用户名: 密码: 验证码:
基于界面化学的二维纳米材料体系设计及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日益恶化的全球变暖危机以及能源枯竭问题不仅仅需要通过减少温室气体排放和清洁能源来解决,还需要先进的能源存储与转化装置与控制系统。近年来,电化学能源存储与转化装置展示出了极为优异的应用前景,如超级电容器、锂离子电池、燃料电池等。其中,基于纳米材料的超级电容器、锂离子电池、燃料电池展示了最为优异的电化学活性。本论文以纳米材料作为超级电容器、锂离子电池、以及燃料电池活性材料时,纳米材料界面的物理化学变化作为研究重点,深入的研究了纳米材料的电化学过程中存在的界面问题。
     本论文取得的主要结果和结论如下:
     (1)在超级电容器方面,首先,以层状氢氧化物作为研究对象,首次系统的研究了α相层状氢氧化钴的赝电容行为,并将其剥离,并首次使用湿化学法制备了单层β相氢氧化钴,随后,利用其与还原氧化石墨的电荷差异进行静电力诱导的有序自组装,获得了性能极为优异的全二维超级电容器电极材料。
     (2)在锂离子电池方面,通过缓冲层聚多巴胺的使用,首次在锂离子电池电极系统中引入配位键,极大的提升了电极的强度,获得了循环性能较为优异的锡基负极电极;随后,将此方法应用到锂硫电池中,成功的制备了长寿命的锂硫电池正极材料,其中,利用羧基化多壁碳纳米管,首次制备了全交联锂硫电池正极材料。
     (3)在电催化方面,首次研究了单层氢氧化钴/镍的氧还原和氧氧化性能,并将单层氢氧化镍与商用铂碳催化剂复合,极大的提升了复合催化剂的性能,并对单层氢氧化镍和铂碳之间的协同作用做了深入研究。
The ever-worsening global warming and energy scarcity issues call for not only urgent development of clean alternative energies and emission control of greenhouse gases, but also more advanced energy storage and management systems. Recently, electrochemical energy storage and conversion devices, including supercapacitors, lithium ion batteries, and fuel cells, demonstrates excellent potential for applications. Among these, nanostructured materials based supercapacitors, lithium ion batteries, and fuel cells show the best electrochemical activities. This thesis focused on the physical-chemical changing of interfaces in the nanostructured materials based electrochemical devices.
     The main results and conclusion can be summarized as following:
     (1) For supercapacitors, transition metal layered hydroxides were investigated as active materials for supercapacitors. The inter-layer effect on the electrochemical activity of a-Co(OH)2was firstly studied. The single-layer β-Co(OH)2was firstly prepared by wet chemistry method. Furthermore, the reduced graphene oxide/single-layer β-Co(OH)2layered composite was prepared by electrostatic force and demonstrated excellent electrochemical activity.
     (2) For lithium ion batteries, the polydopamine was firstly introduced to the electrode system as a buffer. By the assistance of polydopamine, the covalent bond was firstly formed in the electrode system. And the strength of the entire electrode was improved. As a result, the long-cycle-life electrode for lithium ion batteries was obtained. Furthermore, this method was also used in Li-S batteries. The covalent bond glued electrode for Li-S batteries was also prepared.
     (3) For electro-catalysis, the oxygen reduction and oxygen evolution activity of single-layer Co/Ni(OH)2was firstly investigated. The single-layer Ni(OH)2was further hybrid with commercial Pt/C catalyst and the improved activity was obtained.
引文
[1]Chu, S., Majumdar, A. Nature 2012, 488,294-303.
    [2]国家发展和改革委员会,《可再生能源发展“十一五”规划》
    [3]Alivisatos, A. P. Science 1994,271,933-937.
    [4]Brus, L. Science 1997,276,373-374.
    [5]Yang, M., Hou, Y., Kotov, N. A. Nano Today 2012,7,430-447.
    [6]Geim, A. K., Novoselov, K. S. Nat. Mater.2007,6,183-191.
    [7]Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. Science 2004,306,666-669.
    [8]Novoselov, K. S., Jiang, D., Schedin, F., et al. Proc. Natl Acad. Sci. USA,2005,102, 10451-10453.
    [9]Meyer, J. C., Geim, A. K., Katsnelson, M. I., et al. Nature 2007, 446,60-63.
    [10]Novoselov, K. S., Fal'ko, V. I., Colombo, L., et al. Nature 2013,490,192-200.
    [11]Wang, Q., O'Hare, D., Chem. Rev. 2012,112,4124-4155.
    [12]Liu, Z., Ma, R., Ebina, Y., et al. J. Am. Chem. Soc. 2006,128,4872-4880.
    [13]Liu, Z., Ma, R., Osada, M., et al. J. Am. Chem. Soc. 2005,127,13869-13874.
    [14]Chmiola, J., Largeot, C., Taberna, P. L., et al. Science 2010,328,480-483.
    [15]Simon, P., Gogotsi, Y., Nat. Mater. 2008,7,845-854.
    [16]Wang, H., Dai, H. Chem. Soc. Rev. 2013,42,3088-3113.
    [17]Choi, N. S., Chen, Z., Freunberger, S. A., et al. Angew. Chem. Int. Ed. 2012,51, 9994-10024.
    [18]Xu, C., Xu, B., Gu, Y., et al. Energy Environ. Sci. 2013,6,1388-1414.
    [19]Service R. F. Science 2006, 313,902.
    [20]Goodenough, J. B., Kim, Y. Chem. Mater. 2010,22,587-603.
    [21]Whittingham, M. S. MRS Bulletin 2008,33,411-419.
    [22]Armand, M., Tarascon, J. M. Nature 2008,451,652-657.
    [23]Tarascon, J. M., Armand, M. Nature 2001,414,359-367.
    [24]Greeley, J., Markovic, N. M. Energy Environ. Sci. 2012,5,9246-9256.
    [25]Markovic, N. M. Nat. Mater. 2013,12,101-102.
    [26]Bashyam, R., Zelenay, P. Nature 2006, 443,63-66.
    [27]Borup, R., Meyers, J., Pivovar, B., et al. Chem. Rev. 2007,107,3904-3951.
    [28]Ma, R., Sasaki, T. Adv. Mater. 2010,22,5082-5104.
    [29]Ma, R., Liang, J., Takara, K., et al. J. Am. Chem. Soc. 2011,133,613-620.
    [30]Ma, R., Liang, J., Liu, X., et al. J. Am. Chem. Soc.2012,134,19915-19921.
    [31]Ma, R., Liu, Z., Takada, K., et al. J. Am. Chem. Soc.2007,129,5257-5263.
    [32]Osada, M., Sasaki, T. Adv. Mater.2012,24,210-228.
    [33]Wang, Z., Luan, D., Li, C. M., et al. J. Am. Chem. Soc.2010,132,16271-16277.
    [34]Wang, Z., Luan, D., Boey, F. Y. C., et al. J. Am. Chem. Soc.2011,133,4738-4741.
    [35]Oh, M. H., Yu, T., Yu, S. H., et al. Science 2013,24,964-968.
    [36]Yao, Y., Mcdowell, M. T., Ryu, I., et al. Nano Lett.2011,11,2949-2954.
    [37]Wu, H., Zheng, G., Liu, N., et al. Nano Lett.2012,12,904-909.
    [38]Wang, H., Yang, Y., Liang, Y, et al. Nano Lett.2011,11,2644-2647.
    [39]She, Z. W., Li, W, Cha, J., et al. Nat. Commun.2012,4,1331.
    [40]Ji, X., Evers, S., Black, R., et al. Nat. Commun.2011,2,325.
    [41]Wu, H., Chan, G., Choi, J. W., et al. Nat. Nanotechnol.2012,7,310-315.
    [42]Wang, C., Vliet, D., Chang, K., J. Phys. Chem. C 2009,113,19365-19368.
    [43]Stamenkovic, V. R., Mun, B. S., Maryhofer, K. J. J., et al.2006,128,8813-8819.
    [44]Stoffelsma, C., Rodriguez, P., Garcia, G., et al. J. Am. Chem. Soc.2010,132, 16127-16133.
    [45]Wang, C., Chi, M., Li, D., et al. J. Am. Chem. Soc.2011,133,14396-14403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700