用户名: 密码: 验证码:
深长隧道充填型致灾构造渗透失稳突涌水机理与风险控制及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上隧道与地下工程建设规模、数量和难度最大的国家,交通、水电等国家基础设施建设重心正向地质条件极端复杂的山区和岩溶地区转移,施工中遭遇的“强突发、高水压、大流量、多类型”突涌水灾害治理堪称世界级工程难题。本文以三峡库区翻坝高速公路、宜巴高速公路等深长隧道为依托工程,通过理论分析、数值模拟、室内实验、大型流固耦合模型试验、软件开发和现场试验等手段,深入研究充填型致灾构造的突涌水机理和风险控制,取得了一系列有理论价值和工程意义的研究成果,主要研究成果如下:
     (1)通过大量国内外突水突泥案例资料的系统收集与整理分析,划分了四种典型突水突泥灾害类型,提出了突水突泥灾害的典型地质模式:灾害源、突水通道和阻水隔泥构造,揭示了典型突涌水灾害源的赋存特征,建立了突涌水灾害源孕灾性判识指标体系和属性识别模型。
     (2)通过引入充填体内部可动颗粒转化为移动颗粒的源汇项概念,根据阿基米德原理与达西定律,建立了充填体颗粒渗流基本模型,推导了充填体内部可动颗粒流失量的表达式,揭示了孔隙流速与孔隙率和渗透系数的表征关系;研制了大直径充填型致灾构造固流耦合试验装置,通过试验揭示了充填物不同加载速率情况下渗透流速、颗粒流失速量等参数变化规律。
     (3)基于充填介质内部泥水两相混合体的非牛顿流体特性,建立了宾汉型泥水混合流体的本构方程,揭示了其在管道内流速分布规律和压降流量关系;基于基于赫斯特罗姆(Hedstrom)准数推导了泥水两相混合流体的临界流速,建立了泥水混合流体从层流向过渡的流态判别准则。
     (4)针对季家坡隧道高陡倾充填型裂隙突涌水灾害,开展了隧道围岩和充填物基本物理力学性质测试,并基于测试结果研制了流固耦合围岩相似材料和充填物相似材料,采用研制的三维可视化突水突泥模型试验系统开展了充填型裂隙蓄水构造渗透失稳模型试验,揭示了充填物渗透失稳的灾变演化机制,真实模拟了充填物渗透失稳诱发突水突泥灾害的全过程。
     (5)通过对我国近50年百余例岩溶隧道突涌水案例资料的系统收集与整理,分析了隧道突涌水的孕险环境和致险因子,遴选出突涌水的典型影响因素,建立了贯穿勘察、施工前和施工阶段的全过程渐进式风险动态评估模型与方法,充分利用施工过程实时信息对突涌水风险进行动态修正。
     (6)开发了界面友好、操作简单、人机交互的全过程渐进式风险动态评估专家系统,提出了一种全新的风险管理运行机制—施工许可机制,充分发挥建设单位、施工单位、监理单位、勘察单位、预报单位和工程专家等各方面的作用,进行风险动态调控、及时反馈现场信息,针对高风险段落全程信息化许可施工。
     (7)提出了深长岩溶隧道突水防治技术体系,其基本原则为“岩溶地质观测与分析,风险动态评估与控制,含水构造定位与定量,质量方案优选与保质”;主要包括区域岩溶发育特征,岩溶水补给条件,风险动态评估,含导水构造探测,治理方案优选,治理质量控制等六方面内容,研究成果在鸡公岭隧道、季家坡隧道等三峡库区典型深长岩溶隧道中得到成功应用。
The tunnel and underground engineering construction in China has larger-scale, more quantity and difficulties than in the other countries. The nation infrastructure construction tends to the mountain area and karst area with complex geological conditions. Accordingly, the water inrush disaster comes out. The water inrush always bursts accidentally, presses hugely, flows massively, and shows multiple types. This problem is world-class project difficulty.
     In this paper, based on the deep long tunnels of Three Gorges reservoir area expressway and Yiba expressway, the water inrush mechanism and risk control of filling type disaster-causing structure was researched, using theoretical analysis, numerical simulation, laboratory experiment, large fluid-solid coupling model test, software development, and field test. Some research results of important theoretical value and project significance were summarized, listed as follows:
     (1) Four classical water inrush and mud inrush types were divided, according to lots of water inrush and mud inrush cases at home and abroad. The corresponding classical geological model was proposed:the disaster source, water inrush channel, and water inrush prevention structure. The typically water inrush disaster source occurrence characteristic was summed up. The index system and attribute recognition model of water inrush disaster source disaster-pregnant judgment was set up.
     (2) By introducing the source term concept "the movable particles in the filling body translate into moved particles, the filling body particles seepage model was established, according to Archimedes principle and Darcy law. The movable particle in the filling body loss amount expression was deduced, the relationship of pore water velocity, porosity, permeability coefficient was expressed. Large diameter filled-type disaster structure solid-fluid coupling device was manufactured. This device showed the change law of velocity, seepage gradient, particle drop-out rate, porosity.
     (3) Based on mud water two-phase mixture in the filling body non Newtonian fluid characteristic, Bingham slurry mixed fluid constitutive equation showed the relationship of velocity in tunnel distribution regularity and pressure flow. The mud water two-phase mixture critical flow velocity was deduced based on Hedstrom. The distinguishing flow regime of mud fluid from laminar flow to turbulence was established.
     (4) According to Jijiapo Tunnel fracture water inrush disaster, which was high steep and declining, the basic physical and mechanical properties of tunnel surrounding rock and filling body was tested. Based on the test results, new similar solid-fluid coupling material to the surrounding rock and filling body were developed. Filling body seepage failure Evolution was revealed, using3D visual water inrush model test system to test filled-type fracture retaining water to seepage failure. This experiment simulated the whole process of the filling body seepage failure causing to water inrush and mud inrush.
     (5) According to hundreds of karst tunnel water inrush cases in recent50years, the tunnel water inrush environment and factors were analyzed. Choosing typical impact factor, gradual risk dynamic evaluation model and methods from investigation to construction were established. The water inrush risk could be modified according to the real-time information in the construction.
     (6) The program was interface friendly, operated easily, evaluated dynamic and throughout. A new risk management mechanism-construction permission mechanism was proposed. So the construction could be regulated according to the risk dynamic information, it realized the whole part informatization permission construction.
     (7) The karst tunnel water inrush prevention and control technology system was proposed, its basic principle was karst geology observation and analysis, risk dynamic evaluation and control, water bearing structure positioning and quantitative, quality plan optimization and quality assurance. It included the development characteristics of karst area, the karst water recharge condition, and risk dynamic evaluation, the water containing structure detection, treatment plan optimization, and management quality control. This research was applied in Jigongling Tunnel, Jijiapo Tunnel and so no.
引文
[1]钱七虎.地下工程建设安全面临的挑战与对策[J].岩石力学与工程学报,2012,31(10):1945-1956
    [2]Li S, Zhou Z, Li L, et al. Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system[J]. Tunnelling and Underground Space Technology, 2013,38:50-58.
    [3]Li X, Li Y. Research on risk assessment system for water inrush in the karst tunnel construction based on GIS:Case study on the diversion tunnel groups of the Jinping Ⅱ Hydropower Station[J]. Tunnelling and Underground Space Technology,2014,40: 182-191.
    [4]李术才,周宗青,李利平,等.岩溶隧道突水风险评价理论与方法及工程应用[J].岩石力学与工程学报,2013,32(9):1858-1867.
    [5]Gattinoni P, Scesi L. An empirical equation for tunnel inflow assessment:application to sedimentary rock masses [J].Hydrogeology journal,2010,18(8):1797-1810.
    [6]Yong Zhao, Pengfei Li, SimingTian. Prevention and treatment technologies of railway tunnel water inrush and mud gushing in China[J]. Journal of Rock Mechanics and Geotechnical Engineering, Vol.5(6) 2013, PP.468-477.
    [7]Xiaozhen Wang, Jialin Xu, Weibing Zhu, et al. Roof pre-blasting to prevent support crushing and water inrush accidents[J]. International Journal of Mining Science and Technology, Vol.22(3),2012, PP.379-384.
    [8]Tang Junhua, Bai Haibo, Yao Banghua, et al.Theoretical analysis on water-inrush mechanism of concealed collapse pillars in floor[J]. Mining Science and Technology (China), Vol.21(1)2011, PP.57-60.
    [9]刘招伟,张民庆,王树仁.岩溶隧道灾变预测与处治技术[M].北京:科学出版社,2007.
    [10]Zarei H R, Uromeihy A, Sharifzadeh M. Evaluation of high local groundwater inflow to a rock tunnel by characterization of geological features [J]. Tunnelling and Und erground Space Technology,2011,26(2):364-373
    [11]李利平,李术才,陈军,等.基于岩溶突涌水风险评价的隧道施工许可机制及其应用研究[J].岩石力学与工程学报,2011,30(7):1345-1354.
    [12]Zhao Y, Li P, Tian S. Prevention and treatment technologies of railway tunnel water inrush and mud gushing in China [J]. Journal of Rock Mechanics and Geotechnical Engineering,2013,5(6):468-477.
    [13]李利平.高风险岩溶隧道突水灾变演化机制及其应用研究[D].济南:山东大学,2009.
    [14]韩行瑞.三峡翻坝运输江南专用公路岩溶专题研究报告[R].桂林:中国地质科学院岩溶地质研究所,2007.
    [15]李波,曾胜贤,屈晓斌等.青眉山溶洞旅游景观的成因分析[J].山地学报,2000,18(6):572-575.
    [16]任美锷.湖北西北部喀斯特初步研究.南京大学学报,1959,(5):6-20.
    [17]李扬红,邓英尔,于静等.五指山隧道岩溶发育及涌水特征研究[J].水土保持研究,2009,16(2):138-141.
    [18]杜毓超,李兆林,韩行瑞等.沪蓉高速公路乌池坝隧道区岩溶发育特征及其涌水分析[J].中国岩溶,2008,27(1):11-18.
    [1 9]王鹰,陈强,魏有仪等.岩溶发育区深埋隧道水岩相互作用机理[J].中国铁道科学,2004,25(4):55-58.
    [20]Zareia,HR, Uromeihya, A. Sharifzadeh,M. Evaluation of high local groundwater inflow to a rock tunnel by characterization of geological features [J]. Tunneling and Underground Space Technology,2011,26(2):364-373.
    [21]Lo KW, Leung LF, Lee S L, Makino H, Tajima H. Field instrumentation of a multiple tunnel interaction problem [J]. Tunnels and tunneling.1998,35(12):44-46.
    [22]Smits AA. tunnel junctions. Eindhoven:eindhoven university of technology,2001.
    [23]Megaw Tm, Bartlett JV. Tunnels-planning, design, construction. NewYork:Halsted press,1981.
    [24]Li G, Zhou W. Sinkholes in karst mining areas in china and some methods of prevention [J]. Environmental Geology,1999,52(1-2):45-50.
    [25]Prokopy J G. Quarrying in karst. Environmental Geology,2003,106(3):34-37.
    [26]Ann B.Tihansky and Lari A.Knochennius,Karst features and hydrogeology in west-central Florida-A field perspective,2001,us,Geologcial survey karst interest group proceeding, water-resources investigation report,01-4011, p 198-211.
    [27]王建秀,杨立中,何静.大型地下工程岩溶涌(突)水模式水文地质分析及其工程应用[J].水文地质工程地质,2001,4:49-52.
    [28]王树仁,何满潮,刘招伟.岩溶隧道突水灾变过程分析及控制技术[J].北京科技大学学报,2006,28(7):613-618.
    [29]张倬元,蒋良文.倒虹吸形成深饱水带大型充填溶洞的典型实例[J].工程地质学报,2010,18(4):455-469.
    [30]齐传生,张继奎.圆梁山隧道深埋大规模充填性溶洞成因探讨[J].铁道勘察,2004,4:40-45.
    [31]马立强,张东升,董正筑.隔水层裂隙演变机理与过程研究[J].采矿与安全工程学报,2011,28(3):340-345.
    [32]岑夺丰,黄达.高应变率单轴压缩下岩体裂隙扩展的细观位移模式[J].煤炭学报,2014,39(3):436-444.
    [33]石少帅,李术才,李利平等.岩溶区隧道暗河的综合预报及治理方案研究[J].岩土力学,2012,33(1):2227-232.
    [34]陈卫忠,杨建平,杨家岭,邱祥波,曹催晨.裂隙岩体应力渗流耦合模型在压力隧洞工程中的应用[J].岩石力学与工程学报,2006,25(12):2384-2391.
    [35]唐红侠,周志芳,王文远.水劈裂过程中岩体渗透性规律及机理分析[J].岩土力学,2004,25(8):1320-1322.
    [36]詹美礼,岑建.岩体水力劈裂机制圆筒模型试验及解析解理论研究[J].岩石力学与工程学报,2007,26(6):1173-1181.
    [37]王成,邓安福.岩体节理内压致裂解析研究[J].岩石力学与工程学报,2002,2 1(5):640-643.
    [38]李宗利,张宏朝,任青文,王亚红.岩石裂纹水力劈裂分析与临界水压计算[J].岩土力学,2005,26(8):1216-1220.
    [39]Papanastasiou P. An efficient algorithm for propagating fluid-driven fractures[J]. Coputational Mechanics,1999,24(4):258-267.
    [40]Volko P, Economides M J. Progagation of hydraulically induced fractures-A contimuum damage mechanics approach[J]. International Journal of Rock Mechanics and Min Science & Geomechanics Abstracts,1994, [23] 31(4):21-229.
    [41]Dunat X, Vinches M, Henry J P, et al. Modeling of hydro-mechanical coupling in rock joints [J]. Mechanics of Jointed and Faulted Rock[C], Rossmanich:Balkeman:1998.
    [42]Axel K L Ng, John C Small. A case study of hydraulic fracturing using finite element methods [J]. Canada Geotechnique Jouranl,1998,36:861-875.
    [43]Tie Li, Tingting Mei, Xuehui Sun, et al. A study on a water-inrush incident at Laohutaicoalmine[J]. International Journal of Rock Mechanics and Mining Sciences, Vol.59,2013, PP.151-159.
    [44]盛金昌,赵坚,速宝玉.高水头作用下水工压力隧洞的水力劈裂分析[J].岩石力学与工程学报,2005,[23]24(7):1226-1230.
    [45]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000,19(5):573-576.
    [46]谢兴华,速宝玉,高延法,段祥宝.矿井底板突水的水力劈裂研究[J].岩石力学与工程学报,2005,24(6):987-993.
    [47]李利平,李术才,张庆松.岩溶地区隧道裂隙水突出力学机制研究[J].岩土力学,2010,31(2):523-528.
    [48]郭佳奇,乔春生,曹茜.侧部高压富水溶腔与隧道间岩柱安全厚度研究[J].现代隧道技术,2010,47(6):10-16.
    [49]孙谋,刘维宁.高风险岩溶隧道掌子面突水机制研究[J].岩土力学,2011,4: 1175-1180.
    [50]郭佳奇,乔春生.岩溶隧道掌子面突水机理及岩墙安全厚度研究[J].铁路学报,20]2,34(3):105-111
    [51]刘洪磊,杨天鸿等.岩体破坏突水失稳的水压致裂机理及工程应用分析[J].采矿与安全工程学报,2010,27(3):357-362.
    [52]Jincai Zhang. Investigations of water inrushes from aquifers under coal seam, International Journal of Rock Mechanics & Mining Sciences 42(2005)350-360.
    [53]Hai-ling KONG, Xie-xing MIAO, Lu-zhen WANG et al. Analysis of the Harmfulness of Water-Inrush from Coal Seam Floor Based on Seepage Instability Theory[J]. Journal of China University of Mining and Technology, Vol.17, (4),2007, PP.453-458.
    [54]Peng Linjun, Yang Xiaojie, Sun Xiaoming. Analysis and control on anomaly water inrush in roof of fully-mechanized mining field[J]. Mining Science and Technology (China), Vol.21, (1),2011, PP.89-92.
    [55]刘招伟,何满潮,王树仁.圆梁山隧道岩溶突水机理及防治对策研究[J].岩土力学,2006,27(2):228-236.
    [56]尹尚先,王尚旭,武强.陷落柱突水模式及理论判据[J].岩石力学与工程学报,2004,23(6):964-968.
    [57]顾义磊,李晓红,赵 瑜,任松.通渝隧道涌突泥成因分析[J].岩土力学,2006,26(6):920-923.
    [58]刘招伟.圆梁山隧道岩溶突水机理及其防治对策[D].北京:中国地质大学(北京)博士学位论文.2004.
    [59]张民庆,黄鸿健,张生学,吴军,李谢怀.宜万铁路马鹿箐隧道1-21突水突泥抢险治理技术[J].铁道工程学报,2008,(11):49-56.
    [60]邓谊明.宜万线别岩槽出口DK406+422特大突水分析[J].铁道工程学报,2008,(1):62-65.
    [61]资谊,马士伟.岩溶隧道突水灾害发生机理与工程防治[J].铁道工程学报,2011,2:84-89.
    [62]Cooley T. Engineering approaches to conditions created by a combination of karst and faulting at a hospital in Birmingham, Alabama [J]. Engineering Geology,2002, 65(2):197-204.
    [63]席光勇.深埋特长隧道(洞)施工涌水处理技术研究[D].成都:西南交通大学硕士学位论文,2005.
    [64]Zhimin XU, Yajun SUN, Qinghong DONG, et al. Predicting the height of water-flow fractured zone during coal mining under the Xiaolangdi Reservoir[J]. Mining Science and Technology (China), Vol.20(3),2010, PP.434-438.
    [65]Haibo Bai, Dan Ma, Zhanqing Chen. Mechanical behavior of groundwater seepage in karst collapse pillars[J]. Engineering Geology, Vol.164(17),2013, PP.101-106.
    [66]Huande Ding, Xiexing Miao, Feng Ju, et al. Qingcang Wang, Strata behavior investigation for high-intensity mining in the water-rich coal seam[J]. International Journal of Mining Science and Technology, Vol.24(3),2014, PP.299-304.
    [67]Jiang Zhihai. Numerical analysis of the destruction of water-resisting strata in a coal seam floor in mining above aquifers[J]. Mining Science and Technology (China), Vol.21(4),2011, PP.537-541.
    [68]Yuan HANG, Gai-ling ZHANG, Guo-yong YANG. Numerical simulation of dewatering thick unconsolidated aquifers for safety of underground coal mining[J]. Mining Science and Technology (China), Vol.19(3),2009, PP.312-316.
    [69]Van den Hoke, P.J, Van den Berg, J.T.M, Shlyapobersky, J. Theoretical and experimental investigation of rock dilatancy near the tip of a propagating hydraulic fracture[A]. In:Haimson B(ed). Rock Mechanics in 1990s:pre-print proceedings of the 34th U.S.Symposium on Rock Mechanics[C].Madison:University of Wisconsin-madison, 1993,51-354.
    [70]Groundwater Sensitivity Regions of Kentucky by Kentucky Department for Environment Protection Division of Water Groundwater Branch 1994,interpreted by Joseph A. Ray James S.Webb Phillip W.O dell.
    [71]Laurent Eisenloth, Mahmoud Bouzelboudjen, Laszlo Kiraly, Yvan Rossier, Numerical versus statistical modeling of natural response of a karst hydrogeological system,Journal of hydrology,1997.244-262.
    [72]王国斌沪蓉西高速公路乌池坝岩溶隧道涌水成灾机理研究[D].武汉:中国地质大学博士学位论文,2012.
    [73]曹茜.岩溶隧道与溶洞安全距离研究[D].北京:北京交通大学,2010.
    [74]聂志凌.水压充填型岩溶隧道突水机理及衬砌结构力学特性研究[D].成都:西南交通大学,2009.
    [75]张炜,李志国,王全胜.岩溶隧道涌突水原因分析及治理技术探讨[J].隧道建设,2008,28(3):257-262.
    [76]SOEN Degn Eskesen,PER Tengborg,JOGEN Kampmann,et al. Guidelines for tunnelling risk management:International tunnelling association,working group No.2[J].Tunnelling and Underground Space Technology,2004,19:217-237.
    [77]Cancelli A,Crosta G.Hazardand risk assessment in rock fall proneareas.In:Risk and reliability in ground engineering. London:Institute of Civil Engineering; 1993.p.177-90[chapter15].
    [78]EINSTEIN H H. Risk and risk analysis in rock engineering[J].Tunnelling and Underground Space Technology,1996,11(2):141-155.
    [79]Hyu-Soung Shin, Young-CheulKwon,, Yong-SooJung,et al. Methodology for quantitative hazard assessment for tunnel collapses based on case histories in Korea[J] International Journal of Rock Mechanics & Mining Sciences,2009 (46):1072-1087.
    [80]Alan N. Beard. Tunnel safety, risk assessment and decision-making[J]. Tunnelling and Underground Space Technology2010 (25):91-94.
    [81]Rita L. Sousa, Herbert H. Einstein.Risk analysis during tunnel construction using Bayesian Networks Porto Metro case.[J]. Tunnelling and Underground Space Technology,2011 (X) 1-15.
    [82]Benardos AG, Kaliampakos DC. A methodology for assessing geotechnical hazards for TBM tunnelling-illustrated by the Athens Metro,Greece. IntJ Rock Mech Min Sci,2004;41:987-99.
    [83]Probabilistic risk assessment of highway tunnels.[J], Tunnelling and Underground Space Technology,2011 (26):71-82.
    [84]钱七虎,戎晓力.中国地下工程安全风险管理的现状、问题及相关建议[J].岩石力学与工程学报,2008,27(4):649-655.
    [85]黄宏伟.隧道及地下工程建设中的风险管理研究进展[J].地下空间与工程学报,2006,2(1):13-20.
    [86]陈龙,黄宏伟.岩石隧道工程风险浅析[J].岩石力学与工程学报,2005,24(1):110-115.
    [87]沈荣喜,吴秀仪,刘长武,等.海底隧道施工过程中突水风险研究[J].武汉理工大学学报(交通科学与工程版),2008,32(3):385-388.
    [88]王燕,黄宏伟,薛亚东.钻爆法施工隧道塌方风险分析[J].沈阳建筑大学学报(自然科学版),2009,25(1):23-27.
    [89]建昆,吴坚.岩石公路隧道塌方风险事故树分析[J].地下空间与工程学报,2008,4(6):991-998.
    [90]陈洁金,周峰,阳军生,等.山岭隧道塌方风险模糊层次分析[J].岩土力学,2009,30(8):2365-2370.
    [91]彭立敏,安永林,张运良,等.可拓法识别勘测阶段隧道瓦斯突出的模型与实例[J].土木工程学报,2008,41(4):81-85.
    [92]曹树刚,王艳平,刘延保,等.基于危险源理论的煤矿瓦斯爆炸风险评价模型[J].煤炭学报,2006,31(4):470-474.
    [93]聂百胜,何学秋,王恩元,等.煤与瓦斯突出预测技术研究现状及发展趋势[J].中国安全科学学报,2003,13(6):40-43.
    [94]中华人民共和国建没部.建质[2007]254号地铁及地下工程建设风险管理指南[S].北京中国建筑工业出版社,2007.
    [95]ZhaopingMeng, Guoqing Li, XiaotongXie. A geological assessment method of floor water inrush risk and its application[J]. Engineering Geology, Vol.sl43-144(8),2012, PP.51-60
    [96]Xueping Li, Yunan Li. Research on risk assessment system for water inrush in the karst tunnel construction based on GIS:Case study on the diversion tunnel groups of the Jinping II Hydropower Station[J].Tunnelling and Underground Space Technology, Vol.40,2014, PP.182-191.
    [97]Cuiping Li, Jiajie Li, Zhongxue Li, et al. Establishment of spatiotemporal dynamic model for water inrush spreading processes in underground mining operations[J]. Safety Science, Vol.55,2013, PP.45-52.
    [98]Shu-cai Li, Zong-qing Zhou, Li-ping Li, et al. Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system[J].Tunnelling and Underground Space Technology, Vol.38,2013, PP.50-58.
    [99]Banghua Yao, Haibo Bai, Boyang Zhang. Numerical simulation on the risk of roof water inrush in Wuyang Coal Mine[J]. International Journal of Mining Science and Technology, Vol.22(2),2012, PP.273-277
    [100]Henrik Bjelland, TerjeAven. Treatment of uncertainty in risk assessments in the Rogfast road tunnel project[J]. Safety Science, Vol.55,2013, PP.34-44.
    [101]Z.Z. Wang, Z. Zhang. Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 Wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, Vol.45,2013, PP45-55,
    [102]Yiqiang Xiang, Chengxi Liu, Chunfeng Chao, et al. Risk analysis and assessment of public safety of Submerged Floating Tunnel[J], Procedia Engineering, Vol.4,2010, PP117-125.
    [103]Alan N. Beard, Tunnel safety, risk assessment and decision-making[J]. Tunnelling and Underground Space Technology, Vol.25, (1),2010, PP.91-94.
    [104]Konstantinos Kazaras, Konstantinos Kirytopoulos, AthanasiosRentizelas. Introducing the STAMP method in road tunnel safety assessment[J]. Safety Science, Vol.50(9),2012, PP.1806-1817.
    [105]OndrejNyvlt, Samuel Privara, LukasFerkl. Probabilistic risk assessment of highway tunnels[J]. Tunnelling and Underground Space Technology, Vol.26(1),2011, PP.71-82.
    [106]Xiaobo Qu, QiangMeng, ViviYuanita, et al. Design and implementation of a quantitative risk assessment software tool for Singapore road tunnels[J]. Expert Systems with Applications, Vol.38(11),2011, PP.13827-13834.
    [107]Matthias Schubert, Niels Peter Hoj, ArildRagnoy, et al. Risk Assessment of Road Tunnels using Bayesian Networks[J]. Procedia-Social and Behavioral Sciences, Vol.48, 2012, PP.2697-2706.
    [108]DavideManca, Sara Brambilla. A methodology based on the Analytic Hierarchy Process for the quantitative assessment of emergency preparedness and response in road tunnels[J]. Transport Policy, Vol.18(5),2011, PP.657-664.
    [109]Shao-shuai Shi, Shu-cai Li, Li-ping Li, et al. Advance optimized classification and application of surrounding rock based on fuzzy analytic hierarchy process and Tunnel Seismic Prediction[J]. Automation in Construction, Vol.37,2014, PP.217-222.
    [110]Marc Gandit, DongoRemiKouabenan, SandrineCaroly. Road-tunnel fires:Risk perception and management strategies among users[J]. Safety Science, Vol.47(1),2009, PP.105-114.
    [111]张庆松,李术才,韩宏伟,等.岩溶隧道施工风险评价与突水灾害防治技术研究[J].山东大学学报(工学版),2009,39(3):106-110.
    [112]许振浩,李术才,李利平,等.基于风险动态评估与控制的岩溶隧道施工许可机制[J].岩土工程学报,2011,11:1714-1725.
    [113]许振浩,李术才,李利平,等.基于层次分析法的岩溶隧道突水突泥风险评估[J].岩土力学,2011,32(6):1757-1765.
    [114]匡星,白明洲,王成亮,等.基于模糊评价方法的隧道岩溶突水地质灾害综合预警方法[J].公路交通科技,2010,27(11):100-103.
    [115]毛邦燕,许模,蒋良文.隧道岩溶突水、突泥危险性评价初探[J].中国岩溶,2010,29(2):183-189.
    [116]韩行瑞.岩溶隧道涌水及其专家评判系统[J].中国岩溶,2004,23(3):213-218.
    [117]叶志华,韩行瑞,张高明,等.隧道岩溶涌水专家评判系统在朱家岩隧道涌水预报中的应用[J].中国岩溶,2006,25(2):139-145.
    [118]杜毓超,韩行瑞,李兆林.基于AHP的岩溶隧道涌水专家评判系统及其应用[J].中 国岩溶,2009,28(3):281—287.
    [119]杨春玲.基于属性数学的综合评价模型[D].大连:大连理工大学,2008.
    [120]田开铭,陈明佑,王海林.裂隙水偏流[M].北京:学苑出版社,1989.
    [121]速宝玉,詹美礼,张祝添.充填裂隙渗流特性试验研究[J].岩土力学,1994,15(4):46-51.
    [122]Amadei B, Illangasekare T. Mathematieal model for flow and sofute transport in no-homogeneous roek fraetures[J].International Journal of Roek Mechanics and Mining Seienees.1994,31 (6):719-731.
    [123]郑瑞华,张嘎,张建民,等.大型无粘性土渗透破坏试验系统及应用[J].实验技术与管理,2007,05:23-25.
    [124]陈金刚,刘大全,张景飞.充填介质对裂隙渗流影响的实验研究[C]..第三届全国水力学与水利信息学大会论文集:,2007:5.
    [125]李琛亮,沈振中,赵坚,等.双重介质渗流水力特性试验装置研究及应用[J].岩土力学.2013,34(8):2421-2432.
    [126]朱立,刘卫群,王甘林.振动对充填裂隙渗透率影响的实验研究[J].实验力学.2012,27(2):201-206.
    [127]王甘林,刘卫群,陶煜.充填泥沙裂隙岩石渗流特性的实验研究[J].力学与实践2010,32(5):14-17.
    [128]刘才华,陈从新,付少兰.充填砂裂隙在剪切位移作用下渗流规律的实验研究[J].岩石力学与工程学报,2002,21(10):1457-1461.
    [129]刘杰,李建林,王瑞红.含密实原岩充填物的宜昌砂岩裂隙渗流试验研究[J].岩石力学与工程学报,2010,29(2):366-374.
    [130]李亚帮.膨胀性充填裂隙水力特性实验研究[D].郑州大学,2010.
    [131]Damien Lachouette, FredericGolay, StephaneBonelli. One-dimensional modeling of piping flow erosion[J]. ComptesRendusMecanique, Vol.336(9),2008, PP.731-736.
    [132]JoseM. Garcia-Ruiz, TeodoroLasanta, Francisco Alberto. Soil erosion by piping in irrigated fields[J]. Geomorphology, Vol.20(3-4),1997, PP.269-278.
    [133]E. Nadal-Romero, E. Verachtert, R. Maes, et al. Quantitative assessment of the piping erosion susceptibility of loess-derived soil horizons using the pinhole test[J]. Geomorphology, Vol.135(1-2),2011, PP.66-79.
    [134]Xiao-jie Zhou, Yu-xinJie, Guang-xin Li. Numerical simulation of the developing course of piping[J]. Computers and Geotechnics, Vol.44,2012, PP.104-108.
    [135]J.B. Sellmeijer, M.A. Koenders. A mathematical model for piping[J].Applied Mathematical Modelling, Vol.15(11-12),1991, PP.646-651.
    [136]Bzant,Z..Measuring soil deformation eaused by the Pressure of the seePage. In:17th Int. Navig.Congr., Lisbon, Seet, (1),1949.195-198.
    [137]Sehlniderbauer,J Die Sehwimmsanderseheinungen beim senkrecht auf steigenden Grundwasserstrom. Di ss. Tech. Hochsch. Hannover,1950.
    [138]Van zyl, Dirk.SeePage Erosion of Geoteehnieal Structures Subjeeted to Confined Flow-A Probabilistic Design APProach:[dissertation]. London:PurdueUniversity,1979.
    [139]林志.关于管涌的试验研究和理论分析[D].上海:同济大学,2001.
    [140]张家发,吴昌瑜,朱国胜.堤基渗透变形扩展过程及悬挂式防渗墙控制作用的试验模拟.水利学报,2002,(9):108-110.
    [141]毛昶熙,段祥宝,蔡金傍,等.悬挂式防渗墙控制管涌发展的试验研究.水利学报,2005,36(1):42-50.
    [142]陈亮,张红宇,雷文,等.无黏性土管涌出砂与渗透性非均匀发展试验研究[J].岩土工程学报,2012,34(8):1432-1439.
    [143]张刚,周健,姚志雄.堤坝管涌的室内试验与颗粒流细观模拟研究[J].水文地质工程地质,2007,6:83-86.
    [144]林韵梅.深部近矿体巷道的位移规律[J].岩石力学与工程学报.1983,2(1):89-101.
    [145]王明年,李志业,关宝树.3孔小间距浅埋暗挖隧道地表沉降控制技术研究[J].岩土力学,2002,23(06):821-824.
    [146]周晓敏,王梦恕,陶龙光,杨松山.北京地铁隧道水平冻结和暗挖施工模型试验与实测研究[J].岩土工程学报,2003,25(06):676-679.
    [147]赵明阶,徐容,许锡宾.岩溶区全断面开挖隧道围岩变形特性模拟[J].同济大学学报(自然科学版),2004,32(06):710-715.
    [148]]张强勇,李术才,尤春安.新型岩土地质力学模型试验系统的研制及应用[J].土木工程学报,2006,39(12):100-103+107.
    [149]宋曙光.青岛胶州湾海底隧道施工过程围岩渗流与变形规律及覆岩厚度的影响研究[D].山东大学,2012
    [150]李玉寿,马占国,等.煤系地层岩石渗透特性试验研究[J].实验力学,2006,21(2):129-134.
    [151]胡耀青,赵阳升,杨栋.采场变形破坏的三维流固耦合模拟实验研究[J].辽宁工程技术大学学报,2007,26(4):520-523.
    [152]刘爱华,彭述权,等.深部开采承压突水机制相似物理模型试验系统研制及应用[J].岩石力学与工程学报,2009,28(7):1335-1341.
    [153]李术才,李利平,等.地下工程突涌水物理模拟试验系统的研制及应用[J].采矿与安全工程学报,2010,27(3):299-304.
    [154]李术才,宋曙光,李利平,张乾青,王凯,周毅,张骞,王庆瀚.海底隧道流固耦合模型试验系统的研制及应用[J].岩石力学与工程学报,2013,32(05):883-890.
    [155]马芳平,李仲奎,罗光福.NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报,2002,23(1):48-51.
    [156]Wiens J. Plate tectonic model for Indian ocean "intraplate" deformation[J]. Tectonophysics,1986,132(1):37-48.
    [157]Kincaid C, Olson P. An experimental study of subducting slabmigration[J]. J.G.R.,1987,92(3):13831-13840.
    [1581韩伯鲤等.岩体相似材料的研究[J].武汉水利电力大学学报,1997,30(2):6-9.
    [159]赵国旭,谢和平,马伟民.大条带综放开采的相似材料模型试验研究[J].西部探矿工程.2003,12:61-63.
    [160]马芳平,李仲奎,罗光福.NIOS相似材料及其在地质力学相似模型试验中的应用[J].水力发电学报,2004,23(1):48-51.
    [161]张强勇,李术才,郭小红等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2127-2130.
    [162]龚召熊.地质力学模型材料试验研究[J].长江水利水电科学研究院院报,1984,10(1):32-46.
    [163]张杰,侯忠杰.固-液耦合试验材料的研究[J].岩石力学与工程学报,2004,23(18):3157-3161.
    [164]胡耀青,赵阳升,杨栋.采场变形破坏的三维流固耦合模拟实验研究[J].辽宁工程技术大学学报,2007,26(4):520-523.
    [165]李树忱,冯现大,李术才,等.新型固流耦合相似材料的研制及其应用[J].岩石力学与工程学报,2010,29(2):281-288.
    [166]李术才,周毅,李利平,等.地下工程流-固耦合模型试验新型相似材料的研制及应用[J].岩石力学与工程学报,2012,31(6):1128-1137.
    [167]张强勇,李术才,尤春安,郭晓红.新型组合式三维地质力学模型试验台架装置的研制及应用[J].岩石力学与工程学报,2007,26(01):143-148.
    [168]张强勇,李术才,郭晓红.组合式地质力学模型试验系统及其在分岔隧道工程中的应用[J1.岩土工程学报,2007,09:1337-1343.
    [169]朱维申,张乾兵,李勇,孙林锋,张磊,郑文华.真三轴荷载条件下大型地质力学模型试验系统的研制及其应用[J].岩石力学与工程学报,2010,29(01):1-7.
    [170]张强勇,陈旭光,林波等.高地应力真三维加载模型试验系统的研制及其应用[J].岩土工程学报,2010,32(10):1588-1593.
    [171]李术才,刘钦,李利平,赵勇,王汉鹏,赵岩,原小帅.隧道施工过程大比尺模型试验系统的研制及应用[J].岩石力学与工程学报,2011,30(07):1368-1374.
    [172]李乐,侯正信.光纤应变传感器的设计[N].电子测量与仪器学报,2004,18(4):70-76.
    [173]陈玉,王幼民,许德章.光纤位移传感器的研制与应用[J].仪表技术与传感 器,2007(9):1-3.
    [174]王静,刘斌,隋青美等.新型FBG渗压传感器在隧道涌水模型中的应用[J].光电子·激光,2009,20(10):1286-1289.
    [175]汤平,李端有,马水山.光纤渗压计实验研究[N].长江科学院院报,2000,17(4):52-55.
    [176]李术才,李利平,李树忱等.地下工程突涌水物理模拟实验系统的研制及应用[J].采矿与安全工程学报,2010,27(3):299-304.
    [177]Setan H,Ibrahim M S,Majid Z. Precise measurement and 3D modeling for medical and industrial applications.verification tests[J].From Pharaohs to Geoinformatics.2008,12(11):16-21.
    [178]张祖勋.数字摄影测量与计算机视觉[J].武汉大学学报(信息科学版),2004,(12):33-39.
    [179]张祖勋,杨生春,张剑清,柯涛.多基线-数字近景摄影测量[J].地理空间信息,2007,5(01):1-4.
    [180]李元海,靖洪文,朱合华.数字照相量测在地基离心试验中的应用[J].岩土工程学报,2006,28(3):306-311.
    [181]Li Y H, Zhu H H, Jing H W. Experimental observation of shear deformation patterns in sands using digital photogram metry[J].Geotechnical Special Publication,2006,149:120-127.
    [182]李元海,靖洪文,刘刚.数字照相量测在岩石除道相似模型试验中的应用[J].岩石力学与工程学报,2007,26(8):1684-1690.
    [183]李元海,靖洪文,曾庆有.岩土工程数字照相量测软件系统研发与应用[J].岩石力学与工程学报.2006,25(增2):3859-3866.
    [184]李术才.工程安全理念和中国工程安全风险管理体系[R].山东:山东大学,2013.
    [185]李术才,周宗青,李利平等.岩溶隧道突水风险评价理论与方法及工程应用[J].岩石力学与工程学报,2013,09:1858-1867.
    [186]石少帅,李术才,李利平等.岩溶区隧道暗河的综合预报及治理方案研究[J].岩土力学,2012,01:227-232.
    [187]廖资生. 地下水的分类和基岩裂隙水的基本概念[J]. 高校地质学报,1998,04:114-118.
    [188]廖资生.基岩裂隙水的富集规律[J].长春地质学院学报,1976,02:45-57.
    [189]廖资生.基岩裂隙水的一些基本理论问题[J].长春地质学院学报,1978,03:86-96.
    [190]束龙仓,林学钰,廖资生.基岩裂隙水寻找与开发的专家系统建立[J].水文地质工程地质,1997,05:32-34.
    [191]卢金凯.基岩裂隙水[M],北京,地质出版社,1985.
    [192]刘光亚.基岩地下水[M].北京:地质出版社,1979.
    [193]胡海涛.论构造体系与地下水的网络[J].水文地质工程地质,1980,7(3):1-7.
    [194]尹树人,肖有权.试论新构造断裂的水文地质意义[J].南京大学学报(自然科学版),1988,24(3):401-405.
    [195]刘国昌.地质力学及其在水文地质工程地质方面的应用[M].北京:地质出版社,1979.
    [196]肖楠森,林凤勋.山区基岩裂隙水资源的开发利用与新构造断裂特性的关系[J].工程勘察,1982(5):31-36.
    [197]袁道先.中国西南部的岩溶及其与华北岩溶的对比[J].第四纪研究,1992,04:352-361.
    [198]袁道先.中国岩溶动力系统[M].北京:地质出版社,2002.
    [199]张之淦.岩溶发生学[M].桂林:广西师范大学出版社,2006.
    [200]毛烨峰,伍进.岩溶发育控制因素及发育规律浅析[J].西部探矿工程,2009,S1:80-82.
    [201]任美锷,刘振中,王飞燕等.中国岩溶发育规律的若干问题[J].南京大学学报(自然科学版),1979,04:95-108..
    [202]卢耀如,张凤娥,刘长礼等.中国典型地区岩溶水资源及其生态水文特性[J].地球学报,2006,05:393-402.
    [203]张凤娥,卢耀如,郭秀红等.复合岩溶形成机理研究[J].地学前缘,2003,02:495-500.
    [204]卢耀如.关于岩溶(喀斯特)地区水资源类型及其综合开发治理的探讨[J].中国岩 溶,1985,Z1:7-19.
    [205]程乾生.属性识别理论模型及其应用[J].北京大学学报(自然科学版),1997,33(1):12-20.
    [206]程乾生.质量评价的属性数学模型和模糊数学模型[J].数理统计与管理,1997,16(6):18-23.
    [207]程乾生.属性集和属性综合评价系统[J].系统工程理论与实践,1997,17(9):1-8.
    [208]周宗青,李术才,李利平,石少帅,宋曙光,王凯.岩溶隧道突涌水危险性评价的属性识别模型及其工程应用[J].岩土力学,2013,03:818-826.
    [209]李术才,石少帅,李利平,周宗青,郭明,雷霆.山岭隧道塌方风险评价的属性识别模型与应用[J].应用基础与工程科学学报,2013,01:147-158.
    [210]周宗青,李术才,李利平,路为,石少帅.围岩超前优化分级的属性识别模型及其工程应用[J].中南大学学报(自然科学版),2013,04:1611-1619.
    [211]文畅平.隧道瓦斯突出危险性评价的属性识别模型与实例[J].煤炭学报,2011,36(8):1322—1328.
    [212]文畅平.基于属性数学理论的岩体质量分级方法[J].水利发电学报,2008,27(3):75-80.
    [213]文畅平.属性综合评价系统在岩爆发生和烈度分级中的应用[J].工程力学,2008,25(6):153-158.
    [214]杨艳娜.西南山区岩溶隧道涌突水灾害危险性评价系统研究[D].成都理工大学,2009.
    [215]罗敏,许模,杨艳娜,任蕊.基于AHP和模糊评判的隧道涌突水灾害预测[J].人民黄河,2010,11:114-116.
    [216]马毅,王希良,刘振.隧道岩溶突水危险性模糊多模型组合评价研究[J].国防交通工程与技术,2011,05:38-42.
    [217]李克钢,侯克鹏,李旺.指标动态权重对边坡稳定性的影响研究[J].岩土力学,2009,02:492-496.
    [218]蔡文.可拓工程方法[M].北京:科学出版社,1997.
    [219]周晓杰,介玉新,李广信.基于渗流与管流耦合的管涌数值模拟[J].岩土力学,2009,30(10):3154-3158.
    [220]陈文芳.非牛顿流体力学[M].北京:科学出版社,1984.
    [221]袁龙蔚.流变力学[M].北京:科学出版社,1986.
    [222]王启宏等.材料流变学[M].北京:中国建筑工业出版社,1984.
    [223]刘崇建,刘孝良,柳世杰.非牛顿流体流态判别方法的研究[J].天然气工业,2011,21(4):49-52.
    [224]罗玉龙,速宝玉,盛金昌,等.对管涌机理的认识[J].岩土工程学报,2011,33(12):1895-1902. (LUO Yulong, SU Baoyu, SHENG Jinchang, etc. New understandings on piping mechanism [J]. Chinese Journal of Geotechnical Engineering,2011,33(12): 1895-1902.)
    [225]刘乃震,王廷瑞,刘孝良,等.非牛顿流体的稳定性及其流态判别[J].天然气工业,2003,23(1):53-57.
    [226]梁越,陈亮,陈建生.考虑流固耦合作用的管涌发展数学模型研究[J].岩土工程学报,2011,33(8):1265-1270.
    [227]胡亚元,马攀.三相耦合渗流侵蚀管涌机制研究及有限元模拟[J],岩土力学,2013,34(4):913-921.
    [228]陈家琅等水力学[M].北京:石油工业出版社1980.
    [229]Schowalter. W. R. Mech. of Non-Newtonian Fluids [M], Pergamon Press,1978.
    [230]Wilkinson, W. L. Non-Newtonian Fluid [M]. Pergamon Press,1960.
    [231]龚晓南.土力学[M].北京:中国建筑工业出版社,2005.
    [232]GB/T50123-1999,土工试验方法标准[S].
    [233]SL264-2001水利水电工程岩石试验规程[S].
    [234]JTG E41-2005,公路工程岩石试验规程[S].
    [235]李利平.高风险岩溶隧道突水灾变演化机制及其应用研究[博士学位论文][D].济南:山东大学,2009.
    [236]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [237]ISRM. Suggested methods for determining the strength of rock material in triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1983,20(6):285-290.
    [238]黄庆享,张文忠,侯志成.固液耦合试验隔水层相似材料的研究[J].岩石力学与工程学报,2010,29(增1):2813-2818.
    [239]魏新江,邓志秋,魏纲,等.可拓评价方法和熵值法相结合的基坑安全评价[J].岩土工程学报,2008,30(增1):0672-0676.
    [240]苏怀智,顾冲时,吴中如.大坝工作性态的模糊可拓评估模型及应用[J].岩土力学,2006,27(12):2115-2121.
    [241]汪明武,金菊良,李丽.可拓学在膨胀土涨缩等级评判中的应用[J].岩土工程学报,2003,25(6):754-757.
    [242]连建发,慎乃齐,张杰坤.基于可拓方法的地下工程围岩评价研究[J].岩石力学与工程学报,2004,23(9):1450-1453.
    [243]原国红,陈剑平,马琳.可拓评判方法在岩体质量分类中的应用[J].岩石力学与工程学报,2005,24(9):1539-1544.
    [244]安永林,彭立敏,吴波,等.隧道坍方突发性事件风险可拓法综合评估[J].中南大学学报(自然科学版),2011,42(2):514-520.
    [245]谈小龙,徐卫亚,梁桂兰.可拓方法在岩石边坡整体安全评价中的应用[J].岩石力学与工程学报,2009,28(12):2503-2509.
    [246]邱道宏,李术才,张乐文等.基于TSP203系统和GA-SVM的围岩超前分类预测[J].岩石力学与工程学报,2010,29(增1):3221-3226.
    [247]周宗青,李术才,李利平,路为,石少帅.围岩超前优化分级的属性识别模型及其工程应用[J].中南大学学报(自然科学版),2013,04:1611-1619.
    [248]许振浩,李术才,李利平,陈军,张之淦,石少帅.一种典型的岩溶隧道衬砌压裂突水灾害成因与防治[J].岩石力学与工程学报,2011,07:1396-1404
    [249]吴树仁,张永双,韩金良,等.三峡水库引水工程秦巴段工程地质条件研究[J].地球学报,2006,27(5):487-494.
    [250]代云霞,汪洋,殷坤龙,等.三峡库区巫山县某崩塌体涌浪调查及计算分析[J].武汉理工大学学报,2011,3(19):6-13.
    [251 ]董金玉,杨继红,伍法权,等.三峡库区软硬互层近水平地层高切坡崩塌研究[J].岩土力学,2010,31(1):151-157.
    [252]袁宏川,段跃芳.三峡库区地质灾害防治效果的评价与分析[J].数学的实践与认识,2009,39(14):65-70.
    [253]Einstein, H.H. Risk and risk analysis in rock engineering. Tunnelling and Underground Space Technology,1996,11(2) 141-155
    [254]Soen Degn Eskesen, Per Tengborg, Jogen Kampmann, et al. Guidelines for tunnelling risk management:International Tunnelling Association, Working Group No.2. Tunnelling and Underground Space Technology.19 (2004) 217-237.
    [255]中华人民共和国行业标准.铁路隧道超前地质预报技术指南[S],北京:中国铁道出版社,2008.
    [256]铁道第四勘察设计院.宜万线深埋复杂岩溶隧道超前地质预报技术方法研究[R],2008.
    [257]王媛,王飞,倪小东.基于非稳定渗流随机有限元的隧洞涌水量预测[J].岩石力学与工程学报,2009,28(10):1986-1994.
    [258]WANG Xiuying, TAN Zhongsheng, WANG Mengshu, et al. Theoretical and experimental study of external water pressure on tunnel lining in controlled drainage under high water level [J]. Tunnelling and Underground Space Technology, 2008,23(9):552-560
    [259]谭忠盛,李健,薛斌,等.岩溶隧道衬砌水压力分布规律研究[J].中国工程科学,2009,11(12):87-92.
    [260]王建秀,杨立中,何静.深埋隧道衬砌水荷载计算的基本理论[J].岩石力学与工程学
    报,2002,21(9):1]39-1143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700