用户名: 密码: 验证码:
基于元模型的工程系统仿真建模方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前仿真技术和建模方法已经有了一定的研究,但针对工程系统,其仿真和建模方法的研究集中于对特定的工程系统的建模与仿真,缺乏对建模过程的理论基础和规范的建模过程方法论的研究。且由于工程系统的复杂程度,建模工作量大,模型维护和修改困难,进一步限制了仿真方法在工程系统中的应用。本文针对这种情况,提出基于三种元模型的工程系统进行建模方法及其理论基础。
     作为工程模型,无论其复杂程度如何,都可以分解为三个部分,即逻辑部分,物理部分和控制决策部分。这三个部分具有不同的特点,具有一定的层次关系,且互相作用形成工程系统。本文提出的建模仿真框架基于工程系统的这种结构,采用三种元模型,即任务模型、实体模型和控制模型分别对工程系统的三个部分进行建模,反映系统的不同侧面。在不同的建模中,根据建模对象的特点,分别采用不同的策略进行建模。并且三种元模型互相作用,形成工程系统的完整仿真框架。任务元模型面向设计和建模初期的任务规划过程,是工程系统中逻辑部分在仿真模型中的映射。通过面向实际工程技术人员的分解技术,逐层对整个工程任务进行细化,每一层面向相应的实际工程管理设计人员,分解到最后一层,得到面向工程实施技术人员的基本任务集;然后利用有向图作为分析工具,建立每个层次的任务逻辑图,表征任务之间的逻辑依赖关系,并利用有向图的邻接矩阵和依赖矩阵对任务关系进行分析,寻找产生死锁的任务集,对基本任务集进行逻辑关系上的层次划分处理,得到整个任务系统的逻辑结构。它是进一步进行任务详细分析与设计建模的基础
     实体元模型是整个仿真系统的基础,是工程系统中物理部分在仿真模型中的应用。物理部分在工程中表现出明显的混合特征,即同时具有离散系统和连续系统的特征,因此采用混合系统理论来分析和建模工程实体。本文提出采用两种模型:对象模型以及状态模型,前者用于描述模型的数据以及数据之间的关系,是系统的静态结构,而后者用于描述系统的状态以及状态之间的变迁,是系统的动态模型。本文推导了相应的数学描述形式,并在此基础上建立了混合系统的对象模型,建立了以混合自动机表达的状态模型。
     控制元模型是实际工程系统控制决策部分在仿真系统中的映射。本文建立了控制单元模型及其形式表达。提出分三步对控制过程进行建模:将实际工程步表达为协作图;将实际工程步转换为序列图;引入控制单元,将实际工程步序列图转换为仿真系统序列图。并对控制元模型进行面向工程步和面向任务的模块化,以减少建模的复杂程度和工作量。控制元模型在仿真系统中属于承上启下的位置,通过建立控制模型,连接宏观的任务模型与微观的实体模型,可以得到工程系统完整的系统模型。
     本文展示了一个大型激光工程装置的建模和仿真过程。验证了本文提出的建模和仿真方法。通过仿真的运行,在设计阶段进行结构方案的比对,在建造阶段进行建造方案的验证和优化,在运行阶段对运行状态进行仿真。在不同的阶段,均对实际激光工程装置的设计和建造起到了指导和优化的作用,节省了大量的时间和人力物力,取得了良好的效果。
While the research of modeling and simulation technology has been developed for decades, its application engineering system has been focused on specified engineering system. Few researches have been done on its theoretical basis and the meth of the modeling process. Because the complexity, the model of engineering system is hard to build, to maintain and to modify, thus its application is limited. An approach of modeling of engineering system which based on the mete-models and its theoretical basis is established in this thesis.
     An engineering system is made up by three parts which are named the logic part, the physic part and the control and decision part. They have different characteristics, relate and react to each other hierarchy. Based on the construction of engineering system, three meta-models is built to model the different part respectively. They are task meta-model, object meta-model and control meta-model. In the modeling of three meta-models, different strategies are used respectively. The meta-models affect to each other and make up the simulation framework of the engineering system.
     Task meta-models oriented to the task planning and design process of the system modeling. The engineer of the real system will decompose the engineering system hierarchy. Every level of the task model is oriented to its engineers of the real system. At the last level, the basic task model will obtained. The directed graph is hired to analyze the task model. The logic graph is built to describe the logic relationship of the tasks. The adjacency matrix and the rely matrix are hired to find the deadlock of the tasks. The task logic structure of the entire system is obtained by describe the logic level of the basic task models. It is the basis of the further task analyze and modeling process.
     Entity meta-models are the basis of the entire simulation system. They are the map of the physic part of the engineering system. Physic parts have characteristics of hybrid system.the hybrid system theory is hired to analyze and model the physic part. Two kinds of models, named object model and status object, are hired to describe the physic part. The former describes the date of the model and the relation of the date. It is the static structure of the model. The latter describes the status of the system and their relation. It is the dynamic structure of the system. The mathematic description of the model is given and the object model based on hybrid system and the status model based on hybrid automaton are built.
     Control meta-models are the map of the control and decision part of the engineering system. The structure of the control meta-model and its mathematic description are built. The modeling process of control model is also given. First, the real engineering step is described to collaboration graphs. Then the collaboration graphs are transmitted to sequence graphs. Last, the control model is introduced and the sequence graphs of real engineering system are transmitted to the sequence graphs of the simulation system. The control models are modularized according to the engineering steps and tasks to reduce the complexity and the workload of modeling. Control models link the task models and the entity models and the system model will obtained by the linkage.
     The modeling and simulation approach is verified by the virtual construction of a large scale laser system which is modeling by the approach. The structure design is contrasted at the structure design stage and the construction plan is optimized at the construction stage through the simulation. At every stage, the simulation guide and optimize the real design and construction of the laser system. The time and cost of the engineering system are reduced and the modeling approach proved to be effective.
引文
[1]Luc Thevenon, Jean-Marie Flaus. Modular representation of complex hybrid systems:application to the simulation of batch processes. Simulation Practice and Theory,2000,8:283-306.
    [2]Chuanyuan Wen. Modeling Problems of Hybrid Event Dynamic Systems. Simulation Practice and Theory,1998,6:413-422.
    [3]钱学森,于景元,戴汝为.一个科学新领域——开放的复杂巨系统及其方法论.自然杂志,1990,13(1):3-10.
    [4]李伯虎,柴旭东,朱文海等.现代建模与仿真技术发展中的几个焦点.系统仿真学报,2004,16(9):1871-1878.
    [5]J. Casti. Complexification. Harper Collins Publishers,1994.
    [6]王寿云,于景元.开放的复杂巨系统.浙江科学技术出版社,1997.
    [7]刘晓平,唐益明,郑利平.复杂系统与复杂系统仿真研究综述.系统仿真学报,2008,20(23):6303-6315.
    [8]Bertalanffy L V. General system theory. New York, USA: Braziller,1968.
    [9]Prigogine I, Stengers I. Order out of chaos. New York, USA:Bantam books Inc, 1984.
    [10]Haken H. Advanced Synergetics. New York, USA:Springer-Verlag,1983.
    [11]司马贺.人工科学——复杂性面面观.武夷山译.上海:上海科技教育出版社,2004.
    [12]M Mitchell Waldrop. Complexity: the emerging science at the edge of order and chaos. New York: Tocuhstone,1992.
    [13]Holland J. Adaptation in Natural and Artificial Systems. Cambridge, MA, USA: MIT Press,1992.
    [14]钱学森.再谈开放的复杂巨系统.模式识别与人工智能,1991,4(1):1-4.
    [15]戴汝为.从定性到定量的综合集成技术.模式识别与人工智能,1991,4(1):5-10.
    [16]戴汝为,李耀东.基于综合集成的研讨厅体系与系统复杂性.复杂系统与复杂性科学,2004,1(4):1-24.
    [17]白方周,张雷.定性仿真导论.合肥:中国科学技术大学出版社,1998.
    [18]王正中.复杂系统预期行为仿真的演化建模研究.系统仿真学报,2004,16(9):1898-1900..
    [19]杨明,张冰,王子才.建模与仿真技术发展趋势分析.系统仿真学报,2004,16(9):1901-1904.
    [20]鲁建厦,方荣,兰秀菊.国内仿真技术的研究热点-系统仿真学报近期论文综述.系统仿真学报,2004,16(9):1910-1913.
    [21]颜泽贤,范冬萍,张华夏.系统科学导论-复杂性探索.北京:人民出版社,2006.
    [22]欧阳莹之.复杂系统理论基础.田宝国,周亚,樊瑛译.上海:上海科技教育出版社,2002.
    [23]于景元,刘毅,马昌超.关于复杂性研究.系统仿真学报,2002,14(11):1417-1424,1446.
    [24]张健.复杂性科学几个新兴的应用研究方向.复杂系统与复杂性科学,2004,1(3):33-40.
    [25]方美琪,张树人.复杂系统建模与仿真.北京:中国人民大学出版社,2006.
    [26]陈森发.复杂系统建模理论与方法.南京:东南大学出版社,2006.
    [27]王安麟.复杂系统的分析与建模.上海:上海交通大学出版社,2005.
    [28]Calvano C N, Philip J. Systems engineering in an age of complexity. Systems Engineering,2004,7(1):25-34.
    [29]王正中.复杂系统仿真方法法与总体设计部.复杂系统与复杂性科学,2004,1(1):20-26.
    [30]于景元,周晓纪.综合集成方法与总体设计部.复杂系统与复杂性科学,2004,1(1):20-26.
    [31]胡晓峰,罗批.战争复杂系统建模与仿真.北京:国防大学出版社,2005.
    [32]Jonathan Jingsheng. Shi. Simulation self-diagnoses. Automation in Construction, 2003,12:419-430.
    [33]胡亚海.复杂分布仿真系统支撑环境-HLA/RTI的研究与开发北京航空航天大学博士学位论文,2003.
    [34]Andrei Borshchev, Yuri Karpov, Vladimir Kharitonov. Distributed simulation of hybrid systems with AnyLogic and HLA. Future Generation Computer Systems, 2002,18:829-839.
    [35]Enver Yucesan, Yuh-Chuyn Luo. Distributed Wed-based Simulation Experiments for Optimization. Simulation Practice and Theory,2001,9:73-90.
    [36]BernardP. Zeigler, Hyup J. Cho, Jeong G.Kim. Quantization-basedfiltering in distributed discrete event simulation. J. Parallel Distrib. Comput,2002,62: 1629-1647.
    [37]王克明,熊光楞.复杂产品的协同设计与仿真.计算机集成制造系统,2003,9:15-19.
    [38]陈希,王宁生.虚拟企业环境下的复杂产品并行开发框架模型研究.控制与决策,2003,18(6):716-719.
    [39]李伯虎,柴旭东.复杂产品虚拟样机工程.计算机集成制造系统,2002,8(9):678-683.
    [40]卢荣德,陈宗海,王雷.复杂工业过程计算机建模、仿真与控制的综述,系统工程与电子技术,2002,124(11):52-57.
    [41]俞国燕,郑时雄,孙延明.复杂工程柔性建模方法研究.机床与液压,2002,2:40-41.
    [42]钟登华,胡程顺.复杂工程系统可视化仿真建模方法与应用.系统仿真学报,2002,14(7):839-843.
    [43]邓宏钟.基于多智能体的整体建模仿真方法及其应用研究.国防科学技术大学博士学位论文,2002.
    [44]毛媛.复杂系统建模及其仿真平台技术研究.北京航空航天大学博士学位论文,2002.
    [45]Xue-zhi Lv, Fan Ren, Yong-li Yu, Ling-yan Sun. A Simulation Approach of Complex Repairable System Based on Stateflow. Computer Modeling and Simulation,2010,4:74-78.
    [46]Kremers E, Viejo P, Barambones O. A Complex Systems Modelling Approach for Decentralised Simulation of Electrical Microgrids. Engineering of Complex Computer Systems (ICECCS),2010,1,302-311.
    [47]Ai-yan Wu, Yu-hong Zhao, Zhong-gui Ma, Guang-ping Zeng, Xu-yan Tu. Graph Theory-Based Multi-Layer State Space Modeling Method of Complex System and Its Application. Information Science and Engineering (ICISE),2009,1:4895-4898.
    [48]Casalicchio E, Galli E. Federated Agent Based Modeling and Simulation:an Approach for Complex Critical Systems Analysis. Principles of Advanced and Distributed Simulation,2008,1,147.
    [49]V. V. Soldatkin. Simulation of a complex system for low helicopter airspeed measurement. Russian Aeronautics,2008,51(3),305-313.
    [50]Yun Won Young, Moon Ilkyeong, Kim Guerae. Simulation-based maintenance support system for multi-functional complex systems. Production Planning & Control,2008,19(4).
    [51]Zalazinskii A. G, Polyakov A. P, Polyakov, P. A. A system simulation of a production complex for fabrication of composites for electrotechnology. Russian Journal of Non-Ferrous Metals,2009,50(3).
    [52]Savvin V, Azavi A, Povzner A. Computer simulation of the growth of intermediate phases in a complex metallic system. The Physics of Metals and Metallography, 2007,104, (2).
    [53]Breunese A. P. J., Broenink J. F.. Modeling Mechatronic Systems Using the SIDOPS1 Language. ICBGM'97, Phoenix, AZ,1997:301-306.
    [54]Trent H. M. Isomorphisms between Oriented Linear Graphs and Lumped Physical Systems. J. Acoust. Soc. Am.,1955,27:500-527.
    [55]Branin F.H. The Algebraic-Topological Basis for Network Analogies and the Vector Calculus. Symposium on Generalized Networks, Brooklyn, New York, 1966:453-491.
    [56]A. Sawhney, O. Abudayyeh, A. Monga. Modeling and analysis of a mail processing plant using Petri nets. Advances in Engineering Software,1999,30: 543-549.
    [57]Qing Wang, Kai Leung Yung, Wai Hung Ip. A hierarchical multi-view modeling for Networked. Joint Manufacturing System Computers in Industry,2004,53: 59-73.
    [58]D. A. van Beek, J. E. Rooda. Languages and applications in hybrid modelling and simulation. Positioning of Chi, Control Engineering Practice,2000,8:81-91.
    [59]Sebastian Engell. Modeling and Analysis of Hybrid Systems. Mathematics and Computers in Simulation,1998,46:445-464.
    [60]Younv Hae Lee, Min Kwan Cho. Supply chain simulation with discerte-continuous combined modeling.computers & Industrial Engineering,2002,43:375-392.
    [61]T. Zhang, A. Dewey. A hierarchical approach to stochastic discrete and continuous performance simulation using composable software components. Microelectronics Journal,2000,31:95-104.
    [62]Herbert Praehofer. Object Oriented, Modular Hierarchical Simulation Modeling: Towards Reuse of Simulation Code. EUROSIM (Simulation News Europe),1996, 17(7):5-8.
    [63]Sarma R. Nidumolu, Nirup M. Menon. Object-oriented business process modeling and simulation:A discrete event system specification framework. Simulation Practice and Theory,1998,6:533-571.
    [64]Masayuki Hatakeyama, Masao Watanabe. Object-Oriented Fluid Flow Simulation System. Computers & Fluids,1998,27:581-597.
    [65]A. Alfieri, P. Brandimarte. Object-oriented Modeling and Simulation of Integrate Production/Distribution Systems. Computer Integrated Manufacturing System, 1997,10(4):261-266.
    [66]Laszlo Boszormenyi, Andreas Stopper. Semi-automatic parallelization of object-oriented simulations. Simulation Practice and Theory,1999,7:295-307.
    [67]A. Anglani, A. Grieco. Object-oriented modeling and simulation of flexible manufacturing systems:a rule-based procedure. Simulation Modelling Practice and Theory,2002,10:209-234.
    [68]R. J. Paul. Activity cycle diagrams and the three phase method. Proceedings of the 1993 Winter Simulation Conference, Atlanta, Georgia, USA.1993:123-131.
    [69]罗雪山.基于对象Petri网的离散事件系统建模仿真环境.计算机仿真,2000,17(3):1-6.
    [70]W. Borutzky. Bond graph modeling from an object oriented modeling point of view. Simulation Practice and Theory,1999,7:439-461.
    [71]P. D. Ball, D. M. Love. Expanding the capabilities of manufacturing simulatiors through the application of objected-oriented principles. J. Manuf. System,1994, 13(6):412-423.
    [72]J. M. Usher. An OO approach to product modeling for Manufacturing Systems. Computers and Industrial Engineering 1993,25:557-560.
    [73]C. Thomas. Hierarchical object nets -a methodology for graphical Modeling of Discrete Event Systems. Proceedings of the 1993 Winter Simulation Conference, 1993:650-656.
    [74]D. R. McGregor, S. U. Randhawa. An interactive object-oriented system for discrete simulation modeling and Analysis. Proceedings of the 1993 Winter Simulation Conference,1993:154-158.
    [75]Peter Csaszar, Thomas M. Tirpak, Peter C. Nelson. Object-Oriented Simulator Design for an Automated High-Speed Modular Placement Machine Family. Simulation,1999,73 (6):341-351.
    [76]Marco, J. G. And Setterdahl, D. L. Establishing an object-oriented methodology and control of integrated manufacturing systems. Proceedings of 1994 Winter Simulation Conference,1994, Lake Buena Vista, FL,1994:941-961.
    [77]金士尧,李宏亮.复杂系统计算机仿真的研究与设计.中国工程科学,2002,4(4):52-57.
    [78]罗批,司光亚.基于Agent的复杂系统建模仿真方法研究进展.装配指挥技术学院学报,2003,14(1):78-82.
    [79]廖守亿.复杂系统基于Agent的建模与仿真方法研究及应用.博士学位论文. 长沙:国防科技大学研究生院,2005.
    [80]廖守亿,戴金海.复杂适应系统及基于Agent的建模与仿真方法.系统仿真学报,2004,16(1):113-117.
    [81]刘大有,杨鲲,陈建中.Agent研究现状与发展趋势.软件学报,2000,11(3):315-321.
    [82]党岗,刘华峰.多Agent虚拟环境中的行为建模及其动画表现.系统仿真学报,2001,13(11).
    [83]彭刚,黄心汉.基于Agent的遥操作机器人控制器研究.控制与决策,2003,18(1):40-44.
    [84]张洁,刘世平.基于多Agent车间控制系统的框架.华中科技大学学报,2001,29(11):9-12.
    [85]周水银,陈荣秋.基于多Agent的供应链研究.工业工程与管理,2001(6):28-31.
    [86]赵春霞,杨静宇,基于多AGENT的机器人装配系统结构系统仿真学报,2000,12(3):252-255.
    [87]陈军安,黄金国.基于多Agent技术的物流管理系统模型研究.华中科技大学学报(自然科学版),2002,30(4):32-34.
    [88]王随平.面向Agent的复杂软件系统分析.湖南工业职业技术学院学报,2001,1(2).
    [89]Adelinde M. Uhrmacher, Petra Tyschler, Dirk Tyschler. Modeling and simulation of mobile agents. Future Generation Computer Systems,2000,17:107-118.
    [90]郭海英,钟廷修.用UML和IDEF方法对软件开发进行建模.计算机工程与应用,2002,4:105-107.
    [91]罗焕佐.基于IDEF方法的投入产出通用模型建设.计算机系统应用,1995,11:7-9.
    [92]王志坚,蔡自兴,陈松乔.运用IDEF方法进行CIMS设计.电脑与信息技术,1998,2:40-41.
    [93]尚文利,王成恩,张士杰,尹朝万.基于IDEF与UML的系统建模方法.计算机集成制造系统,2004,10(3):252-256.
    [94]雷波,荣立军.IDEFO方法及其在复杂系统分析设计中的运用.计算机应用研究1999,4:26-28.
    [95]谢列卫,程耀东.复杂系统通用的功能分析方法IDEFO及其应用.浙江工业大学学报,1998,26(4).
    [96]T. Perera, K. Liyangage. Methodology for rapid identi(?)cation and collection of input data in the simulation of manufacturing systems. Simulation Practice and Theory,2000,7:645-656.
    [97]李伯虎.重视现代建模与仿真技术、产业与应用的持续发展.仿真科学与技术发展及应用-科技导报“系统仿真研究”专题集.北京:中国系统仿真学会,2007.
    [98]郭宇.基于混合动态系统建模方法的制造单元仿真优化研究.华中科技大学博士学位论文,2003.
    [99]M. R. Rotab Khan, S. C. Harlock. Computer simulation of production systems for woven fabric manufacture. Computer & Industrial Engineering,1999,37: 745-756.
    [100]张苗苗.混合系统的离散模型近似及形式验证.上海交通大学博士学位论文,2000.
    [101]张学军.具有复杂连续动态混合系统的形式验证.上海交通大学博士学位论文,2000.
    [102]Andrzej P. Wierzbicki, Janusz Granat b. Multi-objective modeling for engineering applications:DIDASN++ system. European Journal of Operational Research,1999, 113:374-389.
    [103]王书亭.面向生产线的虚拟仿真研究.华中科技大学博士学位论文,2002.
    [104]S. Wang, L. Chen, Y. Guo and J. Zhou. A Virtual Simulation-Based Prototype Tool for Designing Filling Lines. Int J Adv Manuf Technol,2003,21:910-915.
    [105]Henri Pierreval, Jean Luc Paris. From simulation optimization to simulation configuration of systems. Simulation Modelling Practice and Theory,2003,11: 5-19.
    [106]Sheng-Jen (Tony) Hsieh. Hybrid analytic and simulation models for assembly line design and production planning. Simulation Modelling Practice and Theory,2002, 10:87-108.
    [107]郑锋.混合型生产过程建模与调度优化.西北工业大学博士学位论文,2003.
    [108]Edward Bachelder, Nancy Leveson. A Graphical Language for Describing Complex System Behavior: Applications to Design, Training and User Operation. Digital Avionics Systems,2001,1(10):5A5/1-5A5/10.
    [109]熊友军.基于增强现实技术的机器人遥操作技术研究.华中科技大学博士学位论文,2006.
    [110]杨宇航.基于仿真的复杂武器系统任务可靠性评估与维修管理研究.北京航空航天大学博士学位论文,2002.
    [111]Mohan R. Manavazhi. Simulating the construction of structures - an automated approach. Simulation Practice and Theory,2000,8:161-176.
    [112]Averill M L, Kelton W D. Simulation Modeling and Analysis (Third Edition). Beijing: Tsinghua publisher, Mc Graw-Hill,2000.
    [113]王浣尘.综合集成系统开发的系统方法思考.系统工程理论方法应用,2002,11(1):1-7.
    [114]吴重光.仿真技术.北京:化学工业出版社,2000.
    [115]Chuanyuan Wen. Modeling Problems of Hybrid Event Dynamic Systems. Simulation Practice and Theory,1998,6:413-422.
    [116]廖瑛,邓方林,梁加红等.系统建模与仿真的校核、验证与确认(VV&A)技术.长沙:国防科技大学出版社,2006.
    [117]Hwang M H, Choi. B K. Message-Passing Architechture and its Construction in Object-Oriented Rapid Modeling for Automated Manufacturing System Simulation. SIMULATION,1999,72(2):90-104.
    [118]Banaszak Z A, Tang X Q, Wang S C, et al. Logistics models in flexible manufacturing. Computers in Industry,2000,43:237-248.
    [119]Xiaoping Liu, Jin Qin, Yiming Tang. An Innovative Function-tree Building Method Based on Similarity Theory and Extension Theory. The 7th International Conference on Computer-Aided Industrial Design& Conceptual Design (CAID&CD'2006). Hangzhou: IEEE Press,2006:199-204.
    [120]Yiming Tang, Xiaoping Liu. Task partition for function tree according to innovative functional reasoning. Proceedings of the 2008 12th international conference on computer supported cooperative work in design (CSCWD'2008), Xian, China: IEEE Press,2008:189-195.
    [121]Wei Ge and Jinghai Li, General approach for discrete simulation of complex systems. Chinese Science Bulletin,2002,47(14):1172-1175.
    [122]Efthimios Kaxiras and Sauro Succi. Multiscale simulations of complex systems: computation meets reality. Scientific Modeling and Simulation,2008,15:59-65.
    [123]P. R. Moore, J. Pu, H. C. Ng. Virtual engineering: an integrated approach to agile manufacturing machinery design and control. Mechatronics,2003,13:1105-1121.
    [124]S. Cem Karacal. A. Novel Approach to Simulation Modeling. Computers Ind. Engng,1998,34(3):573-587.
    [125]S. Cem Karacal. Simulation of Hierarchical Manufacturing Control. Computers Ind. Engng,1998,35:339-342.
    [126]K. W. Keung a, W. H. Ip a, D. Yuen. An intelligent hierarchical workstation control model for FMS. Journal of Materials Processing Technology,2003,139:134-139.
    [127]Jianguo Wu, John L. David. A spatially explicit hierarchical approach to modeling complex ecological systems:theory and applications. Ecological Modelling 2002, 153:7-26.
    [128]Gert Z. ulch, Uwe Jonsson, J. org Fischer. Hierarchical simulation of complex production systems by coupling of models. Int. J. Production Economics,2002,77: 39-51.
    [129]S. Gentila, J. Montmain. Hierarchical representation of complex systems for supporting human decision making, Advanced Engineering Informatics,2004,18: 143-159.
    [130]P. Ball. Abstracting Performance in Hierarchical Manufacturing Simulation. Journal of Materials Processing Technology,1998,76:246-251.
    [131]Marko Bohaneca, Blaz Zupan. A function-decomposition method for development of hierarchical multi-attribute decision models. Decision Support Systems,2004, 36:215-233.
    [132]王红卫.建模与仿真.北京:科学出版社,2002.
    [133]Luc Thevenon, Jean-Marie Flaus. Modular representation of complex hybrid systems:application to the simulation of batch processes. Simulation Practice and Theory,2000,8:283-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700