用户名: 密码: 验证码:
分布式风光互补系统控制与最大功率跟踪策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能、太阳能的最大能量捕获已经成为国内外新能源领域的研究热点,采用最大功率跟踪(MPPT)方法旨在最大限度地提高风电机组和光伏发电系统的电能输出效率和系统的响应速度。MPPT控制方法的优劣直接关系着风能和太阳能的有效利用效率和系统的安全运行性能。目前,扰动观察法、增量电导法和智能控制法等MPPT方法已经被应用到实际产品中。但是由于太阳辐射变化迅速,导致光伏输出变化迅速,而现有的光伏MPPT方法跟踪速度慢、抗干扰能力差和输出效率低等缺点阻碍了光伏发电的进一步推广。而时变非线性的风速导致风电机组的输出不稳定,输出效率低和响应速度慢,因此一种高效的MPPT方法对于风电机组和光伏发电系统而言都是非常重要的。同时太阳能和风能具有很好的互补性,风光互补系统与独立式光伏或风电机组相比可以有效降低天气变化对系统的影响,使系统具有更好的输出特性。
     本文通过对理想状况和部分遮蔽情况下光伏的不同输出特性的分析与仿真,分别找到了适于小型和大型光伏发电系统的MPPT控制方法;通过对选用同步发电机的小型风电机组的分析,找到了适于小型风电机组的MPPT控制方法,并实现了风光互补系统的MPPT;为了减小系统的输出振动,文中将人工免疫理论应用到风光互补系统中,增强了系统的响应速度和抗干扰能力。同时设计了改进模糊的风光互补系统MPPT控制器,并对控制电路进行了实验验证,实现了风光互补系统的互补和最大功率跟踪。此外对风光互补系统的优化匹配进行了分析。
     本文对分布式风光互补系统的最大能量捕获控制策略进行了探讨。针对小型风电机组和光伏发电系统分别实现了高效的最大功率跟踪控制方法,仿真和实验结果表明所采用的方法是有效的,提高了系统的抗干扰能力并增加了响应的速度。主要的研究内容和创新成果包括:
     (1)在理想情况下,针对小型光伏发电系统的太阳照射强度相同的特点,对光伏输出特性进行了分析和仿真,通过对直线近似法的改进,得到了求取二极管品质因子和反向饱和电流的新方法,实现了控制优化输出电流的最大功率跟踪算法;通过对传统恒定电压法的改进,实现了控制优化电压的变电压最大功率跟踪算法;所实现的算法具有响应速度快、效率高、易于实现等特点。
     (2)为了预测光伏阵列的实际峰值点,精确建模了有部分遮蔽的大型光伏阵列的输出特性,并通过Matlab软件构建了大型光伏阵列输出特性分析模型,它可以作为预测不同结构和尺寸的光伏阵列全局峰值分布的工具。
     (3)在实际情况下,针对大型光伏发电系统有可能被部分遮蔽的情况,实现了基于模糊逻辑的模糊扰动和基于扰动观察法的扰动PWM控制方法,由于扰动PWM在跟踪过程中并不是一直被调用,所实现的方法具有较高的输出效率,且易于实现。
     (4)针对小型风电机组实现了将模糊逻辑和扰动观察相结合的MPPT控制方法,仿真结果表明该MPPT控制方法在各种风速情况下都具有较高的输出效率。
     (5)针对传统风光互补系统输出振动较大的情况,利用人工免疫理论改进了模糊控制器,所采用的模糊免疫MPPT控制方法,不但改善了风光互补系统的输出特性,而且响应速度快、抗干扰能力强。
     本文得到国家自然科学基金重点项目(60934005);上海市科技发展基金(09195802900);上海市教育发展基金(09LM37,10LM26);中国博士后基金(20080440088) ;上海市博士后基金(08R214134) ;上海市科委技术标准专项(10dz0502200);上海市白玉兰科技人才基金(2007B073,2009B075)的资助。
The Maximum power point tracking (MPPT)of wind energy and solar energy has become a hot spots of renewable energy research field at domestic and international. The main purpose of MPPT is to improve the power output efficiency of costly wind power and photovoltaic (PV) generating system, while improved the response speed of system. The good control performances for MPPT directly influence the effective utilization of wind energy and solar energy, while which influence the safety operation of wind power and PV generating system. Some MPPT methods have been applied to the actual product, such as perturb and observe (PO) method, incremental conductance (IC) method and intelligent control method. But due to rapid range in solar radiation, leading to rapid changes in solar output, while the tracking speed of the existing PV MPPT method is slow, and anti-jamming characteristic is poor, and the output efficiency is low, so these shortcomings hampered the promotion of PV generating system. While the time varying and nonlinear of the wind speed induces the instability power output of wind power generating system, and the output efficiency is low, and the response speed is slow, and for this a highly efficient MPPT method for PV and wind power generating system are very important. At the same time solar and wind energy has a very good complementary performance, so the hybrid wind-solar system can decreases the effect of weather changing as compare with the stand-alone photovoltaic or wind power system, which has better output characteristic.
     This paper find suitable MPPT methods for small-scale and large-scale PV generating system by analyzing and simulating the output characteristic of PV under ideal and partial shaded conditions. Furthermore, a small wind power generating system by using synchronous generator is analyzed, and a MPPT control method for small wind power generating system is suggested in this paper. Then the MPPT of hybrid wind-solar system is realized. In order to decrease the output libration of system, the artificial immune theory is used to improve the system response speed and anti-jamming capability in this paper. Also the improved fuzzy MPPT controller for hybrid wind-solar system is designed and the control circuit is verified to track maximum power point, which achieve the MPPT of hybrid system. Furthermore, the optimal configure of hybrid wind-solar generating system is analyzed in the paper.
     The maximum energy capture control strategy of distributed hybrid wind-solar system is discussed in this paper. The highly efficient MPPT control method for PV and small wind generator is proposed respectively, and the simulation and experiment results show that the suggested methods is very effectively to improve the anti-jamming capability of system and the response speed. The main research content and innovations include:
     (1) At the ideal case, the solar radiation of small-scale PV generating system is same under ideal weather conditions, and the PV characteristics is analyzed and simulated. Then the straight-line approximation method is improved, and the diode factor and reverse saturation current of PV array is acquired, and the MPPT algorithm is proposed by optimizing the output current. Then the variable voltage MPPT algorithm is proposed, which improve the conventional constant-voltages method by controlling the optimal output voltage. The merits of proposed algorithm include rapid response speed and high efficiency and easy to implement and so on.
     (2)An accurate modeling of large PV array is described in order to predict the real global peak. Then, a Matlab-based mode suitable for PV array in partial shading is established, which can be used as a tool to study the global peak distribution on PV array having different configurations and sizes.
     (3) The large-scale PV generating system may be partial shading under actual conditions, and then the fuzzy perturb PWM MPPT control methods are proposed, which improves the conventional fuzzy logic MPPT method. Then the PO perturb PWM is described which improves the conventional PO method. The proposed methods have high output efficiency and easy to implement because of the perturb PWM has not always been called in the tracking process.
     (4) The combined fuzzy logic and PO MPPT method for small wind power generating system is suggested in this paper. The simulation results shows that which can improve the output efficiency under different wind speed conditions.
     (5) The artificial immune theory is used to improve the fuzzy controller because of the output libration of the traditional hybrid wind-solar system is big, and the proposed fuzzy-immune MPPT control method has not only improved the output characteristics of the hybrid wind-solar system, and the response speed is rapid, and the anti - interference ability is high.
     This work was supported by the Key Program of National Natural Science Foundation of China (60934005), Foundation of Shanghai Science and Technology Development (09195802900), Foundation of Shanghai Education Development (No. 09LM37 and NO. 10LM26), Postdoctoral Foundation of China (No. 20080440088), the Postdoctoral Foundation of Shanghai (No. 08R214134), Technical standard expert item of Shanghai science and technology council (NO. 10dz0502200), the Baiyulan Found for Science & Technology Talents (No. 2007B073 and 2009B075).
引文
[1]王大中. 21世纪中国能源科技发展展望[M]。北京:清华大学出版社,2007。
    [2]张秋明.中国能源安全战略挑战与政策分析[M]。北京:地址出版社,2007。
    [3]何伟,倪维斗,朱成章等.中国节能降耗研究报告[M]。北京:企业管理出版社,2006。
    [4]徐华清等.中国能源环境发展报告[M]。北京:中国环境科学出版社,2006。
    [5]王革华,爱德生.新能源概论[M]。北京:化学工业出版社,2006。
    [6]陈维新.能源概论[M]。台北县五股乡:高立图书有限公司,2006。
    [7]罗运俊,何梓年,王长贵.太阳能利用技术[M]。北京:化学工业出版社,2005。
    [8]国家发展和改革委员会.中国可再生能源产业发展报告( 2006 ),http://www.crein.org.cn/view/viewnews.aspx?id=20080410103345304,2007。
    [9] 21世纪可再生能源政策网络(REN21).全球可再生能源发展报告2006年修订版,http://www.cres.org.cn/person_file/2007-11-15/20071115145248.html,2007。
    [10]李俊峰,王斯成等. 2007中国光伏发展报告[M]。北京:中国环境科学出版社,2007。
    [11]王承煦,张源.风力发电[M]。北京:中国电力出版社,2002。
    [12]国家统计局.系列报告之十三:能源生产能力大幅提高结构不断优化。http://www.stats.gov.cn/was40/gjtjj_detail.jsp?searchword=%B7%E7%B5%E7%BB%FA&channelid=6697&record=1,2009。
    [13]国家统计局.中国统计摘要2010 [M]。北京:中国统计出版社,2010。
    [14] World Wind Energy Association. World Wind Energy Report 2008 , http://www. cwea.org.cn/upload/WorldWindEnergyReport2008_s.pdf,2009。
    [15]赵玉文,王斯成,励旭东等(中国可再生能源发展项目办公室).中国光伏产业发展研究报告,http://www.cres.org.cn/person_file/2007-11-30/20071130225127.html,2006。
    [16] 2009年我国风电新增装机容量1380.3万kw [J].变压器,2010,42(6):12。
    [17]吴理博,赵争鸣,刘建政.用于太阳能照明系统的智能控制器[J].清华大学学报(自然科学版),2003,43(9):1195-1198。
    [18]周德佳,赵争鸣,吴理博等,基于仿真模型的太阳能光伏电池阵列特性的分析[J].清华大学学报(自然科学版),2007,47(7):1109-1112, 1117。
    [19]崔岩,蔡炳煌,李大勇等.太阳能光伏系统MPPT控制算法的对比研究[J].2006,27(6):535-539。
    [20] Mutoh Nobuyoshi, Inoue Takayoshi. A Control Method to Charge Series-Connected Ultraelectric Double-Layer Capacitors Suitable for Photovoltaic Generation Systems Combining MPPT Control Method [J]. IEEE Transactions on industrial electronics, 2007, 54(1):374-383
    [21] Mutoh Nobuyoshi, Ohno Masahiro, and Inoue Takayoshi. A Method for MPPT Control While Searching for Parameters Corresponding to Weather Conditions for PV Generation Systems [J]. IEEE Transactions on industrial electronics, 2006, 53(4):1055-1065.
    [22] Cristinel Dorofte, Uffe Borup, and Frede Blaabjerg. A Combined Two Method MPPT Control Scheme for Grid-Connected Photovoltaic Systems [C]. 2005 European Conference on Power Electronics and Applications. 2005:1-10.
    [23] Altasa I.H.,Sharafb A.M.. A novel maximum power fuzzy logic controller for photovoltaic solar energy systems [J], Renewable Energy, 2008, 33(3): 388-399.
    [24] Kottas, Theodoros L., and Boutalis, et al. New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks[J].IEEE Transactions on Energy Conversion, 2006, 21(3): 793-803.
    [25]贾要勤,曹秉刚,杨仲庆.风力发电的MPPT快速响应控制方法[J].太阳能学报,2004,25(2):171-176。
    [26]齐志远,王生铁.小型风力发电系统最大功率控制的扰动法[J].内蒙古工业大学学报,2005,24(2):91-96。
    [27]王生铁,张润和,田立欣.小型风力发电系统最大功率控制扰动法及状态平均建模与分析[J].太阳能学报,2006,27(8):828-834。
    [28]张军军,苏建徽,张国荣等.一种离网型风电机组控制器设计[J].电力电子技术,2007,41(2):88-89,104。
    [29] Calderaro V.,Galdi V., and Piccolo A., et al. A fuzzy controller for maximum energy extraction from variable speed wind power generation systems [J], Electric Power Systems Research, 2008, 78(6): 1109-1118.
    [30] Vincenzo G., Antonio P., and Pierluigi S.. Designing an adaptive fuzzy controller for maximum wind energy extraction [J], IEEE Transactions on Energy Conversion, 2008, 23(2): 559-569.
    [31] Adam Mirecki, Xavier Roboam, and Frédéric Richardeau. Architecture complexity and energy efficiency of small wind turbines, IEEE Transactions on Industrial Electronics [J], 2007, 54(1):660-670.
    [32] Lotfi Krichen, Bruno Francois, and Abderrazak Ouali. A fuzzy logic supervisor for active and reactive power control of a fixed speed wind energy conversion system [J], Electric Power Systems Research, 2008, 78(3): 418-424.
    [33]刘万琨,张志英,李银风等.风能与风力发电技术[M],北京:化学工业出版社,2007。
    [34]朱兆瑞.中国太阳能-风能综合利用区划[J].太阳能学报,1986,7(1):1-9。
    [35]茆美琴,何慧若.风_光复合发电系统的优化设计[J].合肥工业大学学报(自然科学版),2001,24(6):1036-1039。
    [36]茆美琴,余世杰,苏建徽等.风/光复合发电系统变结构仿真建模研究[J].系统仿真学报,2003,15(3):361-364。
    [37] Yang, H.X., Lu, L., and Burnett, J.. Weather data and probability analysis of hybrid photovoltaic-wind power generation systems in Hong Kong [J], Renewable Energy, VOL. 28, NO. 11, 2003: 1813-1824.
    [38]艾斌,杨洪兴,沈辉等.风光互补发电系统的优化设计( I)CAD设计方法[J].太阳能学报,2003,24(4):540-547。
    [39]艾斌,杨洪兴,沈辉等.风光互补发电系统的优化设计Ⅱ匹配设计实例[J].太阳能学报,2003,24(5):718-723。
    [40]JoséL Bernal-Agustín, Rodolfo Dufo-López. Simulation and optimization of stand-alone hybrid renewable energy systems [J], Renewable and Sustainable Energy Reviews, 2009, 13(8): 2111-2118.
    [41] Dos Reis, F.S., and Lima, J.C.M., et al. A low voltage electronic ballast designed for hybrid wind-solar power systems [C], IEEE International Symposium on Industrial Electronics, ISIE 2007, 2007: 3066-3071.
    [42] Hocaoglu, F.O., Kurban, M.. A preliminary detailed study on constructed hybrid (wind-photovoltaic) system under climatically conditions of Eskisehir Region in Turkey [C], First International Power and Energy Conference, 2006: 40-43.
    [43] Eskander, Mona N., El-Shatter, Thanaa F., El-Hagry, Mohsen T.. Energy flow and management of a hybrid wind/PV/fuel cell generation system [J], International Journal of Sustainable Energy, 2006, 25(2): 91-106.
    [44] Eskander, Mona N., El-Shatter, Thanaa F., and El-Hagry, Mohsen T.. Energy flow and management of a hybrid wind/PV/fuel cell generation system [J], Energy Conversion and Management, 2006, 47(9-10): 1264-1280.
    [45] Eskander, Mona N., El-Shatter, Thanaa F., and El-Hagry, Mohsen T.. Energy flow and management of a hybrid wind/PV/fuel cell generation system [C], IEEE Annual Power Electronics Specialists Conference, VOL. 1, 2002: 347-353.
    [46] Sathyan, Anand, Kiszynski, Kristofer Anthony, and Al-Hallaj, Said. Hybrid Wind/PV/Fuel Cell Generation System [C], 2005 IEEE Vehicle Power and Propulsion Conference, VPPC, VOL. 2005, 2005: 495-500.
    [47]王长贵,王斯成.太阳能光伏发电实用技术[M],北京:化学工业出版社,2005。
    [48]何允平,王金铎.工业硅科技新进展[M],北京:冶金工业出版社,2003。
    [49]万群.奇妙的半导体[M],北京:科学出版社,2002。
    [50]沈辉,曾祖勤.太阳能光伏发电技术[M],北京:化学工业出版社,2005。
    [51]赵争鸣,刘建政,孙晓瑛等.太阳能光伏发电及其应用[M],北京:科学出版社,2005。
    [52]冯垛生,宋金莲,赵慧等.太阳能发电原理与应用[M],北京:人民邮电出版社,2007。
    [53] Pan, Ching-Tsai, Chen, Jeng-Yue, and Chu, Chin-Peng, et al. Fast maximum power point tracker for photovoltaic power systems [C], IECON Proceedings (Industrial Electronics Conference), VOL. 1, 1999: 390-393.
    [54] Mutoh Nobuyoshi, Ohno Masahiro, and Inoue, Takayoshi. A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems [C], IECON Proceedings (Industrial Electronics Conference), VOL. 3, 2004: 3094-3099,
    [55] Mutoh Nobuyoshi, Inoue Takayoshi. A controlling method for charging photovoltaic generation power obtained by a MPPT control method to series connected ultra-electric double layer capacitors [C], IAS Annual Meeting (IEEE Industry Applications Society), v 4, 2004: 2264-2271.
    [56] Mutoh Nobuyoshi, Inoue Takayoshi, and Ohno Masahiro. A photovoltaic generation system acquiring efficiently the electrical energy generated with solar arrays [C], Series on Energy and Power Systems, Proceedings of the Fourth IASTED International Conference on Power and Energy Systems, 2004: 97-103.
    [57]郑诗程.光伏发电系统及其控制的研究[博士论文].合肥:合肥工业大学.2005.
    [58]陈维.户用光伏建筑一体化发电系统及太阳能半导体照明技术研究[博士论文].合肥:中国科学技术大学.2006.
    [59]欧阳名三.独立光伏系统中蓄电池管理的研究[博士论文].合肥:合肥工业大学.2004.
    [60]吴理博.光伏并网逆变系统综合控制策略研究及实现[博士论文].北京:清华大学.2006.
    [61]田玮.光伏建筑的性能优化及其与城市微气候的相互影响[博士论文].天津:天津大学.2006.
    [62]余发平. LED光伏照明系统优化设计[硕士论文] .合肥:合肥工业大学.2006.
    [63]焦在强.单级式并网型光伏发电系统用逆变器的研究[硕士论文] .北京:中国科学院电工研究所.2004.
    [64]王超.独立运行光伏发电系统控制器的研究与设计[硕士论文] .杭州:浙江大学.2004.
    [65]孔娟.太阳能光伏发电系统的研究[硕士论文] .青岛:青岛大学.2006.
    [66]张化德.太阳能光伏发电系统的研究[硕士论文] .济南:山东大学.2007.
    [67]张铁良.有源电力滤波器与光伏发电的统一控制研究. [硕士论文] .合肥:合肥工业大学.2007.
    [68]林珊.太阳能发电系统研究[硕士论文] .广州:广东工业大学.1999.
    [69]韩珏.太阳能电池阵列模拟器的研究与设计[硕士论文] .合肥:合肥工业大学.2006.
    [70]杨化鹏.基于单片机的IGBT光伏充电控制器的研究[硕士论文] .西安:西安理工大学.2006.
    [71]吴忠军.基于DSP的太阳能独立光伏发电系统的研究与设计[硕士论文] .镇江:江苏大学.2007.
    [72]刘邦银,段善旭,康勇.局部阴影条件下光伏模组特性的建模与分析[J].太阳能学报,2008,29(2):188-192。
    [73]肖景良,徐政,林崇等.局部阴影条件下光伏阵列的优化设计[J],中国电机工程学报, 2009,29(11):119-124。
    [74] Syafaruddin, Karatepe E., Hiyama T.. Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions [J], IET Renewable Power Generation, 2009, 3(2): 239-253.
    [75] Ji Young-Hyok, Kim Jun-Gu, and Park Sang-Hoon, et al. C-language based PV array simulation technique considering effects of partial shading [C], Proceedings of the IEEE International Conference on Industrial Technology, 2009: 1152-1157.
    [76] Gao Lijun, Dougal Roger A., and Liu, Shengyi, et al. Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions [J], IEEE Transactions on Industrial Electronics, 2009, 56(5): 1548-1556.
    [77] Carannante G., Fraddanno Ciro, and Pagano Mario, et al. Experimental performance of MPPT algorithm for photovoltaic sources subject to inhomogeneous insolation [J], IEEE Transactions on Industrial Electronics, 2009, 56(11): 4374-4380.
    [78] Silvestre S., Boronat A., and Chouder A.. Study of bypass diodes configuration on PV modules [J], Applied Energy, 2009, 86(9): 1632-1640.
    [79] Zbeeb Ahmad, Devabhaktuni Vijay, and Sebak Abdel. Improved photovoltaic MPPT algorithm adapted for unstable atmospheric conditions and partial shading [C], 2009 International Conference on Clean Electrical Power, ICCEP 2009, 2009: 320-323.
    [80] Karatepe Engin, Hiyama Takashi, and Boztepe Mutlu, et al. Voltage based power compensation system for photovoltaic generation system under partially shaded insolation conditions [J], Energy Conversion and Management, 2008, 49(8): 2307-2316.
    [81] Patel Hiren, Agarwal Vivek. Maximum power point tracking scheme for PV systems operating under partially shaded conditions [J], IEEE Transactions on Industrial Electronics, 2008, 55(4): 1689-1698.
    [82] Ahmed Nabil A., Miyatake Masafumi. A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions [J], Electric Power Systems Research, 2008, 78(5): 777-784.
    [83] Drif M., Pérez P.J., and Aguilera J., et al. A new estimation method of irradiance on a partially shaded PV generator in grid-connected photovoltaic systems [J], Renewable Energy, 2008, 33(9): 2048-2056.
    [84] Patel Hiren, Agarwal Vivek. MATLAB-based modeling to study the effects of partial shading on PV array characteristics [J], IEEE Transactions on Energy Conversion, 2008, 23, (1): 302-310.
    [85] Ramaprabha R., Mathur B.L.. Modelling and simulation of solar pv array under partial shaded conditions [C], 2008 IEEE International Conference on Sustainable Energy Technologies, ICSET 2008, 2008: 7-11.
    [86] García Miguel, Maruri Jose Miguel, and Marroyo Luis, et al. Partial shadowing, MPPT performance and inverter configurations: Observations at tracking PV plants [J], Progress in Photovoltaics: Research and Applications, 2008, 16(6): 529-536.
    [87] Candela R., Di Dio V., and Sanseverino E. Riva, et al. Reconfiguration techniques of partial shaded PV systems for the maximization of electrical energy production [C], 2007 International Conference on Clean Electrical Power, ICCEP '07, 2007: 716-719.
    [88] Kanai Yasuyuki, Matsumoto Satoshi. A novel photovoltaic module for severe shade conditions [C], Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4, VOL. 2, 2007: 2174-2176.
    [89] Silvestre S., Chouder A.. Shading effects in characteristic parameters of PV modules [C], 2007 Spanish Conference on Electron Devices, Proceedings, 2007: 116-118.
    [90] Gao Lijun, Dougal Roger A., Liu Shengyi, Iotova Albena. Portable solar systems using a step-up power converter with a fast-speed MPPT and a parallel-configured solar panel to address rapidly changing illumination [C], Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2007: 520-523.
    [91] Sanchis Pablo, López Jesús, and Ursúa Alfredo, et al. On the testing, characterization, and evaluation of PV inverters and dynamic MPPT performance under real varying operating conditions [J], Progress in Photovoltaics: Research and Applications, 2007, 15(6): 541-556.
    [92] D'Souza Neil S., Lopes Luiz A. C., and Liu, Xue Jun. An intelligent maximum power point tracker using peak current control [C], IEEE Annual Power Electronics Specialists Conference, VOL. 2005, 2005:172-177.
    [93] Welch Richard L., Venayagamoorthy Ganesh K., Comparison of two optimal control strategies for a grid independent photovoltaic system [C], IEEE Industry Applications Conference, IAS Annual Meeting, VOL. 3, 2006:1120-1127.
    [94] Lacasa David, Berenguel Manuel, and Yebra Luis, et al. Copper Sintering in a Solar Furnace through Fuzzy control [C], Proceedings of the IEEE International Conference on Control Applications, 2008: 2144-2149.
    [95] Veerachary Mummadi, Senjyu Tomonobu, and Uezato Katsumi. Feedforward maximum power point tracking of PV systems using fuzzy controller [J], IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3):969-981.
    [96] Yazidi A., Betin F., and Notton G., et al. Low cost two-axis solar tracker with high precision positioning [C], 1st International Symposium on Environment Identities and Mediterranean Area, 2006:211-216.
    [97] Kottas Theodoros L., Boutalis Yiannis S., and Karlis Athanassios D.. New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks [J], IEEE Transactions on Energy Conversion, 2006, 21(3): 793-803.
    [98] Chuco Paucar B., Roel Ortiz J.L., and Collazos L K.S.,et al. Power operation optimization of photovoltaic stand alone system with variable loads using fuzzy voltage estimator and neural network controller [C], 2007 IEEE Lausanne POWERTECH Proceedings, 2007: 544-548.
    [99]贾要勤,曹秉刚,杨仲庆.风力发电的MPPT快速响应控制方法[J].太阳能学报,2004,25(2):171-176。
    [100]贾要勤,曹秉刚,杨仲庆.风力机模拟平台的MPPT快速响应控制方法[J].太阳能学报,2004,25(3):364-370。
    [101]赵强.独立运行小型风力发电系统负载跟踪和充放电集成控制[硕士论文] .呼和浩特:内蒙古工业大学.2006.
    [102]向恺.基于MATLAB的风力发电系统仿真研究[硕士论文] .保定:华北电力大学.2007.
    [103]齐发.离网型风力发电机组的控制技术研究[硕士论文].合肥:合肥工业大学.2005.
    [104]庄培灿.小型风力机系统的能量管理与运行控制[硕士论文].汕头:汕头大学.2005.
    [105]张军军,苏建徽,张国荣等.一种离网型风电机组控制器设计[J].电力电子技术,2007,41(2):88-89,104。
    [106] Higuchi Yoshikazu, Yamamura Naoki, and Ishida Muneaki, et al. An improvement of performance for small-scaled wind power generating system with permanent magnet type synchronous generator [C], Industrial Electronics Conference, VOL. 2, 2000: 1037-1043.
    [107] Esmaili R., Xu L., and Nichols D.K.. A new control method of permanent magnet generator for maximum power tracking in wind turbine application [C], 2005 IEEE Power Engineering Society General Meeting, VOL. 3, 2005: 2090-2095.
    [108] Arifujjaman Md., Iqbal M. Tariq, and Quaicoe John E., et al. Modeling and control of a small wind turbine [C], Canadian Conference on Electrical and Computer Engineering, VOL. 2005, 2005: 778-781.
    [109]潘文霞,陈允平.风电系统及其电压特性研究[J].河海大学学报,2001,29(1):88-92。
    [110] Yang Guoliang, Li Huiguang. Twi-sliding mode control for efficiency improvement in variable speed small wind turbine systems [C], Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, 2007: 3717-3723.
    [111] Calderaro V., Galdi V., and Piccolo A., et al. A fuzzy controller for maximum energy extraction from variable speed wind power generation systems [J], Electric Power Systems Research, VOL. 78, NO. 6, 2008: 1109-1118.
    [112] Krichen Lotfi, Francois Bruno, and Ouali Abderrazak. A fuzzy logic supervisor for active and reactive power control of a fixed speed wind energy conversion system [J], Electric Power Systems Research, 2008, 78(3): 418-424.8
    [113] Mirecki Adam, Roboam Xavier, and Richardeau Frédéric. Architecture complexity and energy efficiency of small wind turbines [J], IEEE Transactions on Industrial Electronics, 2007, 54(1):660-670.
    [114] Galdi V., Piccolo A., and Siano P.. Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi-Sugeno-Kang fuzzy model [J], Energy Conversion and Management, 2009, 50(2): 413-421.
    [115] Mohamed A.Z., Eskander M.N., and Ghali F.A.. Fuzzy logic control based maximum power tracking of a wind energy system [J], Renewable Energy, 2001, 23(2): 235-245.
    [116] Zeng Qingrong, Chang Liuchen, and Shao Riming. Fuzzy-logic-based maximum power point tracking strategy for PMSG variable-speed wind turbine generation systems [C], Canadian Conference on Electrical and Computer Engineering, 2008: 405-409.
    [117] Buasri P., Salameh Z.M.. Modeling of a distributed generation system using adaptive neuro fuzzy inference approach [C], 2007 IEEE Power Engineering Society General Meeting, 2007:1-9.
    [118] Hong Ying-Yi, Lu Shiue-Der, and Chiou Ching-Sheng. MPPT for PM wind generator using gradient approximation [J], Energy Conversion and Management, 2009, 50(1): 82-89.
    [119]程静.智能控制在风力发电机控制系统中应用的研究[硕士论文].乌鲁木齐:新疆大学.2004.
    [120]李玉忍,谢利理,齐蓉等.永磁同步电机无速度传感器调速系统设计[J].电机与控制学报, 2003,7(4):307-309。
    [121]王丽梅,郑建芬,郭庆鼎.基于载波注入的凸极永磁同步电动机无传感器控制[J].电机与控制学报,2005,9(4):333-336。
    [122] Hu Yu-wen, Tian Cun, and You Zhi-qing, et al. Direct Torque Control System and Sensorless Technique of Permanent Magnet Synchronous Motor [J], CHINESE JOURNAL OF AERONAUTICS, Vol.16, NO.2, 2003: 97-102.
    [123] Zhang Fengge, Shi Quanfu, and Wang Yuxin, et al. Simulation research on wind solar hybrid power system based on fuzzy-PID control [C], Proceeding of International Conference on Electrical Machines and Systems, 2007: 338-342.
    [124] Liang Ruey-Hsun, Liao Jian-Hao. A fuzzy-optimization approach for generation scheduling with wind and solar energy systems [J], IEEE Transactions on Power Systems, 2007, 22(4): 1665-1674.
    [125]李爽.风_光互补混合发电系统优化设计[硕士论文] .北京:中国科学院电工研究所.2001.
    [126]茆美琴.风光柴蓄复合发电及其智能控制系统研究[博士论文].合肥:合肥工业大学.2004.
    [127]彭文峰.风光电互补节能系统中的关键技术研究[硕士论文].长沙:国防科学技术大学.2005.
    [128]李忠实.风光互补发电控制系统不同负载对蓄电池控制电压的影响[硕士论文].天津:天津大学.2005.
    [129]尹环英.独立风光互补系统中智能交流负载管理的研究[硕士论文] .北京:中国科学院电工研究所.2005.
    [130]王宇.风光互补发电控制系统的研究与开发[硕士论文].天津:天津大学.2004.
    [131]钟勇.风光互补发电系统中蓄电池充放电控制器的研究[硕士论文].合肥:合肥工业大学.2006.
    [132]林闽.风光互补家用电源的研制[硕士论文].合肥:合肥工业大学.2007.
    [133]陈俊.风光混合独立供电系统的研究[硕士论文].呼和浩特:内蒙古工业大学.2006.
    [134] Diaf S., Diaf D., and Belhamel M., et al. A methodology for optimal sizing of autonomous hybrid PV/wind system [J]. Energy Policy, 2007, 35(11): 5708-5718.
    [135] Yang Hongxing, Lu Lin, and Zhou Wei. A novel optimization sizing model for hybrid solar-wind power generation system [J]. Solar Energy, 2007, 81(1): 76-84.
    [136] Yang Hongxing, Lu Lin, and Fang Zhaohong, et al. Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm [J]. Solar Energy, 2008, 82(4):354-367
    [137] A. Mills, S. Al-Hallaj. Simulation of hydrogen-based hybrid systems using Hybrid2 [J]. International Journal of Hydrogen Energy, 2004, 29(10): 991-999.
    [138] Iqbal, M.T.. Pre-feasibility study of a wind-diesel system for St. Brendan's, Newfoundland [J], Wind Engineering, 2003, 27(1): 39-51.
    [139] Rehman S. , El-Amin I.M. , and Ahmad F. , et al. Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant [J]. Renewable and Sustainable Energy Reviews, 2007, 11(4):635-653.
    [140] Y. Himri, A. Boudghene Stambouli, and B. Draoui, et al. Techno-economical study of hybrid power system for a remote village in Algeria [J]. Energy, 2008, 33(7):1128-1136.
    [141] Eyad S. Hrayshat. Techno-economic analysis of autonomous hybrid photovoltaic-diesel-battery system [J]. Energy for Sustainable Development, 2009, 13(3):143-150.
    [142]陈俊.风光混合独立供电系统的研究[硕士论文].呼和浩特:内蒙古工业大学.2006.
    [143]谈英姿,沈炯,吕震中.免疫PID控制器在汽温控制系统中的应用研究[J].电机工程学报,2002,22(10):148-152.
    [144]过润秋,王小红.基于免疫反馈机理的温度控制研究[J].西安电子科技大学学报,2003,30(6):718-721.
    [145]韦巍,张国宏.人工免疫系统及其在控制系统中的应用[J].控制理论与应用,2002,19(2):157-160.
    [146]蒋世忠,杨天奇.基于免疫遗传算法的水机调节参数优化与仿真[J].计算机仿真,2004,21(11):200-202.
    [147]张德干,郝先臣,赵海.基于仿真的水轮发电机关键数学模型的改进与可靠性研究[J].系统仿真学报,2002,14(8):1104-1108.
    [148]刘立群,孙志毅.免疫响应反馈理论在水轮机调节系统中的应用[J].系统仿真学报,2007,19(7):1579-1582.
    [149] Jie Wu, Jiong Shen, and Yi-Guo Li. The design of the superheated-steam temperature immune control system and its bibo stability analysis [J], Cybernetics and Systems, 2009, 40(4): 310-325.
    [150] Zhang Ya-Jing. Immune feedback control algorithm for information detection [C], IEEE International Conference on Automation and Logistics, 2008: 1829-1833.
    [151]尹桂梁.基于人工免疫算法的分布式发电系统孤岛检测研究[博士论文].秦皇岛:燕山大学.2006.
    [152] Xie Fang-wei, Hou You-fu, and Xu Zhi-peng, et al. Fuzzy-immune control strategy of a hydro-viscous soft start device of a belt conveyor [J], Mining Science and Technology (China), 2009, 19(4): 544-548.
    [153] Zhang Yue, Han Pu, and Wang Dong-Feng, et al. Application of grey self-tuning fuzzy immune PID control for main steam temperature control system [C], Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, VOL. 1, 2009: 588-591.
    [154] Luo Yunlin, Gao Jinglong. The application and study of fizzy immune PID in DCS fight simulation turntable [C], 2009 Chinese Control and Decision Conference, 2009: 3323-3326.
    [155]司徒莹,田联房,毛宗源. MIMO系统非线性模糊免疫PID的设计与优化[J].计算机仿真,2009,26(4):204-206,323.
    [156]王爽心,姜妍,李亚光.汽轮机调速系统模糊免疫PID控制的混沌优化策略[J].系统仿真学报,2006,18(6):1729-1732.
    [157]王爽心,姜妍,李亚光.基于混合混沌优化策略的汽轮机调速系统模糊免疫PID控制[J].中国电机工程学报,2006,26(11):70-74.
    [158]王焱.模糊免疫PID控制器的设计与仿真[J].计算机仿真,2002,19(2):67-69.
    [159]葛智强,屈宝存,李强.模糊免疫P ID的Sm ith预估主汽温控制系统[J].计算机仿真,2006,23(6):233-235,262.
    [160]赵君,仇林庆,关硕.模糊免疫PID在主汽温控制系统中的应用[J].东北电力大学学报,2006,26(4):75-78.
    [161]莫宏伟.人工免疫系统原理与应用[M]。哈尔滨:哈尔滨工业大学出版社,2003。
    [162]沈建华,杨艳琴,翟骁曙. MSP430系列16位超低功耗单片机原理与应用[M]。北京:清华大学出版社,2004。
    [163]胡大可. MSP430系列单片机C语言程序设计与开发[M]。北京:北京航空航天大学出版社,2003。
    [164]魏小龙. MSP430系列单片机接口技术及系统设计实例[M]。北京:北京航空航天大学出版社,2002。
    [165]叶秋香.光伏电池最大功率跟踪器的模糊控制及其应用[硕士论文].上海:东华大学.2006.
    [166]朱腾.基于MPPT的光伏电池电力应用系统的研究与设计[硕士论文].上海:东华大学.2005.
    [167] Roger Gules, Juliano De Pellegrin Pacheco, and Hélio Le?es Hey, et al. A Maximum Power Point Tracking System with Parallel Connection for PV Stand-Alone Applications [J], IEEE Transactions on industrial electronics, 2008, 55(7): 2674-2683.
    [168]于永权,曾碧.单片机模糊逻辑控制[M]。北京:北京航空航天大学出版社,1995。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700