汉南隆起白垩纪以来的剥露作用:磷灰石(U-Th)/He年龄记录.地球物理学报,2010,53(4):912-919.
    [169]陈发景,汪新文,张光亚,等.中国中、新生代前陆地的构造特征和地球动力学[J].地球科学,1996,21(4): 366-372.
    [170]陈亮,孙勇,裴先治,等.德尔尼蛇绿岩40Ar—39Ar年龄:青藏最北端古特提斯洋存在和延展的证据[J].科学通报,2001,46(5):424-426.
    [171]陈旭,徐均涛,成汉钧,等.论汉南古陆及大巴山隆起[J].地层学杂志,1990.14(2): 81-114.
    [172]崔玲玲,陈正乐,陈柏林,等.迁安铁矿变形岩石的EBSD组构分析[J].岩石矿物学杂志,2010,29(4): 387-396.
    [173]崔盛芹.论全球性中—新生代陆内造山作用与造山带.地学前缘[J].1999,6 (4) : 283- 293 .
    [174]戴朝成,郑荣才,朱如凯,等.四川类前陆地须家河组震积岩的发现及其研究意义[J].地球科学进展,2009,24(2):172-181.
    [175]邓宾,刘树根,李智武,等.青藏高原东缘地区隆升作用特征-低温年代学证据[J].第四纪研究,2009a,29(3): 1-12.
    [176]邓宾,刘树根,李智武,等.青藏高原东缘及四川地晚中生代以来隆升作用对比研究[J] .成都理工大学学报(自然科学版),2008,35(4):477-486.
    [177]邓宾,刘树根,刘顺,等.川西北松潘一甘孜褶皱带较场弧形构造显微应变机制[J].地质通报,2010,29(5):697-706.
    [178]邓宾,刘树根,刘顺,等.四川地地表剥蚀量恢复及其意义[J].成都理工大学学报(自然科学版),2009b,36(6):675-686.
    [179]邓明森.1997.米仓山区盖层褶皱构造变形分析.矿物岩石.17(增刊) : 132-142.
    [180]邓起东,冯先岳,张培震,等.乌鲁木齐山前坳陷逆断裂褶皱带及其形成机制[J].地学前缘,1999,6(4):191-201.
    [181]丁原辰.声发射法古应力测量问题讨论[J].地质力学学报,2000,6(2),45-53。
    [182]杜思清,魏显贵,刘援朝,等.汉南—米仓山区北东向构造及龙门山推覆构造外缘带[J].矿物岩石,1997,17(增刊):123-131.
    [183]杜思清,魏显贵,刘援朝,等.汉南—米仓山区叠加东西向隆坳的北东向推覆构造[J].成都理工学院学报,1998,25(3):369-374.
    [184]冯庆来杜远生殷鸿福,等.南秦岭勉略蛇绿混杂岩带中放射虫的发现及其意义[J].中国科学D辑,1996,26(增刊):78-82.
    [185]高长林,叶德燎,钱一雄.前陆地的类型及油气远景[J].石油实验地质,2000,22(2): 99-104.
    [186]高红灿,郑荣才,柯光明,等.川东北前陆地须家河组层序-岩相古地理特征[J].沉积与特提斯地质,2005,26 (3):38-45.
    [187]顾家裕,张兴阳.中国西部陆内前陆地沉积特征与层序格架[J].沉积学报,2005,23(2):187-194.
    [188]郭正吾,邓康龄,韩永辉.四川地形成与演化[M].北京:地质出版社,1996:1-200.
    [189]国家地震局《中国岩石圈动力学地图集》编委会.中国岩石圈动力学地图集[M].北京:中国地图出版社,1989:8-9.
    [190]何登发,John Suppe.三角剪切断层传播褶皱作用理论与应用[J].地学前缘,2007,14(4):66-73.
    [191]何登发,贾承造.冲断构造与油气聚集[J].石油勘探与开发,2005,32(2):55-63.
    [192]何登发,雷振宇,周路.中国中西部前陆冲断带的形成演化与构造样式[C].见:中国石油学会石油地质专业委员会编.油气地研究新进展:第一辑.北京:石油工业出版社,2002,147-161.
    [193]何登发,吕修样,林永汉,等.前陆地分析[M].北京:石油工业出版社,1996.
    [194]何建坤,卢华复,等.南大巴山冲断构造及其剪切挤压动力学[J].高校地质学报,1997,3(4):419-428.
    [195]嵇少丞,王茜,孙圣思,等.亚洲大陆逃逸构造与现今中国地震活动[J].地质学报,2008,82(12):1644-1677.
    [196]姜复东,苏培东,秦启荣.通南巴地区主要构造成因模式探讨[J].断块油气田,2008,15(3):14-17.
    [197]金宠,李三忠,王岳军,等.雪峰山陆内复合构造系统印支—燕山期构造穿时递进特征[J].石油与天然气地质,2009,30(5):598—607.
    [198]金之钧,汤良杰,杨明慧,等.陆缘和陆内前陆地主要特征及含油气性研究[J].石油学报,2004:8-12.
    [199]金之钧,汤良杰,杨明慧,等.中国中西部地区中新生代陆内前陆地的主要特征[J].见:中国石油勘探与生产分公司编,中国中西部前陆地冲断带油气勘探文集.北京:石油工业出版社,2002:47-56.
    [200]井向辉.米仓山、大巴山深部结构构造研究[D].西安:西北大学,2009.
    [201]乐光禹.大巴山造山带及其前陆地的构造特征和构造演化[J].矿物岩石,1998,18(增刊):8-15.
    [202]李斌,宋岩,孟自芳,等.中国中部前陆山耦合关系分析[J].西南石油大学学报,2009,31(1):23-29.
    [203]李才,胡敬仁,翟庆国,等.印度与亚洲板块碰撞及碰撞时限的新证据[J].地质通报,2007,126(10):1299-1303.
    [204]李春昱,刘仰文,朱宝清,等.秦岭及祁连山构造发展史[J].西北地质,1978,(04): 1-12.
    [205]李国彪,万晓樵,刘文灿,等.雅鲁藏布江缝合带南侧古近纪海相地层的发现及其构造意义[J].中国科学D辑:地球科学,2004,34(3): 228-240.
    [206]李继亮,肖文交,闫臻.山耦合与沉积作用[J].沉积学报,2003,21(1):52-60.
    [207]李锦轶.中朝地块与扬子地块碰撞的时限与方式-长江中下游地区震旦纪一侏罗纪沉积环境的演变[J].地质学报,2001,75(1):25-33.
    [208]李儒峰,郭彤楼,陈国飞,等.米仓山前陆冲断带波动特征与构造沉积演化[J].中国科学D辑:地球科学,2008,38(增刊Ⅰ):63-69.
    [209]李三忠,张国伟,李亚林,等.勉县地区勉略带内麻粒岩的发现及构造意义[J].岩石学报,2000,16(2):220-226.
    [210]李曙光,侯振辉,杨永成,等.南秦岭勉略构造带三岔子古岩浆弧的地球化学特征及形成时代[J].中国科学D辑,2003,33(12):1174-1183.
    [211]李曙光,孙卫东,张国伟,等.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学古生代洋及其闭合时代的证据[J].中国科学D辑,1996,26(3):223-230.
    [212]李思田.沉积地动力学分析—地研究领域的主要趋向[J].地学前缘,1995,2(3-4): 1-8.
    [213]李渭娟,梁桂培,姚政生.龙门山及其邻区地球物理场与地震的关系[J].华南地震,1995,15(2):34-41.
    [214]李亚林,王成善,胡修棉,等.西藏南部始新世早期放射虫动物群及其对特提斯闭合时间的约束[J].科学通报,2007,52(12):1430-1434.
    [215]李岩峰.四川地东北部中-新生代造山与前陆变形构造叠合关系研究[D].中国地震局地质研究所,2005:59-65.
    [216]李勇,曾允孚,伊海生.龙门山前陆地沉积与构造演化[M].成都:成都科技大学出版社,1995:92.
    [217]李勇,周荣军,Densmore A L,等.青藏高原东缘龙门山晚新生代走滑一逆冲作用的地貌标志[J].第四纪研究,2006,26(1):40-51.
    [218]李智武,陈洪德,刘树根,等.龙门山冲断隆升及其走向差异的裂变径迹证据[J].地质科学,2010,45(4):944-968.
    [219]李智武,刘树根,罗玉宏,等.南大巴山前陆冲断带构造样式及变形机制分析[J].大地构造与成矿学,2006,30(3):294-304.
    [220]李智武.中-新生代大巴山前陆地—冲断带的形成演化(D).成都:成都理工大学,2006.
    [221]凌文黎,高山,程建萍,等.扬子陆核与陆缘新元古代岩浆事件对比及其构造意义-来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束[J].岩石学报, 2006,22:387-396.
    [222]刘池洋,赵红格,杨兴科,等.前陆地及其确定和研究[J].石油与天然气地质,2002,23(4):307-313.
    [223]刘登忠,魏显贵,杜思清,等.米仓山西段地质研究新进展[J].矿物岩石,1997,17(增刊):1-8.
    [224]刘和甫,梁慧社,蔡立国,等.川西龙门山冲断系构造样式与前陆地演化[J].地质学报,1994,68(2):101-118.
    [225]刘和甫,梁慧社,蔡立国,等.天山两侧前陆冲断席构造样式与前陆地演化[J].地球科学,1994,19(6):727-741.
    [226]刘和甫,梁慧社,李晓清,等.中国东部中新生代裂陷地与伸展山岭耦合机制[J].地学前缘,2000,7(4):477-486.
    [227]刘和甫,梁慧社,王玉新.贺兰山—龙门山叠瓦冲断带与前陆地演化[C].见:中国地质学会编.“七五”地质科技重要成果学术交流会议论文选集.北京:北京科学技术出版社,1992:155-159.
    [228]刘和甫,陆伟文,王玉新.鄂尔多斯西缘冲断—褶皱带形成与形变[C].见:杨俊杰等主编.鄂尔多斯地西缘掩冲带的构造与油气.兰州:甘肃科学技术出版社,1990:54-76.
    [229]刘和甫,汪泽成,熊保贤,等.中国中西部中、新生代前陆地与挤压造山带耦合分析[J].地学前缘,2000,7(3):55-72.
    [230]刘和甫.大陆造山带与地耦合合机制之一——连锁断层系统[J] .地学前缘.1999.6(3):13-I4.
    [231]刘和甫.前陆地类型及褶皱一冲断样式[J].地学前缘,1995,2(3):59-68.
    [232]刘殊.前陆褶皱冲断带构造特征研究-以米仓山、龙门山前陆地及褶皱带为例[D].北京:中国地震局地质研究所,2007.
    [233]刘树根,邓宾,李智武,等.盆山结构与油气分布——以四川地为例[J].岩石学报,2011,27(3):621-635.
    [234]刘树根,李智武,曹俊兴,等.龙门山陆内复合造山带四维结构构造特征[J].地质科学,2009,44(4):1151-1180.
    [235]刘树根,李智武,刘顺,等.2006.大巴山前陆地—冲断带的形成演化[M].北京:地质出版社. 47-70.
    [236]刘树根,罗志立,曹树恒.一种新的陆内俯冲类型——龙门山型俯冲成因机制研究[J].石油实验地质,1991,13(4):314-323.
    [237]刘树根,罗志立,宋鸿彪,等.四川龙门山冲断带中北段岩石圈结构研究[J].石油与天然气地质,1990,11(1):86-95.
    [238]刘树根,罗志立.从华南板块构造演化探讨中国南方油气藏分布的规律性[J].石油学报,2001,22(4):24-31.
    [239]刘树根,罗志立等.中国西部山系统的锅合关系及其动力学模式——以龙门山造山带以川西前陆地系统为例[J].地质学报,2003,77(2):177-186.
    [240]刘树根,童祟光,罗志立,等.川西晚三叠世前陆地的形成与演化[J].天然气工业,1995,15(2):11-15.
    [241]刘树根,赵锡奎,罗志立,等.龙门山造山带以川西前陆地系统构造事件研究[J].成都理工学院学报,2001,28(3):221-230.
    [242]刘树根.龙门山冲断带与川西前陆地的形成演化[M].成都:成都科技大学出版社,1993:167.
    [243]卢华复,陈楚铭,刘志宏,等.库车再生前陆逆冲带的构造特征与成因[J].石油学报,2000,21(3):18-24.
    [244]罗志立,刘树根.评述“前陆地”名词在中国中西部含油气地中的引用——反思中国石油构造学发展[J].地质论评,2002,48(4):398-407.
    [245]罗志立,龙学明.龙门山造山带崛起和川西陆前地的沉降[J].四川地质学报,1992,12(1):1-17.
    [246]罗志立,宋鸿彪,赵锡奎.C—型俯冲带及对中国中西部造山带形成的作用[J].石油勘探与开发,1995,22(2):1-7.
    [247]罗志立.从华南板块构造演化探讨中国南方碳酸盐岩含油气远景[J].海相油气地质,2000,5(3-4):1-19.
    [248]罗志立.龙门山造山带的崛起和四川地的形成与演化[M].成都:成都科技大学出版社,1994.
    [249]罗志立.试论中国型(C—型)冲断带及其油气勘探问题[J].石油与天然气地质,1984,5(4):315-324.
    [250]罗志立.试评A—型俯冲带术语在中国大地构造学中的应用[J].石油实验地质,1994,16(4):317-324.
    [251]罗志立.扬子古板块的形成及对中国南方地壳发展的影响[J].地质科学,1979,(2): 12-38.
    [252]罗志立.中国石油天然气形成的地质构造背景[C].见:邱中健,龚再生.中国油气勘探.北京:地质出版社和石油工业出版社,1999,1:1-19.
    [253]罗志立.中国西南地区晚古生代以来地裂运动对石汕等矿产形成的影响[J].四川地质学报,1981,2(l):1-22.
    [254]马杏垣,索书田.论滑覆及岩石圈内多层次滑脱构造[J].地质学报,1984,(3):213-219.
    [255]梅廉夫,刘昭茜,汤济广,等.湘鄂西—川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据[J].地球科学—中国地质大学学报,2010,35(2):161-174.
    [256]孟小红,田春志,梁江平.利用岩石磁学研究古水流和古应力场方向的方法与应用[J].现代地质,1999,13(2):184-189.
    [257]牟传龙,谭钦银,余谦.米仓山南缘中生代沉积地性质讨论[J].沉积与特提斯地质,2008,28(3):41-45.
    [258]牛树银,孙爱群,白文吉.造山带与相邻地间物质的横向迁移[J].地学前缘,1995,2(1-2):85-92.
    [259]潘校华.前陆地的特点及含油气性[C].见:油气勘探工程新进展(一) .北京:石油工业出版社,1995:16-26.
    [260]裴先治,李瑞保,丁仨平,等.陕南镇巴地区大巴山与米仓山构造交接关系[J].石油与天然气地质,2009,30(5):576-583.
    [261]彭希龄,梁狄刚,王昌桂,等.前陆地理论及其在中国的应用[J].石油学报,2006,27 (1):132-143.
    [262]邱楠生,秦建中,Brent I A McInnes,等.川东北地区构造—热演化探讨——来自(U-Th)/He年龄和Ro的约束[J].高校地质学报,2008,14(2):223-230.
    [263]任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3): 85-93.
    [264]邵济安,王存城.从属褶皱构造解析[J].成都地质学院学报,1983.
    [265]沈传波,梅廉夫,郭彤楼.川东北地区中、新生代热历史的裂变径迹分析[J].天然气工业,2007,27(7):24-26.
    [266]沈中延,肖安成,王亮,等.四川北部米仓山地区下三叠统内部不整合面的发现及意义[J].岩石学报,2010,26(4):1313-1321.
    [267]施炜,董树文,胡健民,等.大巴山前陆西段叠加构造变形分析及其构造应力场特征[J].地质学报,2007,81(10):1314-1327.
    [268]孙树林.米仓山及其南缘薄皮构造初步研究[J].河海大学学报,1994,22(1): 53-57.
    [269]孙卫东,李曙光,Chen Yadong,等.南秦岭花岗岩锆石U-Pb定年及其地质意义[J].地球化学,2000,29(3):209-216.
    [270]孙岩,李本亮,刘海龄,等.论层滑、倾滑和走滑断裂系统[J].地质力学学报,1999,5(3): 53-57.
    [271]孙肇才.中国中西部中—新生代前陆类地及其含油气性[C].见:中国石油学会石油地质专业委员会编.油气地研究新进展:第一辑.北京:石油工业出版社,2002:73-95.
    [272]索书田.重力滑动构造[J].地球科学,1983.
    [273]汤经武,杨学敏.微型计算机在地质构造解析中的应用[M].北京:中国地质大学出版社,1989:91-147.
    [274]汤良杰,郭彤楼,余一欣,等.四川地东北部前陆褶皱-冲断带盐相关构造[J].地质学报,2007,81(8):1048-1056.
    [275]汤双立,颜丹平,汪昌亮,等.华南雪峰山薄皮—厚皮构造转换过程:来自桑植—安化剖面的证据[J].现代地质,2011,25(1):22-31.
    [276]田蜜,施炜,李建华,等.江汉地西北部断陷带构造变形分析与古应力场演化序列[J].地质学报,2010,84(2):159-170.
    [277]田云涛,朱传庆,徐明,等.白垩纪以来米仓山—汉南穹窿剥蚀过程及其构造意义:磷灰石裂变径迹的证据[J].地球物理学报,2010,53(4):920-930.
    [278]田作基,罗志立,罗蛰潭,等.新疆阿瓦提陆内前陆地[J].石油与天然气地质,1996,17(4): 282-285.
    [279]万晓樵,丁林,李建国,等.西藏仲巴地区白垩纪末期—始新世早期海相地层[J].地层学杂志,2001,25(4): 267-272.
    [280]汪新伟,沃玉进,周雁,等.上扬子地区褶皱—冲断带的运动学特征[J].地学前缘,2010,17(3):200-212.
    [281]汪泽成,刘和甫,熊保贤,等.从前陆地充填地层分析山耦合关系[J].地球科学,2001,26(1):30-38.
    [282]王成善,李祥辉,胡修棉.再论印度-亚洲大陆碰撞的启动时间[J].地质学报,2003,77(1):16-24.
    [283]王二七,孟庆任,陈智樑,等.龙门山断裂带印支期左旋走滑运动及其大地构造成因[J].地学前缘,2001,8(2):375-383.
    [284]王清晨,孙枢,李继亮,等.秦岭的大地构造演化[J].地质科学,1989:129-142.
    [285]王瑞瑞,张岳桥,董树文,等.构造三角带的概念及其油气勘探意义[J].地质通报,2010,29(2-3):317-329.
    [286]王一刚,余晓锋,杨雨,等.流体包裹体在建立四川地古地温剖面研究中的应用[J].地球科学,1998,23(3):285-288.
    [287]王宗起,陈海泓,李继亮,等.南秦岭西乡群放射虫化石的发现及其地质意义[J].中国科学D辑,1999,29(1):38-44.
    [288]魏显贵,杜思清,何政伟,等.米仓山地区构造演化[J].矿物岩石,1997a,17(增刊): 107-113.
    [289]魏显贵,杜思清,刘援朝,等.米仓山推覆构造的结构样式及演化特征[J].矿物岩石,1997b,17(增刊):114-122.
    [290]文华国,郑荣才,叶泰然,等.米仓山-大巴山前陆地下沙溪庙组高分辨率层序地层学特征[J].矿物岩石,2005,25(1):83-90.
    [291]吴德超,魏显贵,杜思清,等.米仓山叠加型推覆构造几何结构及演化[J].矿物岩石,1998,18(增刊):16-20.
    [292]吴根耀,马力.“”、“山”耦合和脱耦:含油气地研究的新思路[M].见:中国石油学会石油地质专业委员会编.油气地研究新进展:第一辑.北京:石油工业出版社,2002: 20-36.
    [293]吴根耀,马力.“”“山”耦合和脱耦的反转点和切入点研究[J].石油实验地质,2005,27(1):8-18.
    [294]吴根耀,马力.“”“山”耦合和脱耦:进展,现状和努力方向[J].大地构造与成矿学,2004,28(1):81-97.
    [295]吴根耀,马力.试论“”“山”的耦合和脱耦及其运动学[J].石油实验地质,2003,25(2):99-110.
    [296]吴根耀,马力.试论“”“山”耦合和脱耦研究的方法学[J].石油与天然气地质,2004,25(3):239-247.
    [297]吴根耀.地研究的活动论构造观[J].石油实验地质,1998,20(4):309-318.
    [298]吴汉宁,常承法,刘椿,等.华北和华南块体古生代至中生代古地磁极移曲线与古纬度的分布变化[J].西北大学学报(自然科学版),1991,(03):99-105.
    [299]吴磊,钱俊峰,肖安成,等.扬子地块西侧米仓山基底卷入式冲断带的结构分析[J].岩石学报,2011,27(3):681-688.
    [300]吴世祥,马永生,金之钧,等.米仓山前陆地东段构造演化模式与油气聚集[J].石油勘探与开发,2006a,33(1):14-16.
    [301]吴世祥,汤良杰,郭彤楼,等.米仓山与大巴山交汇区构造分区与油气分布[J].石油与天然气地质,2005,26(3):361-366.
    [302]吴世祥,汤良杰,马永生,等.四川地米仓山前陆冲断带成藏条件分析[J].地质学报,2006b,80(3):337-343.
    [303]吴运高,李继亮,樊敬亮.造山带逆冲推覆构造研究的主要新进展[J].地球科学进展,2000,15(4):426-433.
    [304]夏浩然,刘俊来.石英结晶学优选与应用[J].地质通报,2011,30(1):58-70.
    [305]肖莉,邓绍强.四川地东北部地区构造演化与油气的关系[J].内蒙古石油化工,2010,(3):116-119.
    [306]谢邦华,陈盛吉,黄纯虎,等.米仓山山前带油气成藏地质条件分析[J].天然气勘探与开发,2007,30(2):18-20.
    [307]许志琴,卢一伦,汤耀庆.中国的脊梁—秦岭山链的形成—聚合、碰撞及陆内俯冲[J].中国地质科学学院院报,1990,20:130-132.
    [308]许志琴.陆内俯冲及滑脱构造-以我国几个山链的地壳变形研究为例[J].地质论评,1986,32(1):79-88.
    [309]杨崇辉,魏春景,张寿广,等.南秦岭佛坪地区麻粒岩相岩石锆石U-Pb年龄[J].地质论评,1999,45(2):173-179
    [310]杨武年,乐光禹,杜思清,等.恢复区域构造应力场的新方法[J].科学通报,1991,(12):931-934.
    [311]翟文亮,郑荣才,朱如凯,等.川东北类前陆地须家河期一山耦合和层序充填样式[J].成都理工大学学报(自然科学版),2009,36(3):268-275.
    [312]张长厚,陈爱根,白志达.河北省兴隆煤田及邻区厚皮式逆冲推覆构造与隐伏煤田问题[J].现代地质,1997,11(3):305-312.
    [313]张长厚,宋鸿林.燕山板内造山带中生代逆冲构造样式及形成过程[J].地质力学学报,1996,2(3):21-22.
    [314]张国伟,程顺有,郭安林,等.秦岭—大别中央造山系南缘勉略古缝合带的再认识[J].地质通报,2004,23(9-10):846-853.
    [315]张国伟,董云鹏,姚安平.秦岭造山带基本组成与结构及其构造演化[J].陕西地质,1997,15(2):1-14.
    [316]张国伟,郭安林,董云鹏,等.深化大陆构造研究,发展板块构造,促进固体地球科学发展[J].西北大学学报,2009,39(3):345-349.
    [317]张国伟,李三忠,刘俊霞,等.新疆伊犁地的构造特征与形成演化[J].地学前缘,1999,6(4):203-214.
    [318]张国伟,孟庆任,赖绍聪.秦岭造山带的结构构造[J].中国科学B辑,1995,25(9): 994-1003.
    [319]张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征[J].中国科学(D辑),1996,26(3):193-200.
    [320]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001.
    [321]张国伟.秦岭造山带的形成与演化[M].西安:西北大学出版社,1988.
    [322]张明利,金之钧,汤良杰,等.前陆地研究的回顾与展望[J].地质论评,2002,48 (2):214-220.
    [323]张忠义,董树文.大巴山西北缘叠加褶皱研究[J].地质学报,2009,83(7):923-936.
    [324]张仲培,王清晨.断层滑动分析与古应力恢复研究综述[J].地球科学进展,2004,19 (4):605-613.
    [325]张宗清,刘教一,付国民,等.北秦岭变质地层秦岭、宽坪、陶湾群同位素年代研究[M].地质出版社,1994:1-191.
    [326]张宗清,张国伟,唐索寒,等.汉南侵入杂岩年龄及其快速冷凝原因[J].科学通报,2000,45:2567-2572.
    [327]张宗清,张国伟,唐索寒,等.秦岭勉略带中安子山麻粒岩的年龄[J].科学通报,2002,47(22):1751-1755.
    [328]赵凤清,赵文平,左义成,等.陕南汉中地区新元古代岩浆岩U-Pb年代学[J].地质通报,2006,25:383-388.
    [329]郑伯让,金淑燕.构造岩岩组学[M].中国地质大学出版社,1989:57-60.
    [330]郑度,姚檀栋.青藏高原隆升及其环境效应[J].地球科学进展,2006,21(5):51-59.
    [331]郑荣才,戴朝成,朱如凯,等.四川类前陆地须家河组层序—岩相古地理特征[J].地质论评,2009,55(4):484-495.
    [332]郑荣才,朱如凯,戴朝成,等.川东北类前陆地须家河组-山耦合过程的沉积-层序特征[J].地质学报,2008,82(8):1077-1087.
    [333]郑亚东,常志忠.岩石有限应变测量及韧性剪切带[M].北京:地质出版社,1985.
    [334]周鼎武,赵重远,李银德,等.鄂尔多斯地西南缘地质特征及其与秦岭造山带的关系[M].北京:地质出版社.1994.
    [335]朱志澄.构造地质学[M].武汉:中国地大出版社,1990:219-259.
    [336]邹付戈,尹宏伟.四川龙门山地区反转构造样式分析及其成因机制探讨[J].大地构造与成矿学,2009,33(3):321-333.
    [337]四川省地质矿产局.四川省区域地质志[M] .北京:地质出版社,1991:645-665.
    [338]四川省地质矿产局,成都理工大学.1/5万曾家幅、盐井河幅、檬子幅、关坝幅、吴家娅幅、国华幅、楠木幅、南江县幅地质图及区域地质调查报告.1995,成都理工大学档案馆.
    [339]四川省地质局第二区域地质测量队.1/20万南江幅、镇巴幅地质图及区域地质调查报告.1965,成都理工大学档案馆.
    [340]甘肃省地质局.1/20万碧口幅地质图及区域地质调查报告.1989,成都理工大学档案馆.
    [341]西北地质调查局区域地质测量大队.1/20万汉中幅地质图及区域地质调查报告.1965,成都理工大学档案馆.
    [342]陕西省地质局区域地质测量大队.1/20万略阳幅地质图及区域地质调查报告.1965,成都理工大学档案馆.
    [343]四川省地质局第二区域地质测量队.1/20万广元幅地质图及区域地质调查报告.1965,成都理工大学档案馆.
    [344]四川省地质局航空区域地质调查队.1/20万通江幅、仪陇幅、阆中幅地质图及区域地质调查报告.1982,成都理工大学档案馆.
    [345]四川省地质局第二区域地质测量队.1/20万城口幅地质图及区域地质调查报告.1973,成都理工大学档案馆.
    [346]陕西省地质矿产局区域地质调查队.1/20万紫阳幅地质图及说明书.1989,陕西省国土资源厅.
    [347]陕西省地质矿产局区域地质调查队.1/20万石泉幅地质图及说明书.1966,陕西省国土资源厅.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700