用户名: 密码: 验证码:
试验遗传算法研究及其在水资源系统问题中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口与经济的持续增长,人类社会对水的需求量不断增加,水资源进行性短缺和水环境持续恶化已成为全球性问题。20世纪90年代以来,作为最大的发展中国家,我国也开始面临着日益突出的水资源短缺、水环境恶化和洪水灾害等水安全问题。今天,水资源系统已演变为一个多目标、多属性、多层次、多功能和多阶段的复杂巨系统,使得系统工程和系统分析成为当前解决水资源系统问题的主要理论基础和重要工具之一。随着所研究系统广度与深度的扩大,传统方法对于现代水资源系统的高维、非凸、非线性等复杂问题的处理已日显掣肘。近年来,随着现代应用数学和计算机技术的迅猛发展,针对复杂系统问题人们提出了人工智能计算理论与分析方法,如遗传算法、人工神经网络模型、模糊集等,这些方法的引入极大地促进了系统分析技术的发展,也为现代水资源系统问题的研究注入了新的活力。
     在现代计算智能方法中,遗传算法由于自适应性强,全局优化,概率搜索,隐含并行性以及简单通用性等显著优点,在现代水资源系统问题中得到了广泛应用。然而在应用中发现,遗传算法尚存在诸多不足有待完善,如:解空间搜索策略,问题收敛性,控制参数设置等,这也是它之所以长期成为国内外计算智能研究热点的原因。交叉集成是当代科技创新的主要方式之一,也是遗传算法种群衍生的重要途径,把传统、常规或现代、智能的数学方法与遗传算法相结合以改善后者的性能是现代遗传算法研究的重要方式。本文在前人研究工作的基础上,首次对传统试验设计方法与遗传算法集成的可行性进行了较为深入地探讨,即①试验设计与遗传算法相结合的理论背景-广义试验方法。②试验设计与遗传算法相互集成的应用基础,即二者极强的优势互补性。以此为理论基础,第一次提出了二者相互双向集成的具体方式和操作方法:即基于遗传算法的试验设计方法(遗传正交设计、遗传均匀设计),基于试验设计的改进遗传算法。其中,试验设计嵌入遗传算法形成试验遗传算法的具体实施步骤包括:①按均匀设计表对遗传算法的初始群体进行均匀性分布。②利用多个均匀设计表对各变量进行不同水平组合,生成新的子代群体以提高种群的多样性。③在精英个体周围一定范围内进行确定性均匀分布搜索,称为确定性均匀调优操作。④随机性正态分布搜索,在部分优秀个体上周围叠加一个服从正态分布的随机变量产生新的子代群体。⑤摄动调优试验操作,即传统的坐标轮换法。数值实验的结果说明,试验遗传算法作为传统优化方法、计算智能算法和试验设计方法的综合集成新方法,采用随机性正态搜索和确定性均匀分布搜索,同时考虑变量的连续性与离散化,保证了算法较高的寻优性能,计算效率高,通用性强,对复杂系统中的高维、非线性、非凸及组合优化等问题的求解具有较强的适应性。
     水资源系统优化问题是现代水资源系统问题的核心内容。本文在以下几个方面开展了试验遗传算法在水资源系统优化问题中的应用研究:①把灌溉渠道横断面设计转化为非线性优化问题,建立了相应的优化设计数学模型,并以梯形渠道断面和U形渠道断面为例,首次应用试验遗传算法进行渠道底宽和设计水深等参数的优化。②针对控制大田地下水位的排水沟间距问题,构造了以工程量最省为目标的无约束优化模型;针对控制稻田渗漏量的排水暗管设计问题,首次建立了以工程造价最小,同时考虑渗漏量等多种约束的系统优化问题,试验遗传算法对两个模型的求解结果令人满意。③建立了以经济性为目标、以结构安全性和技术可行性为约束的水电站压力埋管结构优化设计模型,试验遗传算法获得的优选设计方案明显好于传统设计方法。
     水资源系统预测问题是一门技术性、艺术性要求很高的课题,它既要求预测者掌握多种系统预测方法与技术,又要求预测者具有灵活综合运用这些技术方法的能力。由于具有极强的非线性映射能力和容错性,人工神经网络已成为现代水资源系统工程中常用的建模方法之一。本文对BP人工神经网络(BP-ANN)在水资源系统建模及预测问题中的应用开展了如下工作:①在简要介绍BP-ANN原理方法的基础上,针对其不足研制了基于试验遗传算法的改进BP人工神经网络方法,提高了BP-ANN的全局优化能力。②应用BP-ANN进行非线性组合预测方法研究,有效避免了传统组合预测模型权重的繁琐计算。③针对组合预测中各模型权重难以科学确定的难题,首次根据“择优取用”原则将预测模型的组合问题转化为0、1异或的模式识别问题,并采用改进的BP-ANN方法进行该问题的求解,取得了令人满意的结果。这种确定变权重的方法实质上是一个模型优选过程,由于对每个样本都是取用各预测模型中的最优者,因此能在现有预测水平下保证模型“总是最好”,同时具有清晰易懂,简便易操作的优点。作为变权重组合预测方法的一个特例,在组合预测领域有较高的实用价值。
     水资源系统评价问题的关键是评价模型的合理构造及其有效优化,基于常规建模和优化方法的传统方法已难以胜任复杂水资源系统中涉及多属性、多层次、多因子的综合评价问题。本文结合水资源系统评价问题中的不足做了以下两方面工作:①针对农业灌溉用水水质综合评价过程中存在的评价结果不相容性问题,提出基于数据探索和试验遗传算法求解的投影寻踪综合评价模型,较之灰色聚类法,其数学概念清晰,评价结果更精确合理。②基于线性属性测度函数的传统属性识别模型对随机抽样的评价结果存在较大误差,为此首次提出了基于非线性属性测度函数的改进属性识别模型。均匀随机和正交设计两种抽样的评价试验显示,改进属性识别模型评价结果准确度明显好于传统模型,说明指标的属性测度函数对属性识别模型的综合评价结果有重要影响。由于非线性测度函数比线性测度函数能更好地描述评价指标的实际隶属度,故基此改进的属性识别模型具有更高的评价可信度。
With the continuously rapid growth of population and economy, water demand has been substantially increasing which leads to the global problems of water resource shortage and water quality deterioration. Since 1990s, as the largest developing country, China has faced severe water problems such as lack of water resources, worsening of water circumstances and increase of flooding disasters, which were sometime called water security problem as a whole. Nowadays water resource system is a huge and complex system exhibiting multi-stage, multi-objective, multi-level, multi-attribute and multi-functioning characteristics. System engineering and system analysis has been becoming one of the most dominating tools for analysis of water resource system. However, as the extent and depth of system research grow, the conventional theories and methods are not suitable to deal with the problems of modern water resource system which are high dimensional, non-linear and non-convex. In recent years, with the fast development of applied mathematics and computer techniques, the methods of artificial computational intelligence (CI) have been proposed to treat the complex system problems. Some of the frequently used CI theories and methods include genetic algorithms (GA), artificial neural networks (ANN), fuzzy sets (FS) etc. The applications of CI have helped the development of system analysis techniques, and have proposed new solutions for the water resource problems.
     Due to its self-adaptivity, global optimum, probability search, latent parallel process and easy operation, GA has been widely applied to the problems of modern water resource system. However, there are still some shortages for GA, such as searching algorithms in solution space, convergence of solutions and selection of controls parameters. Thus GA has been a hot research topic for a relatively long time. The operation of crossover and integration is one of the main technical and scientific innovation nowadays, which is also the vital kernel of GA. Consequently combining the conventional or intelligent mathematical methods with GA becomes an important way to improve the performance of the latter. In this study we briefly discuss the feasibility of integration of experiment design and GA, including:①t he theoretic foundation of the integration of experiment design with GA-the generalized experimental method;②the application foundation of integration of experiment design and GA - great complementarities between each other. As a result we propose a novel way of integrating the following two methods: GA based experiment design (GA orthogonal design, GA uniform design), experiment design based GA (immune GA, experimental GA). The experiment designs obtained by sub-GA were imbed into GAs in the following way:①u niform generation of forerunner individuals;②uniform searching in solution space;③utilizing uniform designs to make evolution experiment;④utilizing normal random distribution to make evolution experiment;⑤utilizing variable perturbation to make evolution experiment. Thus the so-called self-adaptive experimental genetic algorithms (EGA) based on the experiment design is developed. Digital test showed that, as a new hybrid intelligent method, EGA owns characters of fine optimizing efficiency and good precision adaptivity. It also has the ability to accelerate the individual variety to obtain the global solutions, and gives good values in area of complex water resource system.
     System optimization is the core of modern water resources system. In this dissertation, EGA is applied to solve the water resource system optimization problems such as:①C anal transect design is transformed into a non-linear optimization problem by constructing a relevant optimizing mathematical model. The design of trapezoid transect and U-shaped transect canals are taken as examples to illustrate the procedure of using EGA to get the optimal solution.②For the interval design of drains which control the level of ground water, a non-restraint model with the objective of minimum project is proposed, and for interval design of hidden pipes which govern the seepage of rice field, a non-linear model is set up with the objective of minimum cost and restraints of seepage, the results given by EGA are very favorable.③A multi-variable-mixed non-linear optimization model is built during designing the structure of underground stiffened penstock of hydraulic power station, solutions given by EGA turns out to be superior to those based on the conventional methods.
     System forecasting for water resource is a highly demanding technical issue. Forecasters are required to comprehensively master, as well as synthesize many methods or techniques. Because of its outstanding performance on fault-tolerance and nonlinear mapping, artificial neural nets (ANN) have been one of the most popular model-construction methods used in water resource system. In this dissertation, the application of BP-ANN to modeling and forecasting of water resource system contains:①after a brief introduction on the principle and method of BP-ANN, a hybrid artificial neural networks based on EGA is proposed to improve its ability to get the global solution;②the improved BP-ANN is utilized to form the method of nonlinear combination forecasting, which successfully avoids the tedious computation of the model weights;③according to the principle of best selection, the combined forecasting model is wisely transformed into a problem of 0 and 1 pattern recognition, and is solved by the method of improved BP-ANN with strong ability of non-linear mapping. The given example shows that, the so called selecting-best forecasting model (ANN-SFM) not only successfully avoids computing the weights of the combined forecasting models, but also owns the properties of clear concept, easy operation. As a special case of variable-weighting CFM, ANN-SFM has high values in practical applications.
     The key point of water resource system assessment is the rational construction and effective optimization of the assessment model. Conventional methods based on general model construction and optimization are not fit for the requirements of comprehensive assessment of complex water resource system which involves problems of multi-attribute, multi-levels and multi-factors. In this dissertation, the following works are presented to improve the overall assessment on water resource system:①in order to solve the incompatible problem resulting from the comprehensive evaluation on the quality of agricultural irrigation water, a new evaluation method-projection pursuit model based on the technology of data exploring, and optimized by EGA, is proposed to evaluate the irrigation water quality. Compared with the traditional water quality evaluation methods, for example the gray association analysis, the mathematical concept of IGA-PP method is much simpler and clear. The results using IGA-PP are also more reasonable and precise;②large errors occur when the general attribute recognition model based on linear measure function(LMF-ARM) is employed to do assessment on virtual samples drawn randomly from the criterion of water quality. Therefore, an improved attribute recognition model based on non-linear measure function (NLMF-ARM) is also developed. The results given by the later model are much better than those from the former, according to the tests on virtual samples selected by the random method as well as the orthogonal design approach. It indicates that the measure function could play an important role during the process of utilizing attribute recognition model to do comprehensive assessment. Thus from the case study on a river water quality assessment, it can be concluded that the non-linear measure function, compared to the linear one, has better capability to describe the natural attribute degrees of assessment indexes. Also due to its higher reliability than that of LMF-ARM, NLMF-ARM has broad applicability in the comprehensive assessment of water quality.
引文
[1]金菊良,王文圣,洪天求,等.流域水安全智能评价方法的理论基础探讨[J].水利学报, 2006, 37(8):918-925.
    [2]洪阳.中国21世纪的水安全[J].环境保护, 1999,(1):29-31.
    [3]王浩,秦大庸,王建华.流域水资源规划的系统观与方法论[J].水利学报, 2002,33(8):1-6.
    [4]魏一鸣,金菊良,杨存建,等.洪水灾害风险管理理论[M].北京:科学出版社,2002, 1-128.
    [5]左其亭,窦明,吴泽宁.水资源规划与管理[M].北京:中国水利水电出版社, 2005,1-9.
    [6]康绍忠,李永杰. 21世纪我国节水农业的发展趋势与对策[J].农业工程学报,1997(4):32-36.
    [7]夏军,黄国和,宠进武,左其亭.可持续水资源管理-理论方法应用[M].北京:化学工业出版社,2005,1-356.
    [8]刘昌明.二十一世纪中国水资源若干问题的讨论[J].水利水电技术, 2002, 33(1):15-19.
    [9]水利部农村水利司.全国大型灌区续建配套与节水改造规划报告[R]. 2001.
    [10]中华人民共和国水利部. 2002年中国水资源公报[R].北京:中华人民共和国水利部, 2003.
    [11]汪恕诚.在第19届国际灌排大会开幕式上的讲话, 2005.
    [12]张杰,熊必永,李捷.水健康循环原理与应用[M].北京:中国建筑工业出版社, 2006,6-32.
    [13]许谦.我国化肥和农药非点源污染状况综述[J].农村生态环境,1996,12(2):39-43.
    [14]宋蕾,王永胜.关中抽渭灌区农田面源污染对渭河水体的影响[J].自然生态保护,2001,8:23-26.
    [15]周维博,李佩成.我国农田灌溉的水环境问题[J].水科学进展, 2001,12(3):413-417.
    [16]王劲峰.中国自然灾害影响评价方法研究[M].北京:中国科学技术出版社, 1993, 1-30.
    [17]翟浩辉.中国的灌溉排水与农业发展.国际灌排委员会第19届大会暨第56届执理会讲话,2004.
    [18]冯铁忱,吴群英. 1998年长江流域洪水灾情[J].人民长江, 1999, 30(2):27-28.
    [19]施雅风.全球变暖影响下中国自然灾害的发展趋势[J].自然灾害学报, 1996,5(2):102-106.
    [20]姜树海,范子武,吴时强.洪灾风险评估和防洪安全决策[M].北京:中国水利水电出版社, 2005, 1-16.
    [21]成建国,杨小柳,魏传江,等.论水安全[J].水国水利, 2004(1):8-10.
    [22]水利部国际合作与科技司.当代水利科技前沿[M].北京:中国水利水电出版社, 2006,1-51.
    [23]钱学森等.论系统工程[M].长沙:湖南科学出版社,1982, 10, 1-156.
    [24]汪应洛.系统工程(第二版)[M].北京:机械工业出版社, 2002, 1. 1-257.
    [25]高志亮,李忠良.系统工程方法论[M].西安:西北工业大学出版社, 2004, 8:1-191.
    [26]朱道立.大系统优化理论与应用[M].上海:上海交通大学出版社,1987,12:291.
    [27]程吉林.大系统试验选优理论和应用[M].上海:上海科技出版社,2002,25-39.
    [28]郭元裕,李寿声.灌排工程最优规划与管理.北京:水利电力出版社, 1994, 1-138.
    [29]刘肇袆.灌排工程系统分析(第二版)[M].北京:中国水利水电出版社, 1998,5:178.
    [30]金菊良,丁晶.水资源系统工程[M].成都:四川科学技术出版社, 2002, 12: 1-226.
    [31]尚松浩.水资源系统分析方法及应用[M].清华大学出版社, 2006, 8-15.
    [32]冯尚友.水资源系统工程[M].武汉:湖北科学技术出版社, 1991, 3-18.
    [33]王先甲.水利水电系统工程的研究现状与发展趋势[J].武汉水利电力大学学报, 2000, 33(1):44-48.
    [34]翁文斌,王忠静,赵建世.现代水资源规划-理论、方法与技术[M].北京:清华大学出版社, 2004, 3-170.
    [35]金菊良,魏一鸣,丁晶,等.水资源系统工程的理论框架探讨[J].系统工程理论与实践,2004,24(2):130-137.
    [36]中国大百科全书编委会.中国大百科全书·数学[M].北京:中国大百科全书出版社,1988.1-3.
    [37]梁迪,董海.系统工程[M].北京:机械工业出版社, 2005,1-120.
    [38]谭跃进,陈英武,易进先.系统工程原理[M].长沙:国防科学大学出版社, 1999. 1-233.
    [39]顾凯平,高孟宁,李彦周.复杂巨系统研究方法论[M].重庆:重庆出版社, 1992,1-75.
    [40]夏安邦,王硕.定量预测引论[M].南京:东南大学出版社, 2001,1-229.
    [41]胡永宏,贺思辉.综合评价方法[M].北京:科学出版社, 2000.
    [42]胡振鹏.大系统多目标分解聚合算法及应用[D].武汉:武汉水利电力大学, 1985, 1-25.
    [43] Holland J H. Genetic algorithms[J]. Scientific American,1992(4):44-50.
    [44] Holland J H. Adaptation in Natural and artificial systems. 1st ed; 1975. 2nd ed. Cambridge, MA: NIT Press, 1992.
    [45]云庆夏.进化算法[M].北京:冶金工业出版社,2000.
    [46]陈国良,王煦法,庄镇泉等.遗传算法及其应用[M].北京:人民邮电出版社, 1996,1-18.
    [47]金菊良,丁晶.遗传算法及其在水科学中的应用[M].成都:四川大学出版社,2000,1-162.
    [48]毛学文.基因算法及其在水文模型参数优选中的应用[J].水文, 1993(5):22-27.
    [49]金菊良,储开凤,郦建强.基因方法在海洋预报中的应用[J].海洋预报, 1997,14(1):9-16.
    [50]恽为民,席裕庚.遗传算法的运行机理分析[J].控制理论与应用, 1996,13(3):297-304.
    [51]姚新,陈国良,徐惠敏等.进行算法研究进展[J].计算机学报, 1995,18(9):694-706.
    [52]张玲,张钹.统计遗传算法[J].软件学报, 1997,8(5):335-344.
    [53] http://www.engineeringvillage2.org.cn/
    [54] Goldberg D E. simple genetic algorithms and the minimal deceptive problem[M]. In: genetic algorithms and simulated annealing. Morgan Kaufman, 1987:74-88.
    [55] Goldberg D E. genetic algorithms in search, optimization, and machine learning[M]. New York: Addison Wesley Publishing Company, INC, 1989:1-150.
    [56] Cantu P E., Goldberg D. E. Efficient parallel genetic algorithms: theory and practice[J] Computer Methods in Applied Mechanics and Engineering, 2000,186(2): 221-238
    [57]孙艳丰,王众托.关于遗传算法图式定理的分析研究[J].控制与决策, 1996(增刊):221-224.
    [58] Wolpert D H, Macready W G . No Free Lunch theorems for search[M]. Santa Fe: 1995.
    [59] Koehler G J. New directions in genetic algorithm theory[J]. Annals of Operations Research, 1997,75:49.
    [60] Grefenslelle J J. Conditions for implicit parallelism[C]. In: Foundations of Genetic Algorithms. CA: Morgan Kaufmann, 1991,252-261.
    [61] Radcliffe N J, Surry P D. Fundamental limitations on search algorithms: Evolutionary computing in perspective[M]. The Kings Building, EH93JZ, UK. [ 62 ]马丰宁,寇纪淞,李敏强.遗传算法新模板理论的研究[J].系统工程学报, 2000,15(4):327-332.
    [63]张晓缋,方浩,戴冠中.遗传算法的编码机制研究[J].信息与控制, 1997,26(2):134-139.
    [64] Qi X, Palmieri F. Adaptive umtation in the genetic algorithms[C]. In: Proc. of the 2nd Conference on Evolutionary Programming. CA: Evolutionary Programming Society, 1993,192-196.
    [65]游雪肖,钟守楠.十进制编码遗传算法的模式理论分析[J].武汉大学学报(理学版),2005,51(5):542-546.
    [66]明亮,王宇平. n进制编码遗传算法的收敛速度[J].系统工程理论与实践, 2006,26(3):88-93.
    [67] Goldberg D E, Deb K, Korb B. don’t worry be messy[C]. Proc of ICGA, 1991,31-36.
    [68] Louis S J, Rawlins G E. Design genetic algorithm: genetic algorithm in structure design[C]. In: Proc. of ICGA,1991.
    [69] Angleeine P J. Genetic programming: A current snapshot[C]. In: proc. of the 3rd Annual Conference on Evolutionary Programming, Singapore: World Scientific, 1994.
    [70]刘东波,高春鸣.采用二叉树编码的遗传算法实现数据拟合[J].数学理论与应用, 2002, 22(1):32-35.
    [71] Vose M D. Generalizing the notion of schema in genetic algorithms[J]. Artificial Intelligence, 1991,50:385-396.
    [72]邵全林,沈成武,唐小兵等.遗传算法用于结构物内部缺陷识别的逆分析[J].武汉交通科技大学学报, 1997, 21(3):275-279.
    [73]张超,张家树,贾东立.基于混沌遗传算法的图像阈值分割[J]. 2006(2):45-47.
    [74]张鹏,何川,谯英.基于均匀布点的全局优化方法[J].中国机械工程, 2002,12(5):560-564.
    [75] Leung Y W, Wang Y. An orthogonal genetic algorithm with quantization for global numerical optimization[J]. IEEE Trans. Evolutionary Computation, 2001,5(1):41-53.
    [76]Zhang Q, Leung Y W. An orthogonal genetic algorithm for multimediamulticast routing[J]. IEEE Trans.Evol.Comput, 1999(3):53–62.
    [77] Hicks C R. Fundamental Concepts in the Design of Experiments, 4th ed[M]. TX: Saunders College Publishing, 1993.
    [78]张礼兵,程吉林,金菊良.自适应试验遗传算法研究与应用[J].系统工程学报(待刊).
    [79]郭立新,李成植,郑文利等.遗传算法在机械优化设计中的应用[J].机械设计与制造, 1999(1):43-44.
    [80]辛香非,朱鳌鑫.遗传算法的适应度函数研究[J].系统工程与电子技术, 1998(11):58-62.
    [81] Lee Z, He S Z, Tan S H. A Refined On-Line Rule/Parameter Adaptive Fuzzy Controller[C]. In: Proc. of 3rd IEEE International Conf. On Fuzzy Systems,1994.
    [82] Vose M D, Wright A H. Simple genetic algorithms with linear fitness[J]. Evolutionary Computation, 1995(2):347- 368.
    [83]赵明旺.基于遗传算法和最速下降法的函数优化混合数值算法[J].系统工程理论与实践, 1997, 17(7):59-64.
    [84] Stoffa P, Sen M K. Nonlinear multi-parameter optimization using genetic algorithms: inversionof planewave[J]. Seismograms Geophysics, 1991,56(11):1794-1810.
    [85]李乃成,陈白丽,高岫.一个具有对偶适应度函数的遗传算法[J].西安交通大学学报,2004,38(8): 811-814.
    [86]张思才,张方晓.一种遗传算法适应度函数的改进方法[J].计算机应用与软件, 2006,23(2):108-110.
    [87]刘勇,康立山,陈毓屏.非数值并行算法(第二册)-遗传算法[M].北京:科学出版社, 1997,1-203.
    [88] Hong T P, Wang H S, Lin W Y, Lee W Y. Evolution of appropriate crossover and mutation operators in a genetic process[J]. Applied Intelligence, 2002,16(1): 7-17.
    [89]姚文俊.一种基于正交实验设计的遗传算法[J].中南民族大学学报(自然科学版), 2004,23(1):62-65. [ 90 ]李国,阮晓青.关于简单遗传算法变异率的理论分析[J].工程数学学报, 2006,23(3):468-473+476.
    [91]岑文辉,雷友坤,谢恒.应用人工神经网络与遗传算法进行短期负荷预测[J].电力系统自动化,1997,21(3):29-32.
    [92] Scrinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans. Sys. Man and Cybernetics, 1994, 24(4):656-667.
    [93] Hatta K, Wakabayashi K. Adaptation of genetic operators and parameters of a genetic algorithm based on the elite degree of an individual[J]. Systems and Computers in Japan, 2001,32(1): 29-37.
    [94] Kanoh, Hitoshi. Solving constraint-satisfaction problems by a genetic algorithm adopting viral infection[J]. Engineering Applications of Artificial Intelligence, 1997,10(6): 531-537.
    [95] Hwang K S, Chiou J Y, Hsu Y P. A self-organizing genetic algorithm with a eugenic strategy. Journal of Information Science and Engineering[J]. 2001,17(1):35-45.
    [96] Mashhadi H R, Shanechi H M, Lucas Caro. A new genetic algorithm with Lamarckian individual learning for generation scheduling[J]. IEEE Transactions on Power Systems, 2003, 18(3): 1181-1186.
    [97]张礼兵,金菊良.一种免疫遗传算法研究及应用[J].合肥工业大学学报(自然科学版), 2004,27(7): 434-437.
    [98]张礼兵,金菊良,刘丽.基于实数编码的免疫遗传算法研究[J],运筹与管理, 2004, 23(4):73-75.
    [99]周明,孙树栋.遗传算法与应用[M].北京:国防工业出版社,1999,1-176.
    [100] Harik G R., Lobo F G.; Goldberg, D E. Compact genetic algorithm[J]. IEEE Transactions on Evolutionary Computation, 1999,3(4): 287-297.
    [101]李纯莲,王希诚,赵金城.一种新的遗传算法停止准则[J].辽宁工程技术大学学报, 2004,23(1):62-64.
    [102]席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用, 1996,13(6):697-708.
    [103]周家驹,何险峰译.演化程序-遗传算法和数据编码的结合[M].北京:科学出版社, 2000,1-196. [ 104 ]姜大立,杜文,朱松年.一类二次0-1规划模型的遗传算法[J].系统工程, 1997,15(4):21-25.
    [105]樊重俊,韩崇昭,胡保生等.一类约束优化问题的改进遗传算法[J].控制与决策, 1996,11(5):609-612.
    [106]曹先彬,庄镇泉.一种基于遗传算法的模糊规则生成方法[J].模式识别与人工智能, 1997,10(2):171-175.
    [107]张毅,李人厚.基于基因算法的多变量模糊控制器的设计[J].控制理论与应用, 1996,13(4):409-416.
    [108]刘明姬;刘淑媛;吕显瑞.求解多目标优化问题的改进遗传机器学习方法[J].吉林大学学报(理学版),2006(3):338-342.
    [109] Ahn H L, Kim K J, Han I. Hybrid genetic algorithms and case-based reasoning systems for customer classification[J]. Expert Systems, 2006,23(3): 127-144.
    [110]付强,王立坤,门宝辉等.推求水稻非充分灌溉下优化灌溉制度的新方法—基于实码加速遗传算法的多维动态规划法[J].水利学报, 2003, 34(1):123-127. [ 111 ]何雄君,孙国正,刘刚.遗传算法的随机摄动法[J].武汉大学学报(理学版), 2001,47(3):285-288.
    [112] Hua Z S, Huang F H. A variable-grouping based genetic algorithm for large-scale integer programming[J]. Information Sciences, 2006,176(19): 2869-2885.
    [113]王宇平,焦永昌,张福顺.解多目标优化的均匀正交遗传算法[J].系统工程学报, 2003,18(6):481-486.
    [114]魏文秋,孙春鹏.模糊神经网络水质评价模型[J].武汉水利电力大学学报, 1996,29(4):21-25.
    [115]高峰,雷声隆,庞鸿宾.节水灌溉工程模糊神经网络综合评价模型研究[J].农业工程学报, 2003,19(4):84-87.
    [116] Reddy S L. Optimal land grading based on genetic algorithms[J]. Journal of Irrigation and Drainage Engineering, 1996,122(4):183-188.
    [117] Sanchez G., Felici S, Pelechano J et al. Optimal design of irrigation networks using a genetic algorithm[J]. IEEE Symposium on Emerging Technologies and Factory Automation, ETFA, 1999,2: 941-947.
    [118] Hassanli A M, Dandy G C. Application of genetic algorithms for optimization of drip irrigation systems[J]. Iranian Journal of Science & Technology, 2000,24(1): 63-76.
    [119]宋松柏,吕宏兴.灌溉渠道轮灌配水优化模型与遗传算法求解[J].农业工程学报, 2004, 20(2): 40-44.
    [120] Reca J, Martinez J. Genetic algorithms for the design of looped irrigation water distribution networks[J]. Water Resources Research, 2006, 42(5): W05416.
    [121] Srinivasa R K, Nagesh K D, Srinivasa R K. Irrigation planning using genetic algorithms[J]. Water Resources Management, 2004, 18(2):163-176.
    [122]陈香香,蒋晓红,缪海洋.遗传算法在暗管间距优化中的应用[J].中国农村水利水电,2006(1):9-10.
    [123]张礼兵,程吉林,金菊良.灌溉排水工程优化新方法研究与应用[J].中国农村水利水电, 2005 (9): 63-65.
    [124]张礼兵,程吉林,金菊良.免疫遗传算法在渠道优化设计中的应用[J].扬州大学学报, 2005, 8(3): 50-53.
    [125] Nagesh K D, Raju K S, Ashok B. Optimal reservoir operation for irrigation of multiple crops using genetic algorithms[J]. Journal of Irrigation and Drainage Engineering, 2006,132(2): 123-129.
    [126] Rudrigo, Oliveira. Operation Rules for Multi-reservoir Systems[J]. Water Resources Research, 1997, 33(4): 1192-1221.
    [127] Robin W, Mohd S. Evaluation of genetic algorithms for optimal reservoir system operation[J]. Journal of Water Resources Planning and Management, 1999,(1):25-33.
    [128] Kuo J T, Cheng W C, Chen L. Multi-objective water resources systems analysis using genetic algorithms - Application to Chou-Shui River Basin, Taiwan[J]. Water Science and Technology, 2003,48(10): 71-77.
    [129] Kim T, Heo J H, Jeong C S. Multireservoir system optimization in the Han River basin usingmulti-objective genetic algorithms[J]. Hydrological Processes[J], 2006, 20(9):2057-2075.
    [130]张礼兵,程吉林,金菊良,叶少有.大型灌区供水系统模拟及其优化控制运行研究[C]. In:沈阳:2006中国控制与决策学术年会论文集, 2006,427-431.
    [131] Kuo S F, Liu C W, Chen S K. Comparative study of optimization techniques for irrigation project planning [J]. Journal of the American Water Resources Association, 2003, 39(1): 59-73.
    [132] El G T, Harrell L J. Chance-Constrained Genetic Algorithm for Water Supply and Irrigation Canal Systems Management[C]. In: World Water and Environmental Resources Congress, 2003, 3413-3422.
    [133]方红远,邓玉梅,董增川.多目标水资源系统运行决策优化的遗传算法[J].水利学报, 2001,32(9): 22-27.
    [134]陈南祥,李跃鹏,徐晨光.基于多目标遗传算法的水资源优化配置[J].水利学报, 2006,37(3):308-313.
    [135] Moradi J M, Rodin S I, Marino M. A. Use of genetic algorithm in optimization of irrigation pumping stations[J]. Journal of Irrigation and Drainage Engineering, 2004,130(5):357-365.
    [136]郑玉胜,黄介生.基于神经网络的灌溉用水量预测[J].灌溉排水学报, 2004, 23(2): 59-61.
    [137] Karamouz M, Tabari M R, Kerachian R. Conjunctive use of surface and groundwater resources: Application of genetic algorithms and neural networks[C]. In: Proc. of the 2004 World Water and Environmental Resources Congress: Critical Transitions in Water and Environmental Resources Management, 2004, 3533-3542.
    [138] Tang K S, Man K F, Liu Z F, et al. Minimal fuzzy memberships and rules using hierarchical genetic algorithms[J]. IEEE Transactions on Industrial Electronics, 1998, 45(1):162-169.
    [139]熊范伦,邓超.退火遗传算法及其应用[J].生物数学学报, 2000, 15(2): 150-154.
    [140]陈魁.试验设计与分析(第二版)[M].北京:清华大学出版社, 2005,7:1-140.
    [141]袁志发,周静芋.试验设计与分析[M].北京:高等教育出版社,2000:1-75.
    [142]北京大学数学力学第数学专业概率统计组.正交设计[M].北京:人民教育出版社,1976:1-53.
    [143] Douglas C M. Norma Faris Hubele. Engineering Statistics(3rd Ed)[M]. 2000. [ 144 ]程吉林,金兆森.大系统试验选优方法及其在灌区优化中应用[J].水利学报,1993(1):26-31.
    [145]程吉林,金兆森,孙学华等.渠道纵横断面设计的混合动态规划法研究[J].水科学进展,1997,8(1):83-89.
    [146]任露泉.试验优化设计与分析[M].北京:高等教育出版社, 2003.179-192.
    [147]方开泰.均匀设计与均匀设计表[M].北京:科学出版社, 1994, 1-78.
    [148]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001, 83-102.
    [149] Hua L K, Wang Y. Applications of number theory to numerical analysis[M]. Springer and Science Press, Berlin and Beijing.1992:15-77.
    [150]张润楚,王兆军.均匀设计抽样及其优良性质[J].应用概率统计, 1996,12: 337-347.
    [151] Fang K T, Lu X, Tang Y. Constructions of uniform designs by using resolvable packing and coverings[J]. Discrete Mathematics,2004,( 274): 25-40.
    [152] Fang K T, Qin H. A note on construction of nearly uniform designs with large number of runs[J]. Statistics & Probability Letters,2003,(61): 215–224.
    [153]徐洪泉,沈世镒.基于计算机试验的均匀设计[J].高校应用数学学报, 1998, 13 (2)A:167-174. [ 154 ]孙先仿,范跃祖,宁文如. U*均匀设计的均匀性研究[J].应用概率统计,2001,17(4):341-345. [155 ]马长兴.均匀性的一个新度量准则-对称偏差[J].南开大学学报(自然科学), 1997,30(1):31-37. [ 156 ] Hickernell F J. A generalized discrepancy and quadrature error bound[J]. Math. Comp. ,1998(67):299-322.
    [157]白家,张莉云.用正交设计法优化导叶分段关闭规律的参数[J].大电机技术, 1995(4):15-18. [ 158 ]孙红尧.海工钢管桩被覆聚乙烯粘接剂的试验研究[J].水利水运科学研究, 1996(1):56-60.
    [159]陈益峰,周创兵.隔河岩坝基岩体在运行期的弹塑性力学参数反演[J].岩石力学与工程学报, 2002(7):3-8.
    [160]程吉林,郭元裕,金兆森等.大系统数学规划试验选优方法及其应用[J].中国科学(E缉), 1998, 28(3):254-258.
    [161] Cheng J L, Guo Y Y, Jin Z S. Optimal experimental methods of the large-scale mathematical programming and applications[J]. Science in China(Series E), 1998,41(5):465-470.
    [162]程吉林,黄建晔,金兆森,沈洁等.大规模块角结构的线性规划试验选优方法[J].管理工程学报,1998,12(2):39-44.
    [163]程吉林,金兆森,沈洁等.高维动态规划试验选优方法[J].系统工程理论与实践, 1996(2):71-79.
    [164]程吉林,金兆森,沈洁等.高维动态规划试验选优及其在大型渠道工程系统设计中的应用[J].水利学报,1998(1):39-44.
    [165]程吉林,金兆森,沈洁,刘正祥等.大型非线性系统的试验选优方法[J].系统工程学报, 1996,11(3):35-39.
    [166]程吉林,金兆森,陈学敏等.灌区规划的大系统多因素模拟试验选优[J].水利学报,1993(11):40-47.
    [167]程吉林,孙学华.模拟技术、正交试验、层次分析与灌区优化规划[J].水利学报,1990(9):36-40.
    [168]程吉林,金兆森,沈洁等.喷灌系统优化设计混合数学模型及其求解[J].水利学报,1997(7):17-22.
    [169]程吉林,刘胜松等.地面水、地下水联合调度非线性模型及其求解[J].水利学报,1997(10):26-31.
    [170]许夕保,陈斌,程吉林,等.试验选优方法在自流灌区续灌分级控制上的应用[J].灌溉排水学报, 2004(2):31-34.
    [171]刘延锋,靳孟贵,曹英兰. BP神经网络在焉耆盆地农田排水量估算中的应用[J].中国农村水利水电, 2006(1):12-17.
    [172]杭玉生,吴英明.正交法在农水试验中的应用[J].江苏水利, 2005(8):22-23.
    [173] Leung Y W, Zhang Q. Evolutionary algorithms +experimental design methods: A hybrid approach for hard optimization and search problems[R], http:// www.comp.hkbu.edu.hk /~ywleung/prop/EA_EDM.doc), 1997.
    [174]程健,金菊良,周玉良,程吉林.基于正交试验和元胞自动机模型的加速并行遗传算法[J].系统工程理论方法应用, 2006,18(5):22-26.
    [175]邹亮,汪国强.均匀试验设计在遗传算法中的应用[J].华南理工大学学报(自然科学版), 2003,31(5):90-92.
    [176]何大阔,王福利,张春梅.基于均匀设计的遗传算法参数设定[J].东北大学学报(自然科学版),2003, 24(5):409-411.
    [177]赵曙光.基于均匀设计的多目标自适应遗传算法及应用[J].电子学报, 2004, 22(3): 58-61..
    [178] Siarry P, Berthiau G, Durbin F, Haussy J. Enhanced simulated annealing for globallyminimizing functions of many-continuous variables[J]. ACM Trans. Math. Software, 1997(23): 209-228.
    [179] Stybinski M A, Tang T S. Experiments in nonconvex optimization:Stochastic approximation and function smoothing and simulated annealing[J]. Neural Networks, 1990(3):467-483.
    [180] Montgomery D C. Design and Analysis of Experiments, 3rd ed[M]. NewYork: Wiley, 1991.
    [181] Wu Q. On the optimality of orthogonal experimental design[J]. Acta Math. Appl. Sinica, vol. 1, no. 4, pp. 283–299, 1978.
    [182]正交试验法编写组,正交试验设计法[M].上海:上海科学技术出版社,1978,1-17.
    [183]倪长健.免疫进化算法研究及其在水资源问题中的应用[D].成都:四川大学水电学院,2003:18-53.
    [184] Rudolph G. Convergence Analysis of Canonical Genetic Algorithms[J]. IEEE Trans on Neural Networks. 1994.5(1):96-101.
    [185]张琦,韩祯祥,文福拴.进化规划方法在电力系统静态负荷模型参数辨识中的应用[J].电力系统自动化,1997.21(1):9-12.
    [186]杨荣富,金菊良,丁晶.保持群体多样性的遗传算法[J].四川联合大学学报(工程科学版),1999,3(6):13-16,+23.
    [187] Schwefel H P, Maner R. Proceedings of 1st International Conference on Parallel Problem Sloveing from Nature (PPSN), Springer-Verlag, Lecture Notes in Computer Science, 1991(496).
    [188]孙德敏.工程最优化方法及应用[M].合肥:中国科学技术大学出版社, 1997,1-78.
    [189]田峰巍,解建仓,颜竹丘.梯级水电站群的规划与调度[M].北京:科学技术文献出版社, 1992, 2-91.
    [190]郭元裕.农田水利学(第三版)[M].北京:中国水利水电出版社,1999.114-115.
    [191] Fly L E, Marin A M. Canal design: optimal cross section[J]. Journal of Irrigation and drainage engineering ASCE, 1987,113(3):651-660.
    [192] Lawvence E F. Canal design optimal cross section[J]. Journal of Irrigation and Drainage Engineering, 1987,113(3):335-355.
    [193]何文学,魏恩甲,李茶青.弧底梯形明渠水力最佳断面设计[J].水利水电科技进展, 2002,22(1):23-25.
    [194] Swamee P K. Optimal irrigation canal sections[J]. Journal of Irrigation and Drainage Engineering, 1995,121:1525-1533.
    [195]齐宝全,阎会师.用混凝土衬砌U形槽渠道的设计与施工[J].东北水利水电, 1995, (10):8-10. [ 196 ]齐宝全. U形混凝土衬砌渠道断面的一种优化设计方法[J].中国农村水利水电,1996,(8):21-24.
    [197]水利部.农田排水技术规程SL15-90.水利电力出版社,1990:3-27.
    [198]王树人,董毓新.水电站建筑物(第二版)[M].北京:清华大学出版社, 1992.67-69.
    [199]马善定,汪如泽.水电站建筑物(第二版) [M].北京:中国水利水电出版社, 1996,48-59.
    [200] Barr D I H. Optimization of pressure conduit sizes[J]. International Water Power and Dam Construction, 1968,20(5):193-196.
    [201] Sarkaria G S. Economic penstock diameter: a 20 year review[J]. International Water Power and Dam Construction, 1979,31(11):70-72.
    [202] Zhou Y, Bryant R H. Optimal design for an internal stiffener plate in a penstock bifurcation[J]. Journal of Pressure Vessel Technology. 1992,114(2):193-200.
    [203]徐关泉,宋海聚.水击约束条件下压力管道管径序列优化方法[J].河海大学学报, 1992,20(3):54-59. [ 204 ]刘宪亮,朱学民.加劲压力钢管结构优化设计[J].华北水利水电学院学报, 1998,19(4):4-10.
    [205]中华人民共和国水利部.水电站压力钢管设计规范(SL281-2003)[S].北京:中国水利水电出版社,2003,60-66.
    [206]中国冶金部.钢结构设计规范(TJ17-74)[S].北京:中国建筑工业出版社, 1975,15-38.
    [207]刘豹,顾培亮,张世英.系统工程概论[M].北京:机械工业出版社, 1987,1-118.
    [208]韦鹤平.环境系统工程[M].上海:同济大学出版社, 1993,1-285.
    [209]陈玉祥,张汉亚.预测技术与应用[M].北京:机械工业出版社,1985:1-252. [ 210 ]赵永龙,丁晶,邓育仁.混沌分析在水文预测中的应用和展望[J].水科学进展,1998,9(2):181-186. [ 211 ]唐小我.经济预测与决策新方法及其应用研究[M].成都:电子科技大学出版社,1997,9-42.
    [212]程昳.常用预测方法及评价综述[J].四川师范大学学报(自然科学版),2002,25(1):70-73.
    [213]黄国如,芮孝芳.流域降雨径流时间序列的混沌识别及其预测研究进展[J].水科学进展, 2004,15(2):255-230.
    [214]陈桂英.我国现有短期气候业务预测方法综述[J].应用气象学报,2000,11(增刊):11-20.
    [215]史忠植.神经计算[M].北京:电子工业出版社, 1993,1-177.
    [216]王伟.人工神经网络原理-入门与应用[M].北京:北京航空航天大学出版社, 1995,1-152.
    [217] Hinton G E.神经网络怎样从经验中学习[M].北京:科学出版社, 1993,77-84.
    [218] John P.自适应模式识别与神经网络[M].北京:科学出版社, 1992.
    [219]周继成,周青山,韩飘扬.人工神经网络-第六代计算机的实现[M].北京:科学普及出版社,1993,1-165.
    [220]张铃,张钹.神经网络中BP算法的分析[J].模式识别与人工智能, 1994,7(3):191-195.
    [221] Bates J N, Granger C W J. Combined forecasting[J]. Journal of Operational Research, 1969,20:451-468.
    [222] Granger C W J. Invited Review: Combining forecast twenty years later[J]. Journal of Forecasting, 1989(8):352-363.
    [223]唐纪,王景.组合预测方法综述[J].预测, 1999(2):42-43
    [224]汪纬林,毛桐恩,解敬.我国天灾综合预测研究进展[J].科技导报,1999,1:46-48.
    [225]程守煜.工程模糊集理论与应用[M].北京:国防工业出版社, 1998, 217.
    [226]衡彤,王文圣,李拉丁,等.基于小波变换的组合随机模型及其在径流随机模拟中的应用[J].水电能源科学, 2002,20(1): 15-17.
    [227]林锦顺,姚俭.基于BP神经网络的组合预测及在电力负荷的应用[J].上海理工大学学报, 2005(5) :78-82. [ 228 ]张青.基于神经网络最优组合预测方法的应用研究[J].系统工程理论与实践.2001,21(9):90-93.
    [229]徐小力,徐洪安等.旋转机组的基于变权重神经网络组合预测模型[J].中国机械工程, 2003,14(4):332-336. [ 230 ]陈秉钧,上官儒.基于人工神经网络的组合预测及应用[J].农业工程学报, 1997,13(2):51-55.
    [231]李慧珑.水文预报[M].北京:水利水电出版社, 1993, 12-254.
    [232]史海珊,何似龙,陈金水,等.水电工程建设系统综合评判方法[M].北京:水利电力出版社, 1994.
    [233]郭亚军.综合评价理论与方法[M].北京:科学出版社, 2002. [ 234 ]陈衍福,陈国宏,李美娟.综合评价方法分类及研究进展[J].管理科学学报,2004,7(2):69-79.
    [235]朱剑英.智能系统非经典数学方法[M].武汉:华中科技大学出版社, 2001.
    [236]王清印,崔援民,赵秀恒,等.预测与决策的不确定性数学模型[M].北京:冶金工业出版社, 2001.
    [237]钱学森.创建系统学[M].太原:山西科学技术出版社, 2001.
    [238]郭宗楼.农业水利工程项目环境影响评价方法研究[J].农业工程学报, 2000,16(5):16-19. [ 239 ]金菊良,黄慧梅,魏一鸣.基于组合权重的水质评价模型[J],水力发电学报2004,23(3):13-19.
    [240]刘晖,王飞越.用计算机模糊评价环境质量[J].环境科学,1990,11(2):80--84.
    [241]宋尚孝,吴有志.灌溉用水水质模糊综合评价方法[J].地下水,1998,20(2):76-79.
    [242]杨晓华,杨志峰,郦建强等.水环境质量综合评价的多目标决策-理想区间法[J].水科学进展,2004,15(3):202-205.
    [243]王艳芳.地下水灌溉水质评价的灰色聚类分析[J].宁夏农学院学报,1997,18(4):81-85.
    [244]胡明星,郭达志.湖泊水质富营养化评价的模糊神经网络方法[J].环境科学研究,1998,11(4):40-42.
    [245]任若恩,王惠文.多元统计数据分析-—理论方法实例[M].北京:国防工业出版社,1998.1-72.
    [246] Friedman J H, Turkey J W. A projection pursuit algorithm for exploratory data analysis[J]. IEEE Trans On Computer,1974,23(9):881-890.
    [247]李祚泳.投影寻踪技术及其应用进展[J].自然杂志,1997,19(4):224-227.
    [248]邓新民,李祚泳.投影寻踪回归技术在环境污染预测中的应用[J].中国环境科学,1997,17(4):353-356.
    [249]金菊良,张欣莉,丁晶.评估洪水灾情等级的投影寻踪模型[J].系统工程理论与实践,2002,22(2):140-144.
    [250]金菊良,魏一鸣,付强等.农业生产力综合评价的投影寻踪模型[J].农业系统科学与综合研究,2001,17(4):241-243.
    [251]付强,金菊良,梁川.基于实码加速遗传算法的投影寻踪分类模型在水稻灌溉制度优化中的应用[J].水利学报,2002,33(10):39-45.
    [252]付强,杨广林,金菊良.基于PPC模型的农机选型与优序关系研究[J].农业机械学报, 2003,34(1):101-104. [ 253 ]王顺久,侯玉,张欣莉等.流域水资源承载能力的综合评价方法[J].水利学报,2003,34(1):88-92.
    [254]杨晓华,杨志峰,沈珍瑶等.水资源可再生能力评价的遗传投影寻踪方法[J].水科学进展,2004,15(1):73-76.
    [255]王飞.淮河流域水污染成因及防治对策探讨[C].蚌埠:首届“青年治淮论坛”论文集, 2006,125-131.
    [256]水利部水政水资源司.水资源保护管理基础[M].北京:中国水利水电出版社, 1996,78-85. [ 257 ]刘开第,庞彦军,张博文.水环境质量评价的未确知测度模型[J].环境工程, 2000,18(2):58-60.
    [258]程乾生.属性数学—属性测度与属性统计[J].数学的实践与认识,1998,28(2):97-107. [ 259 ]程乾生.质量评价的属性数学模型和模糊数学模型[J].数理统计与管理,1997,16(6):18-23.
    [260]程乾生.属性识别理论模型及其应用[J].北京大学学报(自然科学版),1997,33(1):12~20.
    [261]甄苓,王来生.属性层次模型的决策方法与应用[J].中国农业大学学报,2000,5(6):8~11.
    [262]陈志航,程乾生.属性识别方法及其在期货价格预测中的应用[J].系统工程理论与实践,1999,(6):90-94. [ 263 ]郭奇,曹洪洋.大气环境质量评价的属性识别法[J].环境监测管理与技术, 2004,16(3):41-44.
    [264]胥冰,韩小勇.淮河干流水环境评价及其趋势分析[J].水资源保护,1998,(2):10-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700