用户名: 密码: 验证码:
电磁无损检测缺陷识别与评估新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
美国前总统里根曾说过:“没有先进的无损检测技术,美国就不可能享有在众多领域的领先地位”。航空、航天、铁路、核电、新材料等领域的快速发展为无损检测既提供了很好的机遇,同时也提出了极大的挑战。瞬态式电磁检测技术是最具发展前景的一类无损检测技术,具有检测速度快、深度大、灵敏度高、频谱宽、易定量等优势,在金属和复合材料的检测评估中扮演着非常重要的角色。本文从研究脉冲涡流检测技术出发,以涡流脉冲热成像检测技术为重点,对瞬态式电磁无损检测中的缺陷识别与评估方法进行了系统深入的研究,主要研究内容及创新点如下:
     一、研究了材料属性对脉冲涡流时域和频域响应信号的影响,提出了可表征材料磁导率和电导率的特征值,解决了多种材料和结构中典型缺陷的检测评估问题。分别在时域和频域内研究了材料属性和提离的变化对脉冲涡流时频域响应的影响,结果表明归一化技术可有效消除提离的影响。从时域响应中提取了可表征材料电导率和磁导率(磁场强度)的特征值。使用可表征材料电导率的特征值对航空铝合金材料的应力变化、蜂窝结构复合材料中的分层缺陷和钢结构中的腐蚀缺陷进行了检测和评估。结果表明应力变化与特征值为线性关系,特征值可对蜂窝结构中的缺陷性质进行判断,一年内腐蚀可使用功率函数进行评估。采用可表征材料磁场强度的特征值对碳纤维复合材料中的撞击缺陷进行了评估,表明4J以上的撞击可导致凹坑及损伤,在10J以下损伤面积与撞击能量有单调关系。
     二、研究了方向性脉冲涡流传感器的时频域响应,提出了可表征纵深位置信息的特征值,抑制了提离和层间隙的负面影响,解决了多层结构中缺陷的分类识别问题。设计了方向性脉冲涡流传感器,引入差分技术提取了可表征纵深位置信息的特征值,分析了多层结构中提离和层间隙对该类型特征值用于缺陷分类的影响。结合频域优化和主成分分析方法,改进了脉冲涡流特征值提取方法,对提离和层间隙进行了抑制,解决了四种缺陷的分类问题。针对目前分类方法多依靠人工的问题,采用改进的支持向量机技术实现了多种缺陷的自动分类识别。并比较了主成分分析和独立成分分析,时域响应和频域响应在该方法中对缺陷分类识别性能的影响。
     三、研究了涡流持续加热引起的纵向和横向热传递现象,提出了涡流阶跃热成像检测技术,建立了偏离时间和下表面缺陷深度的定量关系,为下表面缺陷和表面平行缺陷的检测评估提供了有效手段。目前的缺陷评估方法主要基于涡流场扰动的形式,无法对平行于线圈的表面缺陷和超出集肤深度的下表面缺陷进行检测。为解决这个问题,提出了涡流阶跃热成像检测技术。针对铁磁性材料,理论推断理想的温度-时间平方根曲线是直线形式。当有缺陷时,该曲线会发生偏离。利用温度-时间平方根曲线对缺陷进行识别。提取了偏离时间作为特征值,采用有限元分析和实验建立了缺陷深度与偏离时间的对应关系。研究了横向热传递现象,建立了表面平行于线圈缺陷的检测方法。
     四、研究了涡流瞬态加热后导致的热传递现象,提出了涡流瞬态热成像检测技术,采用时域温度曲线及其特征值,在反射模式和穿透模式下建立了缺陷检测和定量评估方法。采用解析分析和三维有限元模型,在反射和穿透两种不同的工作模式下,对内部缺陷和下表面缺陷的定量评估方法进行了研究。得到了峰值时间与缺陷深度的对应关系。为进一步提高定量方法的实用性,提出了基于对数域温度曲线的缺陷评估方法。针对理想的对数域温度曲线为直线形式,采用偏离现象来对缺陷进行识别。提取了对数域偏离时间对下表面缺陷的深度进行定量。针对钢试件中的下表面缺陷,通过实验建立了反射模式下缺陷深度的定量评估方法。
     五、研究了瞬态式涡流热成像的先进数据处理方法,提出了基于傅立叶变化的涡流脉冲相位热成像检测技术和基于统计分析的图像重构方法,改善了缺陷检测效果,提高了缺陷检测能力。结合脉冲热成像和锁相热成像的优点,提出了涡流脉冲相位热成像检测技术。在差分相位谱上提取了差分过零频率、最小相位、最小相位频率等特征值,对下表面缺陷的深度进行了定量。同时,采用相位谱图检测缺陷,抑制了非均匀加热现象,改善了缺陷检测效果。提出了基于统计分析的图像重构方法,使用主成分分析和独立成分分析方法重构了图像序列,得到了新的二维图像来识别缺陷,有效低抑制了横向热传递导致的模糊效应,提高了微缺陷和深层缺陷的检测能力。针对钢结构中的腐蚀气泡,对提出的方法进行了比较研究,建立了腐蚀气泡的检测方法。
     六、研究了碳纤维复合材料中的涡流加热效应,提出了碳纤维复合材料典型缺陷检测方法,建立了分层和撞击缺陷的检测评估方法,理解了不同能量撞击的破坏行为。在分析各向同性材料中缺陷识别方法的基础上,针对碳纤维复合材料的非均匀性和各向异性,提出了碳纤维复合材料中缺陷的识别方法。通过实验得知了不同缺陷对瞬态温度信号的影响,碳纤维结构主要体现在早期的加热阶段,撞击缺陷主要体现在晚期的加热阶段,分层缺陷信息主要体现在晚期的冷却阶段。通过该结论对图像重构方法进行了优化,提高了分层缺陷和撞击缺陷的检测效果。最终,获得了分层缺陷深度与特征值的对应关系,理解了不同能量撞击的破坏行为。结果表明,6J以上撞击可以导致损伤,10J以上的撞击可以导致环状损伤。
     论文不仅对脉冲涡流时频域特征分析、电磁热多物理场耦合、涡流热的三维传递等科学问题进行了探索,而且为航空铝合金应力变化、钢结构腐蚀、蜂窝结构分层、碳纤维复合材料撞击等多种缺陷的检测和评估提供了有效方法和手段。论文的研究成果为瞬态式电磁无损检测技术的发展提供了很好的理论基础和技术指导。
With the growing interest to use metal alloy and composite structures in aerospace,marine, traffic and other industrial fields, much attention is devoted to the developmentof non-destructive testing (NDT) techniques. Transient electromagnetic (EM) NDTtechniques have a lot of advantages, such as high speed, great depth, high sensitivity,width spectrum, low cost, and easy to quantification, which are widely investigated inthese fields. Two typical transient EM NDT techniques pulsed eddy current (PEC)testing and eddy current thermography testing (ECPT) are investigated in the thesis. Thebrief of these researches and the novel approaches are listed as follows.
     (1) The PEC features representing material properties are proposed andutilized to solve out the detection problem of the typical defects in aluminium alloy,honeycomb sandwich, steel and carbon fiber reinforcement plastic. PEC response isa complex mix of many factors including conductivity, permeability, lift-off andmaterial thickness variation, which should be all taken into account in PEC testing. Theinfluences of material perperties on PEC responses in time domain and frequencydomain are investigated and normalization technique is used to reduce the lift-off effect.After this, two time-domain features, representing conductivity and permeability(magnetic field intensity) are extracted. These features are utilized to measure stress inaluminum alloy, to detect defect in honeycomb sandwich structure, to evaluatelow-energy impact defect in CFRP material, and to characterize atmospheric corrosionon steel samples in Chapter2. At alst, the methods for evaluating these defects are built.
     (2) The PEC features representing longitudinal locations are proposed andutilized to solve out the classification problem of the typical defects in multi-layerstructures wildly used in aircrafts. In Chapter3, the directional PEC probe providinguniform eddy current is designed. Then, the PEC feature extraction techniques arestudied in both time and frequency domains. PEC frequency response optimization isinvestigated and used in combination with principal component analysis (PCA) toeliminate the lift-off and interlayer air gap and to classify the defects in multi-layerstructures. Current PEC defect classification methods require highly trained personneland the results are usually influenced by human subjectivity. Therefore, automateddefect classification is desirable in a PEC instrument. The optimized support vectormachine (SVM) is used to build the classifier model and predict the types of defects.PCA and independent component analysis (ICA) are investigated for feature extractionand compared for classification results using SVM. Two-layer Al-Mn alloy specimenswith four kinds of defects are used for classification. The experimental results show thatthe proposed methods have great potential for in-situ defect inspection of multi-layeraircraft structures.
     (3) Eddy current step heating thermography (ECSHT) testing and relatedquantification methods are proposed in order to solve out the characterizationproblem of subsurface defects and parallel surface defects. Because the conventionalmethods based on eddy current field interruption is invalid to evaluate the subsurfacedefects whichs are beyond the skin depth, Chapter4proposed eddy current step heatingthermography testing based on heat diffusion after long time eddy current excitation. Ifneglecting the skin depth, the ideal temperature-time1/2line for defect-free are is a linearline, while the temperature-time1/2line for defect will separate from that of defect-free.Thus, the temperature-time1/2line can be used to detect the defect. The characteristicfeature separation time is extracted and two features representing separation time aredefined to realize the defect quantification. The conventional methods based on eddycurrent field distribution are difficult to detect the defects which are parallel to theinductive coil. This Chapter also proposed eddy current pulsed thermography (ECPT)based on the lateral heat conduction for detection of these defects. The character bylateral heat conduction is addressed to detect the parallel defects. Due to significanttemperature gradient in the direction of lateral heat conduction, the spatial derivative ofthe thermogram is proposed to improve the defect detectability.
     (4) Defect quantification methods of eddy current pulsed thermography(ECPT) in time domain and logarithm domain are proposed to solve out thequantification problem of subsurface defects. Chapter5proposed the defectcharacterization methods of eddy current pulsed thermography (ECPT) based on heatdiffusion after eddy current pulsed excitation. The proposed methods are investigatedunder transmission mode and reflection mode through1D analytical analysis,3Dnumerical studies, and experimental studies. Time-based feature from ECPT transientresponse is an effective way to predict the defect depth in steel. Transmission mode issuitable for wall thinning defect quantification, while reflection mode is more suitablefor inner defect quantification. The relationship between peak time and residualthickness is linear when thickness ratio y<0.5. Under reflection mode, the logarithmicanalysis of ECPT is proposed. The ideal temperature curve in logarithm domain is linearand can be used to detect defects. Two features representing separation time inlogarithm domain are defined. At last, the mild steel specimen providing subsurfacedefects are tested and the quantification method is built.
     (5) The advanced signal processing methods for transient eddy currentthermography are proposed to improve the detection effectiveness anddetectability for deep defects and micro defects. Firstly, Chapter6proposed an eddycurrent pulsed phase thermography (ECPPT) technique combing eddy current excitation,infrared imaging and phase analysis. The experimental results show that this proposedmethod can eliminate non-uniform heating and improve defect detectability. Severalfeatures like blind frequency, min phase, and frequency to min phase are extracted from differential phase spectra and the preliminary linear relationships are built to measurethese subsurface defects’ depth. Chapter6also presented the PCA/ICA based imagereconstruction approach for eddy current pulsed thermography to avoid the severelateral heat diffusion (Blur effect). In the proposed image reconstruction approach,several hundred frames of raw data representing the time history are processed andsome principal components and independent components are selected to improve thedetectability for micro defect and deep defects. By analysis of induction heating andheat diffusion, the early stage thermal images are proposed to improve the proposedmethod.
     (6) Transient eddy current thermography is investigated for CFRP testingand defect evaluation through the analytical analysis and experimental studies. Thedetection mechanism for carbon fiber structure, delamination, impact and thickness areanalyzed and compared under reflection mode and transmission mode. At last,delaminations with different depth from0.5to3mm, thickness variation from1to3.5mm, and impacts with different energy from4J to12J are characterized and tested usingeddy current thermography. The results show that carbon fiber structure and impactleading to lower conductivity can be detected directly in the heating phase. Thedelamination can be detected using the later phase in transient temperature response.Impact shows the different hot spot shapes at the thermograms. The impact behaviourfor real damages are drawn. The hot area by impacts with10J and12J is like circleshape; the hot area by impact with6J and8J is concentrated. Two detection modes arecompared. Reflection mode is more suitable for in-situ inspection, because there is nodirect access to both sides for many practical components. However, the transmissionmode is more suitable for manufacturing and testing, because the coil doesn’t affect thecamera view to object under this mode.
     At last, the conclusion and further work are outlined in last chapter.
引文
[1]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社,2002.
    [2]任吉林,林俊明.电磁无损检测[M].北京:科学出版社,2008.
    [3]曾祥照.无损检测文化概论[J].无损探伤,2002,(2):34-37.
    [4]邓娟,许万忠.五种常规的无损检测方法[J].航空维修与工程,2004,(3):62.
    [5]耿荣生,郑勇.航空无损检测技术发展动态及面临的挑战[J].无损检测,2002,24(1):1-5.
    [6]陈海英,李华桃.常用无损检测方法的特点及应用选择[J].无损探伤,2009,33(5):23-24.
    [7]耿荣生.新千年的无损检测技术[J].无损检测,2001,23(1):2-5,12.
    [8]无损检测与航空维修.无损检测与航空维修[J].无损检测,2000,22(6):269-271.
    [9]孙金立.无损检测及在航空维修中的应用[M].北京:国防工业出版社,2004.
    [10]美国无损检测学会.美国无损检测手册(电磁卷)[M].北京:世界图书出版公司,1996.
    [11]杨宾峰.脉冲涡流无损检测若干关键技术研究[D].长沙:国防科学技术大学2006.
    [12]高军哲.多频涡流无损检测的干扰抑制和缺陷检测方法研究[D].长沙:国防科学技术大学2011.
    [13]沈功田.中国特种设备无损检测的进展及国际交流与合作[J].无损检测,2008,30(3):133-141.
    [14]刘蕴辉,刘铁,王权良,等.基于图像处理的铁轨表面缺陷检测算法[J].计算机工程,2007,33(11):236-238.
    [15]李修林.轨道缺陷自动检测系统的研究与应用[D].北京:北京交通大学2008.
    [16]徐小杰.铁磁性管道中轴向裂纹的远场涡流检测技术研究[D].长沙:国防科学技术大学2008.
    [17]刘海顺.基于磁各向异性特性应力测试的理论与方法研究[D].徐州:中国矿业大学2008.
    [18] Chen, M.,Sun, Y.,Lord, W., etc. Pulsed RFEC probe response[J]. IEEETransactions on Magnetics,1992,28(2):1430-1433.
    [19] Vasi, D.,Bilas, V.,Ambrus, D. Pulsed eddy-current nondestructive testingof ferromagnetic tubes[J]. IEEE Transactions on Instrumentation and Measurement,2004,53(4):1289-1294.
    [20] Dadi, M.,Vasi, D.,Bilas, V. A system identification approach to themodelling of pulsed eddy-current systems[J]. NDT and E International,2005,38(2):107-111.
    [21] Yang, B.,Li, X. Pulsed remote field technique used for nondestructiveinspection of ferromagnetic tube[J]. NDT and E International,2009.
    [22] Yang, B.,Li, X. Pulsed remote eddy current field array technique fornondestructive inspection of ferromagnetic tube[J]. Nondestructive Testing andEvaluation,2010,25(1):3-12.
    [23] Sophian, A.,Tian, G. Y.,Zairi, S. Pulsed magnetic flux leakage techniquesfor crack detection and characterisation[J]. Sensors and Actuators, A: Physical,2006,125(2):186-191.
    [24] Tang, Y.,Pan, M.,Luo, F., etc. Experimental and finite element analysisstudy of3D magnetic field sensing for pulsed magnetic flux leakage defectcharacterization[J]. Insight: Non-Destructive Testing and Condition Monitoring,2011,53(9):497-506.
    [25]唐莺.基于脉冲漏磁检测机理的缺陷检测研究[D].长沙:国防科学技术大学2011.
    [26] Edwards, R. S.,Sophian, A.,Dixon, S., etc. EMAT and eddy current dualprobe for detecting surface and near-surface defects[A]. In2006;1515-1522.
    [27] Edwards, R. S.,Sophian, A.,Dixon, S., etc. Dual EMAT and PECnon-contact probe: Applications to defect testing[J]. NDT and E International,2006,39(1):45-52.
    [28] Hernandez-Valle, F.,Dixon, S. Preliminary tests to design an EMAT withpulsed electromagnet for high temperature[A]. In2009;936-941.
    [29] Hernandez-Valle, F.,Dixon, S. Pulsed electromagnet EMAT for hightemperatures[A]. In2010;957-963.
    [30] Wilson, J. W.,Tian, G. Y. Pulsed electromagnetic methods for defectdetection and characterisation[J]. NDT and E International,2007,40(4):275-283.
    [31]黄平捷.多层导电结构厚度与缺陷电涡流检测若干关键技术研究[D].杭州:浙江大学2004.
    [32] Chady, T.,Enokizono, M. Multi-frequency exciting and spectrogram-basedECT method[J]. Journal of Magnetism and Magnetic Materials,2000,21(5):700-703.
    [33] Van den Bos, B.,Sahlén, S.,Andersson, J. Automatic scanning withmulti-frequency eddy current on multilayered structures[J]. Insight: Non-DestructiveTesting and Condition Monitoring,2001,43(3):163-166.
    [34]林俊明.电磁(涡流)检测技术现状及发展趋势[J].无损检测,2004,(9):40-41.
    [35] Chady, T.,Enokizono, M.,Sikora, R. Crack detection and recognition usingan eddy current differential probe[J]. IEEE Transactions on Magnetics,1999,35(3PART1):1849-1852.
    [36] Raine, A.,Laenen, C. Applications using the alternating current fieldmeasurement (ACFM) technique, using rope access[J]. Insight: Non-DestructiveTesting and Condition Monitoring,2001,43(5):318-321.
    [37] Papaelias, M. P.,Lugg, M. C.,Roberts, C., etc. High-speed inspection ofrails using ACFM techniques[J]. NDT and E International,2009,42(4):328-335.
    [38] Raine, A.,Lugg, M. Review of the alternating current field measurementinspection technique[J]. Sensor Review,1999,19(3):207-213.
    [39] Sun, Y.,Ouyang, T.,Udpa, S. Recent advances in remote field eddy currentNDE techniques and their applications in detection, characterization, and monitoring ofdeeply hidden corrosion in aircraft structures[J]. Proceedings of SPIE-TheInternational Society for Optical Engineering,1999,3586200-210.
    [40] Uesaka, M.,Hakuta, K.,Miya, K., etc. Eddy-current testing by flexiblemicroloop magnetic sensor array[J]. IEEE Transactions on Magnetics,1998,34(4PART2):2287-2297.
    [41]刘波.阵列涡流检测技术研究[D].长沙:国防科学技术大学2011.
    [42]徐平.多层金属结构中腐蚀缺陷的脉冲涡流检测技术研究[D].长沙:国防科学技术大学2005.
    [43] Smith, R. A.,Hugo, G. R. Transient eddy current NDE for ageing aircraft-capabilities and limitations[J]. Insight: Non-Destructive Testing and ConditionMonitoring,2001,43(1):14-25.
    [44] Lepine, B. A.,Wallace, B. P.,Forsyth, D. S., etc. Pulsed Eddy CurrentMethod Developments for Hidden Corrosion Detection in Aircraft Structures[A]. InPACNDT[C], Toronto,1998.
    [45]张斌强.脉冲涡流检测系统的设计和研究[D].南京:南京航空航天大学2009.
    [46]何赟泽.脉冲涡流无损检测技术研究[D].长沙:国防科学技术大学2008.
    [47] Rose, J. H.,Uzal, E.,Moudler, J. C. Pulsed eddy current characterization ofcorrosion in aircraft lap splices: quantitative modeling[J]. SPIE,1994,2160164-176.
    [48] Lebrun, B.,Jayet, Y.,Baboux, J. C. Pulsed eddy current application to thedetection of deep cracks[J]. Materials Evaluation,1995,53(11):1296-1300.
    [49] Podney, W. Electromagnetic microscope for deep pulsed eddy currentevaluation of airframes[J]. Proceedings of SPIE-The International Society for OpticalEngineering,1996,2945138-150.
    [50] Tian, G.,He, Y.,cheng, L., etc. Pulsed Eddy Current thermography forcorrosion characterisation[J]. International Journal of Applied Electromagnetics andMechanics,2012,39(4):269-276.
    [51] Pan, M.,He, Y.,Tian, G. Y., etc. Defect characterisation using pulsed eddycurrent thermography under transmission mode and NDT applications[J]. NDT&EInternational,2012,5228-36.
    [52] Netzelmann, U.,Walle, G. Induction Thermography as a Tool for ReliableDetection of Surface Defects in Forged Components[A]. In17th World Conference onNondestructive Tesing[C], Shanghai,2008.
    [53] Vrana, J.,Goldammer, M.,Baumann, J., etc. Mechanisms and Models forCrack Detection with Induction Thermography[J]. Review of QuantificationNondestruntive Evaluation,2008,27475-482.
    [54] Wally, G.,Oswald-Tranta, B. The influence of crack shapes and geometrieson the result of the thermo-inductive crack detection[A]. In Thermosense XXIX[C],Orlando, USA,2007.
    [55] Oswald-Tranta, B.,Wally, G. Thermo-inductive surface crack detection inmetallic materials[A]. In9th European Conference on NDT[C], Berlin, Germany,2006.
    [56] Wilson, J.,Tian, G. Y.,Abidin, I. Z., etc. Pulsed eddy current thermography:System development and evaluation[J]. Insight: Non-Destructive Testing and ConditionMonitoring,2010,52(2):87-90.
    [57] Maldague, X. Theory and Practice of Infrared Technology forNondestructive Testing[M]. New York: John Wiley&Sons,2001.
    [58]王康印.红外检测[M].国防工业出版社,1986.
    [59] J nsson, M.,Rendahl, B.,Annergren, I. The use of infrared thermography inthe corrosion science area[J]. Materials and Corrosion,2010,61(11):961-965.
    [60] Pickering, S.,Almond, D. Matched excitation energy comparison of thepulse and lock-in thermography NDE techniques[J]. NDT&E international,2008,41501-509.
    [61] Riegert, G.,Gleiter, A.,Busse, G. Potential and limitation of eddy currentlockin-thermography[A]. In Thermosense XXVIII[C], Orlando,2006.
    [62] Al-Qubaa, A. R.,Tian, G. Y.,Wilson, J., etc. Feature extraction usingnormalized cross-correlation for pulsed eddy current thermographic images[J].Measurement Science and Technology,2010,21115501.
    [63] Fisher, J. L.,Beissner, R. E. Pulsed eddy current crack characterizationexperiments[J]. Review of quantification nondestruntive evaluation,1985,5A199-206.
    [64] Beissner, R. E.,Fisher, J. L. Use of a chirp waveform in pulsed eddycurrent crack detection[J]. Review of quantification nondestruntive evaluation,1986,6A467-472.
    [65] Dood, C. V.,Deeds, W. E. Multiparameter methods with pulsed eddycurrents[J]. Review of quantification nondestruntive evaluation,1986,6A467-472.
    [66] Doherty, J. E.,Beissner, R. E.,Jolly, W. D. Pulsed eddy current flawdetection and characterization[J]. Review of quantification nondestruntive evaluation,1983,3B1349-1357.
    [67] Beissner, R. E.,Sablik, M. J.,Krzywosz, K. K., etc. Optimization of pulsededdy current probes[J]. Review of quantification nondestruntive evaluation,1982,2B(1159-1172).
    [68] Lebrun, B.,Jayet, Y.,Baboux, J. C. Pulsed eddy current signal analysis:Application to the experimental detection and characterization of deep flaws in highlyconductive materials[J]. NDT and E International,1997,30(3):163-170.
    [69] Moulder, J. C.,Bieber, J. A. Pulsed eddy-current measurements ofcorrosion and cracking in aging aircraft[A]. In AIP Conference Proceeding[C],1998;263-268.
    [70] Bieber, J. A.,Shaligram, S. K.,Rose, J. H., etc. Time-gating of pulsed eddycurrent signals for defect characterization and discrimination in aircraft lap-joints[J].Review of quantification nondestruntive evaluation,1997,16B1915-1921.
    [71] Rummel, W. D.,Bowler, J. R. Integrated quantitative nondestructiveevaluation(NDE) and reliability assessment of aging aircraft structures[R].2001.
    [72] Tai, C.-C.,Rose, J. H.,Moulder, J. C. Thickness and conductivity ofmetallic layers from pulsed eddy-current measurements[J]. Rev. Sci. Instrum.,1996,67(11):3965-3972.
    [73] Yang, H.-C.,Tai, C.-C. Pulsed eddy-current measurement of a conductingcoating on a magnetic metal plate[J]. Measurement Science and Technology,2002,13(8):1259-1265.
    [74] Plotnikov, Y. A.,Nath, S. C.,Rose, C. W. Defect Characterization inMulti-Layered Conductive Components with Pulsed Eddy Current[J]. Review ofquantification nondestruntive evaluation,2002,21A1976-1983.
    [75] Giguère, S.,Lepine, B. A.,Dubois, J. M. S. Pulsed eddy current technology:Characterizing material loss with gap and lift-off variations[J]. Research inNondestructive Evaluation,2001,13(3):119-129.
    [76] Lepine, B. A.,Giguere, J. S. R.,Forsyth, D. S., etc. Interpretation of pulsededdy current signals for locating and quantifying metal loss in thin skin lap splices[J].AIP Conference Proceedings,2002,615(1):415-422.
    [77] Giguère, S.,Lepine, B. A.,Dubois, J. M. S. Pulsed Eddy Current (PEC)characterization of material loss in multi-layer structures[J]. Canadian Aeronautics andSpace Journal,2000,46(4):204-208.
    [78] Smith, R. A.,Edgar, D.,Skramstad, J., etc. Enhanced transient eddy currentdetection of deep corrosion[J]. Insight: Non-Destructive Testing and ConditionMonitoring,2004,46(2):88-91.
    [79] Sophian, A.,Tian, G. Y.,Taylor, D., etc. A feature extraction techniquebased on principal component analysis for pulsed Eddy current NDT[J]. NDT and EInternational,2003,36(1):37-41.
    [80] Sophian, A.,Tian, G. Y.,Taylor, D., etc. Flaw detection and quantificationfor ferromagnetic steels using pulsed eddy current techniques and magnetization[A]. In2003;381-390.
    [81] Tian, G. Y.,Sophian, A. Defect classification using a new feature forpulsed eddy current sensors[J]. NDT and E International,2005,38(1):77-82.
    [82] Tian, G. Y.,Sophian, A.,Taylor, D., etc. Multiple sensors on pulsededdy-current detection for3-D subsurface crack assessment[J]. IEEE Sensors Journal,2005,5(1):90-96.
    [83] Morozov, M.,Tian, G.,Withers, P. J. The pulsed eddy current response toapplied loading of various aluminium alloys[J]. NDT and E International,2010,43(6):493-500.
    [84] Panaitov, G.,Krause, H. J.,Zhang, Y. Pulsed eddy current transienttechnique with HTS SQUID magnetometer for non-destructive evaluation[J]. Physica C:Superconductivity and its Applications,2002,372-376(PART1):278-281.
    [85] Krause, H. J.,Kreutzbruck, M. V. Recent developments in SQUID NDE[J].Physica C: Superconductivity and its Applications,2002,368(1-4):70-79.
    [86] Robers, M. A.,Scottini, R. Pulsed Eddy Current In Corrosion Detection[A].In8th European Conference on Nondestructive Testing [C], Barcelona, Spain2002.
    [87] Wassink, C. H. P.,Robers, M. A.,Raad, J. A. d., etc. Condition Monitoringof Inaccessible Piping[A]. In15th World Conference on Non-Destructive Testing [C],Roma, Italy2000.
    [88] Kim, J.,Yang, G.,Udpa, L., etc. Classification of pulsed eddy current GMRdata on aircraft structures[J]. NDT and E International,2010,43(2):141-144.
    [89] Angani, C. S.,Park, D. G.,Kim, C. G., etc. The pulsed eddy currentdifferential probe to detect a thickness variation in an insulated stainless steel[J]. Journalof Nondestructive Evaluation,2010,29(4):248-252.
    [90] Angani, C. S.,Park, D. G.,Kim, C. G., etc. Pulsed eddy current differentialprobe to detect the defects in a stainless steel pipe[J]. Journal of Applied Physics,2011,109(7).
    [91]张玉华,孙慧贤,罗飞路.层叠导体脉冲涡流检测中探头瞬态响应的快速计算[J].中国电机工程学报,2009,29(36):129-134.
    [92] Fan, M. B.,Huang, P. J.,Ye, B., etc. Analytical modeling for transientprobe response in pulsed eddy current testing[J]. NDT&E International,2009,(42):376-383.
    [93] Chen, T.,Tian, G. Y.,Sophian, A., etc. Feature extraction and selection fordefect classification of pulsed eddy current NDT[J]. NDT and E International,2008,41(6):467-476.
    [94] Li, Y.,Tian, G. Y.,Simm, A. Fast analytical modelling for pulsed eddycurrent evaluation[J]. NDT and E International,2008,41(6):477-483.
    [95] Li, S.,Huang, S. L.,Zhao, W., etc. Study of pulse eddy current probesdetecting cracks extending in all directions[J]. Sensors and Actuators A: Physical,2008,(141):13-19.
    [96]幸玲玲,王恩荣.脉冲涡流检测中系统冲激响应的快速计算[J].中国电机工程学报,2005,25(20):147-150.
    [97]叶子郁,朱目成.应用脉冲涡流检测金属表面裂纹的研究[J].计量技术,2005,(10):16-18.
    [98]刘世杭,过玉清.脉冲涡流感应测量方法的研究[J].东华大学学报(自然科学版),2001,27(6):49-52.
    [99]周德强,田贵云,王海涛,等.脉冲涡流技术在应力检测中的应用[J].仪器仪表学报,2010,31(7):1588-1593.
    [100]周德强,田贵云,王海涛,等.脉冲涡流无损检测技术的研究进展[J].无损检测,2011,30(10):25-29.
    [101]周德强,田贵云,尤丽华,等.方向性脉冲涡流应力检测研究进展[J].传感器与微系统,2011,30(9):1-8.
    [102]游凤荷,蒋韬,孙砚飞.脉冲涡流磁场特征分析[J].仪表技术与传感器,2003,(5):38-40.
    [103]范孟豹,黄平捷,叶波,等.脉冲涡流解析模型研究[J].浙江大学学报(工学版),2009,43(9):1621-1624.
    [104]范孟豹,曹丙花,杨雪锋.脉冲涡流检测瞬态涡流场的时域解析模型[J].物理学报,2010,59(11):7570-7574.
    [105]王春艳,陈铁群,张欣宇.脉冲涡流检测技术的某些进展[J].无损探伤,2005,29(4):1-4.
    [106]宋凯,康宜华,武新军.漏磁与涡流复合探伤时信号产生机理研究[J].机械工程学报,2009,45(7):233-237.
    [107]曹海霞,王畅,杨宾峰,等.脉冲涡流无损检测提离效应研究[J].空军工程大学学报(自然科学版),2011,12(3):45-49.
    [108]杨宾峰,张辉,赵玉丰,等.基于新型脉冲涡流传感器的裂纹缺陷定量检测技术[J].空军工程大学学报(自然科学版),2011,12(1):73-77.
    [109]张辉,杨宾峰,王晓锋,等.脉冲涡流检测中参数影响的仿真分析与实验研究[J].空军工程大学学报(自然科学版),2012,13(1):52-53.
    [110]徐平,罗飞路,张玉华,等.脉冲涡流无损检测系统工作点的分析与研究[J].计量技术,2006,(1):5-8.
    [111]徐平,罗飞路,张玉华,等.基于脉冲涡流检测技术的缺陷定量检测研究[J].工业计量,2006,16(2):6-10.
    [112]杨宾峰,罗飞路.一种改进的一致性多传感器数据融合算法[J].计量技术,2006,(5):3-5.
    [113]杨宾峰,罗飞路.脉冲涡流无损检测技术对不同截面形状裂纹的定量检测研究[J].计量技术,2006,(6):5-7.
    [114]杨宾峰,罗飞路,张玉华,等.飞机多层结构中裂纹的定量检测及分类识别[J].机械工程学报,2006,42(2):63-67.
    [115]张玉华,孙慧贤,罗飞路,等.基于三维磁场测量的脉冲涡流检测探头的设计[J].机械工程学报,2009,45(8):249-254.
    [116] He, Y.,Luo, F.,Pan, M., etc. Defect classification based on rectangularpulsed eddy current sensor in different directions[J]. Sensors and Actuators, A: Physical,2010,157(1):26-31.
    [117] He, Y.,Luo, F.,Pan, M., etc. Defect edge identification with rectangularpulsed eddy current sensor based on transient response signals[J]. NDT and EInternational,2010,43(5):409-415.
    [118] Krause, H. J.,Panaitov, G. I.,Zhang, Y. Conductivity tomography fornon-destructive evaluation using pulsed eddy current with HTS SQUIDmagnetometer[J]. IEEE Transactions on Applied Superconductivity,2003,13(2I):215-218.
    [119] Clauzon, T.,Thollon, F.,Nicolas, A. Flaws characterization with pulsededdy currents N.D.T[J]. IEEE Transactions on Magnetics,1999,35(3PART1):1873-1876.
    [120] Safizadeh, M. S.,Lepine, B. A.,Forsyth, D. S., etc. Time-frequencyanalysis of pulsed eddy current signals[J]. Journal of Nondestructive Evaluation,2001,20(2):73-84.
    [121] Yang, B.,Luo, F.,Zhang, Y., etc. Quantification and classification of cracksin aircraft multi-layered structure[J]. Jixie Gongcheng Xuebao/Chinese Journal ofMechanical Engineering,2006,42(2):63-67.
    [122] Yang, B.,Li, B.,Wang, Y. Reduction of lift-off effect for pulsed eddycurrent NDT based on sensor design and frequency spectrum analysis[J].Nondestructive Testing and Evaluation,2010,25(1):77-89.
    [123] Kiwa, T.,Kawata, T.,Yamada, H., etc. Fourier-transformed eddy currenttechnique to visualize cross-sections of conductive materials[J]. NDT and EInternational,2007,40(5):363-367.
    [124] He, Y.,Pan, M.,Luo, F., etc. Pulsed eddy current imaging and frequencyspectrum analysis for hidden defect nondestructive testing and evaluation[J]. NDT andE International,2011,44(4):344-352.
    [125] Park, D. G.,Angani, C. S.,Kim, G. D., etc. Evaluation of pulsed eddycurrent response and detection of the thickness variation in the stainless steel[J]. IEEETransactions on Magnetics,2009,45(10):3893-3896.
    [126] Lepine, B. A.,Holt, R. T. An eddy current scanning method for thedetection of corrosion under fasteners in thick skin aircraft structures[J]. CanadianAeronautics and Space Journal,1997,43(1):28-33.
    [127] Thompson, J. G. Subsurface corrosion detection in aircraft lap splicesusing a dual frequency eddy current inspection technique[J]. Materials Evaluation,1993,51(12):1398-1401.
    [128] Sylvain, G.,Stephane, J. M. D. Pulsed eddy current: Finding corrosionindependently of transducer lift-off[J]. AIP Conference Proceedings,2000,509(1):449-456.
    [129] Tian, G. Y.,Li, Y.,Mandache, C. Study of lift-off invariance for pulsededdy-current signals[J]. IEEE Transactions on Magnetics,2009,45(1):184-191.
    [130] Tian, G. Y.,Sophian, A. Reduction of lift-off effects for pulsed eddycurrent NDT[J]. NDT and E International,2005,38(4):319-324.
    [131] Shu, L.,Songling, H.,Wei, Z., etc. Improved immunity to lift-off effect inpulsed eddy current testing with two-stage differential probes[J]. Russian Journal ofNondestructive Testing,2008,44(2):138-144.
    [132] Bernieri, A.,Ferrigno, L.,Laracca, M., etc. Crack shape reconstruction inEddy current testing using machine learning systems for regression[J]. IEEETransactions on Instrumentation and Measurement,2008,57(9):1958-1968.
    [133] Tian, G. Y.,Sophian, A.,Taylor, D., etc. Wavelet-based PCA defectclassification and quantification for pulsed eddy current NDT[A]. In IEE Proceedings:Science, Measurement and Technology[C],2005;141-148.
    [134] Yang, G.,Tian, G. Y.,Que, P. W., etc. Independent componentanalysis-based feature extraction technique for defect classification applied for pulsededdy current NDE[J]. Research in Nondestructive Evaluation,2009,20(4):230-245.
    [135] Zhou, D.,Tian, G. Y.,Zhang, B., etc. Optimal features combination forpulsed eddy current NDT[J]. Nondestructive Testing and Evaluation,2010,25(2):133-143.
    [136] Dodd, C. V.,Deeds, W. E. Analytical solutions to eddy-current probe-coilproblems[J]. Journal of Applied Physics,1968,39(6):2829-2837.
    [137] Yamada, S.,Fujiki, H.,Iwahara, M. Investigation of printed wiring boardtesting by planar coil type ECT probe[J]. IEEE Transactions on Magnetics,1997,33(5):3376-3378.
    [138] Zhang, Y.,Li, Y. Magnetic-field-based3D ETREE modeling formulti-frequency eddy current inspection[A]. In20th International Conference onIntelligent Nondestructive Detection&Information Processing Technology[C],2010;1-11.
    [139]何赟泽,罗飞路,胡祥超,等.脉冲涡流矩形传感器的多维信号特征分析与缺陷识别[J].传感技术学报,2009,22(5):680-683.
    [140] He, Y.,Luo, F.,Hu, X., etc. Defect identification and evaluation based onthree-dimensional magnetic field measurement of pulsed eddy current[J]. Insight:Non-Destructive Testing and Condition Monitoring,2009,51(6):310-314.
    [141] He, Y.,Luo, F.,Pan, M. Defect characterisation based on pulsed eddycurrent imaging technique[J]. Sensors and Actuators, A: Physical,2010,164(1-2):1-7.
    [142] Kiwa, T.,Hayashi, T.,Kawasaki, Y., etc. Magnetic thickness gauge using aFourier transformed eddy current technique[J]. NDT and E International,2009,42(7):606-609.
    [143] Tian, G. Y.,Sophian, A. Study of magnetic sensors for pulsed eddy currenttechniques[J]. Insight: Non-Destructive Testing and Condition Monitoring,2005,47(5):277-279.
    [144] Butin, L.,Waché, G.,Perez, L., etc. New NDE perspectives withmagnetoresistance array technologies-From research to industrial applications[J].Insight: Non-Destructive Testing and Condition Monitoring,2005,47(5):280-284.
    [145] Perez, L.,Dolabdjian, C.,Waché, G., etc. Advance in magnetoresistancemagnetometer performances applied in eddy current sensor arrays[A]. In16th WordConference on Non-Destructive Testing[C], Montreal,2004.
    [146] De Haan, V. O.,De Jong, P. A.,Perez, L., etc. Towards materialcharacterization and thickness measurements using pulsed eddy currents implementedwith an improved giant magnetoresistance magnetometer[A]. In ECNDT[C],2006.
    [147] Král, J.,Smid, R.,Ramos, H. M. G., etc. Thickness measurement usingtransient eddy current techniques[A]. In2011;138-143.
    [148] Dang, H. B.,Maloof, A. C.,Romalis, M. V. Ultra-high sensitivity magneticfield and magnetization measurements with an atomic magnetometer[J]. AppliedPhysics Letters,2010,97151110.
    [149] Mendibide, C.,Steyer, P.,Esnouf, C. X-ray diffraction analysis of theresidual stress state in PVD TiN/CrN multilayer coatings deposited on tool steel [J].Surface coating technology,2005,200165-169.
    [150] Chaib, M.,Djelough, H.,Boutkedjirt, T. Propagation of ultrasonic waves inmaterials under bending forces[J]. NDT&E international,2005,(38):283-289.
    [151]周德强.航空铝合金缺陷及应力脉冲涡流无损检测研究[D].南京:南京航空航天大学2010.
    [152] Wilson, J.,Tian, G.,Barrans, S. Residual Magnetic Field Sensing for StressMeasurement and Defect Detection [A]. In ECNDT[C],2006.
    [153] Wilson, J. W.,Tian, G. Y.,Barrans, S. Residual magnetic field sensing forstress measurement[J]. Sensors and Actuators, A: Physical,2007,135(2):381-387.
    [154] Yu, F.,Nagy, P. B. Dynamic piezoresistivity calibration for eddy currentnondestructive residual stress measurements[J]. Journal of Nondestructive Evaluation,2005,24(4):143-151.
    [155] Yu, F.,Blodgett, M. P.,Nagy, P. B. Eddy current assessment ofnear-surface residual stress in shot-peened inhomogeneous nickel-base superalloys[J].Journal of Nondestructive Evaluation,2006,25(1):16-27.
    [156] Abu-Nabah, B. A.,Nagy, P. B. Recent improvements in high-frequencyEddy current conductivity spectroscopy[A]. In AIP Conference Proceedings[C],2008;392-399.
    [157] Abu-Nabah, B. A.,Yu, F.,Hassan, W. T., etc. Eddy current residual stressprofiling in surface-treated engine alloys[J]. Nondestructive Testing and Evaluation,2009,24(1-2):209-232.
    [158] Vrana, J.,Goldammer, M.,Bailey, K., etc. Induction and conductionthermography: optimizing the electromagnetic excitation towards application[J].Review of Quantitative Nondestructive Evaluation,2009,28518-525.
    [159] Zenzinger, G.,Bamberg, J.,Satzger, W., etc. Thermographic crack detectionby eddy current excitation[J]. Nondestructive Testing and Evaluation,2007,22(2-3):101-111.
    [160] Bamberg, J.,Satzger, W.,Zenzinger, G. Optimized Image Processing foreddy current-thermography[J]. Review of quantification nondestruntive evaluation,2006,25708-712.
    [161] Abidin, I. Z.,Tian, G. Y.,Wilson, J., etc. Quantitative evaluation of angulardefects by pulsed eddy current thermography[J]. NDT and E International,2010,43(7):537-546.
    [162] Yunze, H.,Tian, G.,Cheng, L., etc. Parameters influence in steel corrosionevaluation using PEC thermography[A]. In Automation and Computing (ICAC),201117th International Conference on[C],10-10Sept.2011,2011;255-260.
    [163] Cheng, L.,Tian, G. Y. Surface Crack Detection for Carbon FibreReinforced Plastic (CFRP) Materials Using Pulsed Eddy Current Thermography[J].IEEE Sensors Journal,2011,11(12):3261-3268.
    [164] Oswald-Tranta, B. Thermo-inductive crack detection[J]. NondestructiveTesting and Evaluation,2007,22(2-3):137-153.
    [165] Oswald-Tranta, B.,WALLE, G.,Oswald, J. A semi-analytical model for thetemperature distribution of thermo inductive heating[A]. In QIRT[C], Padova, Italy,2006.
    [166] Oswald-Tranta, B.,Wally, G. Thermo-inductive investigations of steelwires for surface cracks[A]. In Proceedings of SPIE[C], bellingham, WA,2005.
    [167] Grenier, M.,Ibarra-Castanedo, C.,Maldague, X. Development of a hybridnon-destructive inspection system combining induction thermography and eddy currenttechniques.[A]. In10th International Conference on Quantitative InfraRedThermography[C], Quebec,2010.
    [168] Riegert, G.,Zweschper, T.,Busse, G. Eddy-current lockin-thermography:Method and its potential[J]. J. Phys. IV France,2005,125587-591.
    [169] Bohm, J.,Wolter, K. J. Inductive Excited Lock-In Thermography forElectronic Packages and Modules[A]. In33rd Intertional Spring Seminar on ElectronicsTechnology[C], Warsaw, Poland,2010.
    [170] Liu, G.,Li, G. Numerical Simulation of Defect Inspection UsingElectromagnetically Stimulated Thermography[J]. J. Shanghai Jiaotong Univ.,2011,16(3):262-265.
    [171] Cheng, L.,Tian, G. Comparison of Nondestructive Testing Methods onDetection of Delaminations in Composites[J]. Journal of Sensors,2012,20121-7.
    [172] He, Y.,Tian, G.,Cheng, L., etc. Corrosion Characterisation under CoatingUsing Pulsed Eddy Current Thermography[A]. In50th Annual Conference of TheBritish Institute of Non-Destructive Testing [C], Telford, UK,2011.
    [173] He, Y.,Tian, G. Y.,Cheng, L., etc. Parameters Influence in Steel CorrosionDetection Using Pulsed Eddy Current Thermography[A]. In17th InternationalConference on Automation and Computing (ICAC’11)[C], Huddersfield, UK,2011;255-260.
    [174] Yang, S.,Tian, G. Y.,Abidin, I. Z., etc. Simulation of edge cracks usingpulsed eddy current stimulated thermography[J]. Journal of Dynamic Systems,Measurement and Control,2011,1330110081-8.
    [175] Wilson, J.,Tian, G. Y.,Abidin, I. Z., etc. Modelling and evaluation of eddycurrent stimulated thermography[J]. Nondestructive Testing and Evaluation,2009,31-14.
    [176] He, Y.,Pan, M.,Luo, F. Defect Characterisation Based on Heat DiffusionUsing Induction Thermography Testing[J]. Rev. Sci. Instrum.,2012,83(10):104702.
    [177] Sakagami, T.,Kubo, S. Development of a new crack identification methodbased on singular current field using differential thermography[J]. SPIE,1999,3700369-376.
    [178] Tsopelas, N.,Siakavellas, N. J. Experimental evaluation ofelectromagnetic-thermal non-destructive inspection by eddy current thermography insquare aluminum plates[J]. NDT&E international,2011,44609-620.
    [179] Vavilov, V. P.,Nesteruk, D. A.,Khorev, V. S. IR thermographic NDTresearch at Tomsk Polytechnic University[A]. In50th Annual Conference of The BritishInstitute of Non-Destructive Testing[C], Telford, UK,2011.
    [180] Tian, G.,He, Y.,cheng, L., etc. Electromagnetic thermographynon-destructive methods for corrosion characterisation[A]. In15th InternationalSymposium on Applied Electromagnetics and Mechanics[C], Napoli, Italy,2011.
    [181] He, Y.,Tian, G.,Pan, M., etc. Tucker Decomposition Based SignalReconstruction of Pulsed Eddy Current Thermography for Aerospace Composites[A].In18th World Conference on Nondestructive Testing[C], Durban, South Africa,2012.
    [182] He, Y.,Luo, F.,Pan, M., etc. Pulsed eddy current technique for defectdetection in aircraft riveted structures[J]. NDT and E International,2010,43(2):176-181.
    [183] Krause, T. W.,Harlley, D.,Babbar, V. K., etc. Pulsed eddy currentthickness measurement of selective phase corrosion on nickel aluminum bronzevalves[A]. In AIP Conference Proceedings[C],2010;401-408.
    [184] Plotnikov, Y. A.,Bantz, W. J.,Hansen, J. P. Enhanced corrosion detectionin airframe structures using pulsed eddy current and advanced processing[J]. MaterialsEvaluation,2007,65(4):403-410.
    [185] Giguere, S.,Dubois, S. J. M. Pulsed eddy current: Finding corrosionindependently of transducer lift-off[J]. AIP Conference Proceedings,2000,509(1):449-456.
    [186] Mandache, C.,Lefebvre, J. H. V. Transient and harmonic eddy currents:Lift-off point of intersection[J]. NDT and E International,2006,39(1):57-60.
    [187] Lefebvre, J. H. V.,Mandache, C. Pulsed eddy current measurement oflift-off[A]. In2006;669-676.
    [188]张玉华.基于场-路耦合模型的涡流探头设计及提离干扰抑制方法研究
    [D].长沙:国防科学技术大学2010.
    [189] He, Y.,Pan, M.,Luo, F. Reduction of Lift-off Effects in Pulsed EddyCurrent for Defect Classification[J]. Magnetics, IEEE Transactions on,2011, PP (99):1-1.
    [190] Hu, X.,He, Y.,Luo, F. Defect classification in two-layer complex structuresbased on spectrum analysis of pulsed eddy current[J]. Insight: Non-Destructive Testingand Condition Monitoring,2011,53(3):146-151.
    [191] Chang, C. C.,Lin, C. J. LIBSVM: A Library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology,2011,2(3).
    [192] Yang, Y.,Yu, D.,Cheng, J. A fault diagnosis approach for roller bearingbased on IMF envelope spectrum and SVM[J]. Measurement,2007,40(9–10):943-950.
    [193] Udpa, L.,Udpa, S. S. Eddy current defect characterization using neuralnetworks[J]. Materials Evaluation,1990,48(3):342-347,353.
    [194] He, Y.,Tian, G. Y.,Zhang, H., etc. Steel Corrosion Characterisation usingPulsed Eddy Current Systems[J]. IEEE Sensors Journal,2012,12(6):2113-2120.
    [195] Ryh nen, T.,Sepp, H.,Ilmoniemi, R., etc. SQUID magnetometers forlow-frequency applications[J]. Journal of Low Temperature Physics,1989,76(5-6):287-386.
    [196] Sch nberger, A.,Virtanen, S.,Giese, V., etc. Non-destructive evaluation ofstone-impact damages using pulsed phase thermography[J]. Corrosion Science,2012,56168-175.
    [197] Ibarra-Castanedo, C.,Maldague, X. Pulsed phase thermographyreviewed[J]. Quantitative InfraRed Thermography Journal,2004,1(1):47-70.
    [198] Maev, R. G.,Severin, F. Nondestructive analysis of composite structuresusing ultrasonic and thermographic imaging [A]. In50th Annual Conference of TheBritish Institute of Non-Destructive Testing[C], Telford, UK,2011.
    [199] Rajic, N. Principal Component thermography for flaw contrastenhancement and flaw depth characterization in composite structures[J]. Compositestructures,2002,5827-35.
    [200]陈亚莉.国外航空材料发展现状与趋势[J].军民两用技术与产品,2011,(6):15-17.
    [201] Meaden, G. T. Electrical resistance of metals[M]. London: HeywoodBooks,1966.
    [202]周德强.脉冲涡流无损检测研究[D].南京:南京航空航天大学2010.
    [203]赵景丽.蜂窝夹层结构复合材料的性能研究[D].西安:西北工业大学2003.
    [204]张斌,陈积懋,王珏.金属蜂窝胶接结构冲击损伤的无损检测[A]. In21世纪华人无损检测技术论坛论文集[C],珠海,2001.
    [205]涂俊,邬冠华,郭广平.铝蜂窝结构的错位散斑与超声C扫描无损检测方法对比研究[J]. SILICON VALLEY,2011,(7):83-84.
    [206]耿荣生.飞机复合材料粘结质量评价的新方法研究[J].无损检测,2001,23(11):461-464.
    [207]蒋淑芳,沈京玲,杨党纲,等.铝蜂窝胶接缺陷的红外热波无损检测[J].无损检测,2006,28(1):23-25.
    [208]梁彩凤,侯文泰.钢的大气腐蚀预测[J].中国腐蚀与防护学报,2006,26(3):129-135.
    [209] Johnson, J. B.,Elliott, P.,Winterbottom, M. A., etc. Short term atmosphericcorrosion of mild steel at two weather and pollution monitored sites[J]. CorrosionScience,1977,17(8):691-700.
    [210] ISO-9223. Corrosion of metals and alloys-corrosivity ofatmospheres-classification. In International Organization for Standardization: Geneva,1992.
    [211] Feliu, S.,Morcillo, M.,Feliu Jr, S. The prediction of atmospheric corrosionfrom meteorological and pollution parameters-II. Long-term forecasts[J]. CorrosionScience,1993,34(3):415-422.
    [212] Hou, W.,Liang, C. Atmospheric corrosion prediction of steels[J].Corrosion,2004,60(3):313-322.
    [213] Ma, Y.,Li, Y.,Wang, F. The atmospheric corrosion kinetics of low carbonsteel in a tropical marine environment[J]. Corrosion Science,2010,52(5):1796-1800.
    [214] Fregonese, M.,Idrissi, H.,Mazille, H., etc. Initiation and propagation stepsin pitting corrosion of austenitic stainless steels: Monitoring by acoustic emission[J].Corrosion Science,2001,43(4):627-641.
    [215] Mazille, H.,Rothea, R.,Tronel, C. An acoustic emission technique formonitoring pitting corrosion of austenitic stainless steels[J]. Corrosion Science,1995,37(9):1365-1375.
    [216] Matzkanin, G. A.,Yolken, H. T. Detecting hidden corrosion[J]. PracticingOil Analysis,2008,10(7-8).
    [217] Paik, J. k. condition assessment of aged ships[A]. In16th Internationalship and offshore structures congress[C], Southampton, UK,2006.
    [218] Davoust, M. E.,Le Brusquet, L.,Fleury, G. Robust estimation of hiddencorrosion parameters using an eddy current technique[J]. Journal of NondestructiveEvaluation,2010,29(3):155-167.
    [219] Sodano, H. A. Development of an automated eddy current structural healthmonitoring technique with an extended sensing region for corrosion detection[J].Structural Health Monitoring,2007,6(2):111-119.
    [220] Gotoh, Y.,Hirano, H.,Nakano, M., etc. Electromagnetic nondestructivetesting of rust region in steel[J]. IEEE Transactions on Magnetics,2005,41(10):3616-3618.
    [221] Melchers, R. E. Transition from marine immersion to coastal atmosphericcorrosion for structural steels[J]. Corrosion,2007,63(6):500-514.
    [222] Akkerman, R. Laminate mechanics for balanced woven fabrics[J]. ComposParts B Eng,2006,37108-116.
    [223] Grimberg, R.,Savin, A.,Steigmann, R., etc. Electromagneticnon-destructive evaluation using metamaterials[J]. Insight: Non-Destructive Testing andCondition Monitoring,2011,53(3):132-137.
    [224]何赟泽,罗飞路,胡祥超,等.矩形脉冲涡流传感器的三维磁场量与缺陷定量评估[J].仪器仪表学报,2010,31(2):347-351.
    [225]胡祥超,罗飞路,何赟泽,等.脉冲交变磁场测量技术缺陷识别与定量评估[J].机械工程学报,2011,(04).
    [226] Koyama, K.,Hoshikawa, H. Basic Study of a New ECT Probe UsingUniform Rotating Direction Eddy Current[J]. Review of Progress in QuantitativeNondestructive Evaluation,1997,16A1067-1074.
    [227] He, Y.,Pan, M.,Luo, F., etc. Reduction of lift-off effects in pulsed eddycurrent for defect classification[J]. IEEE Transactions on Magnetics,2011,47(12):4753-4760.
    [228] Malhi, A.,Gao, R. X. PCA-based feature selection scheme for machinedefect classification[J]. IEEE Transactions on Instrumentation and Measurement,2004,53(6):1517-1525.
    [229] Rajagopalan, A. N.,Chellappa, R.,Koterba, N. T. Background learning forrobust face recognition with PCA in the presence of clutter[J]. IEEE Transactions onImage Processing,2005,14(6):832-843.
    [230] Pan, M.,He, Y.,Tian, G. PEC Frequency Band Selection for LocatingDefects in Two-layer Aircraft Structures with Air Gap Variations[J]. Ieee Transactionson Instrumentation and Measurement; revised,2012.
    [231]徐蕾.仿生模式识别应用研究[D].青岛:中国海洋大学2008.
    [232] Comon, P. Independent component analysis, A new concept?[J]. SignalProcessing,1994,36(3):287-314.
    [233] Yuen, P. C.,Lai, J. H. Face representation using independent componentanalysis[J]. Pattern Recognition,2002,35(6):1247-1257.
    [234] Cacciola, M.,Ripepi, G.,Yang, G., etc. ICA based algorithms for flawclassification in pulsed eddy current data: A study[A]. In20th Italian Workshop onNeural Nets[C], Italy,2011;162-171.
    [235]褚福磊,袁福生.支持向量机及其在机械故障诊断中的应用[J].振动与冲击,2007,26(11):29-34.
    [236] Cui, J.,Wang, Y. A novel approach of analog circuit fault diagnosis usingsupport vector machines classifier[J]. Measurement,2011,44(1):281-289.
    [237] Qu, Z.,Feng, H.,Zeng, Z., etc. A SVM-based pipeline leakage detectionand pre-warning system[J]. Measurement,2010,43(4):513-519.
    [238] Smid, R.,Docekal, A.,Kreidl, M. Automated classification of eddy currentsignatures during manual inspection[J]. NDT and E International,2005,38(6):462-470.
    [239] Ye, B.,Huang, P.,Fan, M., etc. Automatic classification of eddy currentsignals based on kernel methods[J]. Nondestructive Testing and Evaluation,2009,24(1-2):19-37.
    [240] Shen, Z.,Chen, X.,Zhang, X., etc. A novel intelligent gear fault diagnosismodel based on EMD and multi-class TSVM[J]. Measurement,2012,45(1):30-40.
    [241]于忠党.基于支持向量机的机械零件计算机视觉检测若干关键技术的研究[D].长春:吉林大学2009.
    [242]田江.基于支持向量机的孤立点检测方法研究[D].大连:大连理工大学2009.
    [243]毛先柏.基于支持向量机的模拟电路故障诊断研究[D].武汉:话中科技大学2009.
    [244] Cristianini, N.,Shawe-Taylor, J. An Introduction to Support VectorMachines and Other Kernel-based Learning Methods. In Cambridge University Press:Cambridge,2000.
    [245] Kecman, V. Learning and Soft Computing Support Vector Machines,Neural Networks, and Fuzzy Logic Models. In The MIT Press: Cambridge,2001.
    [246] Cao, L. J.,Chua, K. S.,Chong, W. K., etc. A comparison of PCA, KPCAand ICA for dimensionality reduction in support vector machine[J]. Neurocomputing,2003,55(1-2):321-336.
    [247] Guyon, I.,Weston, J.,Barnhill, S., etc. Gene selection for cancerclassification using support vector machines[J]. Machine Learning,2002,46(1-3):389-422.
    [248] Weston, J.,Mukherjee, S.,Chapelle, O., etc. Feature selection for SVMs [J].Advances in Neural Information Processing Systems13,2000,668-674.
    [249] Hoyer, P. O.,Hyv rinen, A. Independent component analysis applied tofeature extraction from colour and stereo images[J]. Network: Computation in NeuralSystems,2000,11(3):191-210.
    [250] Keerthi, S. S.,Lin, C. J. Asymptotic behaviors of support vector machineswith gaussian kernel[J]. Neural Computation,2003,15(7):1667-1689.
    [251] Lin, S. W.,Ying, K. C.,Chen, S. C., etc. Particle swarm optimization forparameter determination and feature selection of support vector machines[J]. ExpertSystems with Applications,2008,35(4):1817-1824.
    [252] Huang, C. J. Using genetic algorithm optimization SVM to construction ofinvestment model[J]. International Journal of Digital Content Technology and itsApplications,2011,5(1):123-132.
    [253]张艳.基于粒子群优化支持向量机的变压器故障诊断和预测[D].成都:西华大学2011.
    [254] Li, Y. LIBSVM-farutoUltimateVersion. a toolbox with implements forsupport vector machines based on libsvm.
    [255] Tashan, J.,Al-mahaidi, R. Investigation of the parameters that influence theaccuracy of bond defect detection in CFRP bonded specimens using IR thermography[J].Composite Structures,2012,94(2):519-531.
    [256] Zalameda, J. N.,Winfree, P. W. Quantitative thermal nondestructiveevaluation using an uncooled microbolometer infrared camera[J]. SPIE,2002,4710610-617.
    [257] Wilson, J.,Tian, G. Y.,Abidin, I. Z., etc. PEC thermography for imagingmultiple cracks from rolling contact fatigue[J]. NDT&E international,2011,44505-512.
    [258] Carslaw, H. S.,Jaeger, J. C. Conduction of heat in solids[M]. New York:Osford University Press,1959.
    [259] Badghaish, A. A.,Fleming, D. C. Non-destructive inspection of compositesusing step heating thermography[J]. Journal of Composite Materials,2008,42(13):1337-1357.
    [260] Aamodt, L. C.,Maclachlan, J. W.,Murphy, J. C. Analysis of characteristicthermal transit times for time-resolved infrared radiometry studies of multilayeredcoatings[J]. Journal of Applied Physics,1990,68(12):6087-6098.
    [261] Parker, W. J.,Jenkins, R. J.,Butler, C. P., etc. Flash method of determiningthermal diffusivity, heat capacity, and thermal conductivity[J]. Journal of AppliedPhysics,1961,32(9):1679-1684.
    [262] Roth, D. J.,Bodis, J. R.,Bishop, C. Thermographic Imaging forHigh-Temperature Composite materials-A Defect Detection Study[J]. Res NondestrEval,1997,9147-169.
    [263] Ringermacher, H. I.,Archacki, J.,Veronesi, W. A. Nondestructive Testing:Transient Depth Thermography. US5711603A[P].1998. USA.
    [264] Vageswar, A.,K.Balasubramaniam, K.,Krishnamurthy, C. V. Wall thinningdefect estimation using pulsed IR thermography in transmission mode[J].Nondestructive Testing and Evaluation,2010,25(4):333-340.
    [265] Sun, J. G. Analysis of pulsed thermography methods for defect depthprediction[J]. Journal of heat transfer,2006,128329-338.
    [266] Shepard, S. M.,Lhota, J. R.,Rubadeux, B. A., etc. Reconstruction andenhancement of active thermographic image[J]. Optical engineering,2003,421337-1342.
    [267] Riegert, G. Lockin and burst-phase induction thermography for NDE[J].Quantitative InfraRed Thermography Journal,2006,3(2):141-154.
    [268] Fourier, J. The Analytical Theory of Heat[M].伦敦: CambridgeUniversity Press,1878.
    [269]郭兴旺,吕珍霞,高功臣. CFRP层压板脉冲热像检测的图像重建与增强[J].红外技术,2006,28(5):299-305.
    [270]李戈岚.复合材料结构分层损伤研究[J].飞机设计,1999,(3):26-34.
    [271] Avdelidis, N.,Almond, D.,Dobbinson, A. Thermal transient thcrmographicNDT&E of composite[A]. In SPIE[C],2004;403-413.
    [272]李路明,黄松岭,杨海青,等.复合材料分层缺陷的红外热像检测[J].航天制造技术,2002,(2):18-21.
    [273]张鹏.复合材料结构抗撞击损伤设计分析技术[J].应用力学学报,2001,18(s1):151-155.
    [274]刘凤荣,苏波,王兴业,等.抗超高速撞击多层结构复合材料研究[J].国防科技大学学报,1993,1543-47.
    [275]李金柱,黄风雷,张庆明.超高速弹丸撞击三维编织C/SiC复合材料双层板结构的实验研究[J].高压物理学报,2004,18(2):164-169.
    [276] Pratap, S. B.,Weldon, W. F. Eddy currents in anisotropic compositesapplied to pulsed machinery[J]. IEEE Transactions on Magnetics,1996,32(2):437-444.
    [277]耿荣生.航空装备无损检测技术现状及发展趋势[J].航空制造技术,2012,(1/2):55-59.
    [278]袁慎芳,邱雷,吴键,等.大型飞机的发展对结构健康监测的需求与挑战[J].航空制造技术,2009,(22):62-67.
    [279] Nikou, V.,Mendez, P. F.,Masubuchi, K., etc. Feasibility of usingEarth-bounded NDT techniques for the space enviroment[A]. In Conference onEmerging Technologies in Non-destructive Testing[C], Thessaloniki,2003.
    [280] Lynch, C. T. On-Orbit Nondestructive Evaluation of Space PlatformStructures[J]. Vitro Technical Journal,1992,10(1):3-16.
    [281] Charles, A. Near Real-Time Monitoring and Non-Destructive Testing&Evaluation (NDT&E) of the ISS Exterior. In ASTE527:2009.
    [282] Simonet, D.,Ithurralde, G.,Choffy, J. P., etc. Non destructive testing inspace environment[A]. In15th WCNDT[C], Roma,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700