用户名: 密码: 验证码:
建筑集成光伏系统的能量变换与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对能源危机与环境问题的日益关注,以清洁、可再生的太阳能为能源的建筑集成光伏(BIPV)系统的开发和应用吸引了世界各国广泛的兴趣。BIPV将光伏发电系统与建筑物有机集成为一体,能有效降低光伏发电系统成本,缩短能量回收期,提高建筑物能效,是解决世界能源与环境问题,实现可持续发展的关键策略之一。本文从电力电子学角度对BIPV的能量变换与控制系统的基本分析理论和设计方法进行了研究,包括BIPV系统的能量变换结构、变换拓扑、控制技术和能量管理。
     在BIPV系统中,光伏组件作为具有发电能力的表面建筑材料,通常有不同的安装方向和角度,且易受到周围建筑物等形成的局部阴影的影响,基于常规的集中式、串式和多串式等能量变换结构的系统存在能量转换效率低、抗阴影和光伏组件电气参数失配能力差等问题难于满足高性能BIPV的需求。为了解决上述问题,本文提出了一种由光伏直流建筑模块和集中逆变模块构成的直流模块式BIPV系统,建立了具有不同能量变换结构的BIPV系统的能效计算与评估模型,定量评估了直流模块式BIPV系统与已有的系统在局部阴影和光伏组件电气参数失配条件下的能量转换效率,比较了各种系统的综合性能。
     光伏直流建筑模块是将光伏组件、表面建筑材料和具有最大功率点跟踪(MPPT)及电力线载波通信功能的高增益DC-DC变换器集成为一体构成的新型光伏建筑材料,是直流模块式BIPV系统的核心。本文深入研究了满足光伏直流建筑模块集成需求的DC-DC变换拓扑的选择、设计和分析方法,针对光伏直流建筑模块在建筑环境应用中面临的局部阴影问题,提出了一种基于光伏组件有源P-V特性校正(APVC)的主动最大功率点跟踪(AMPPT)技术,将多极值点条件下光伏组件P-V特性校正为单极值点特性,利用常规的MPPT算法即可获得优异的跟踪性能,并给出了导纳增量法关键参数的工程化设计方法。
     在直流模块式BIPV系统的集中逆变模块中存在对地漏电流、低频纹波电流以及光伏直流建筑模块与集中逆变模块的协调控制三个关键问题。本文提出了一种能有效抑制漏电流的单相混合桥式三电平逆变拓扑及其调制策略,给出了能满足并网/独立双模式运行要求的输出滤波器的设计方法;建立了低频纹波电流在直流模块式BIPV系统中的传输模型,定量分析了其对光伏组件利用率的影响,并从抑制低频纹波电流,提高MPPT效率角度给出了集中逆变模块输入滤波电容的设计方法;揭示了直流模块式BIPV系统协调控制的本质,建立了直流母线电压控制的精确模型,研究了系统的协调控制策略。
     为了满足部分建筑负荷对供电质量和可靠性的要求,将直流模块式BIPV系统的概念扩展为可高效整合风力机、燃料电池和蓄电池等其它发电和储能单元的多能源复合型BIPV系统,提出了三种能满足高质量可靠供电要求的多能源复合型BIPV系统的能量变换结构,分析了系统的能量流及独立运行模式下的供需能量平衡问题,讨论了多能源复合型BIPV系统能量管理的定义、系统构成及目标,分析了系统能量平衡控制的基本原理及并网和独立运行模式下能量管理的基本策略,研究了多能源复合型BIPV系统能量管理建模方法,分析了系统的时域稳定性。
Growing concerns about energy crisis and environmental issues have attracted a great deal of interest in the development and application of the building integrated photovoltaic (BIPV) system using the nonpolluting renewable solar energy. The BIPV, as an important policy to mitigate energy and environmental issues and implement sustainable development, integrates organically photovoltaic power system into buildings, and can reduce the investment costs, shorten energy pay-back time, and improve the energy efficiency of buildings. The basic analysis theory and design method of energy conversion and control for building integrated photovoltaic system are investigated from the sight on power electronics, including energy conversion configuration, converter topology, control and energy management of the BIPV system.
     The photovoltaic modules acting as facade elements with generating electricity function in the BIPV system generally have different installation orientations and angles, moreover these modules are easy to be affected by partial shadows created by the surrounding buildings. The conventional energy conversion configurations based on centralized, string and multi-string technology have the problem of low energy efficiency and bad performance under the partial shading and mismatch condition, therefore they are difficulty to sever as high performance BIPV system. In order to improve these problem, the dc-module-based BIPV system consisting of photovoltaic dc building module and centralized inverter module is proposed in this paper. The calculation and evaluation models of energy efficiency for the BIPV systems with different energy conversion configurations are set up firstly, and then the energy efficiencies of these system is evaluated quantificationally under different partial shading and mismatch conditions, finally their comprehensive performances are compared.
     Photovoltaic dc building module as the core of the dc-module-based BIPV system integrates photovoltaic module, facade element and high performance dc-dc converter with the functions of maximum power point tracking (MPPT) and power line carrier communication into a whole constituting a novel photovoltaic building materials. The selection, design and analysis methods of the suitable dc-dc converter are researched. An active maximum power point tracking (AMPPT) technique based on the active P-V characteristic correction (APVC) of photovoltaic module is proposed. The proposed technique corrects the P-V characteristic with multi-maximum point to a single maximum point characteristic firstly, secondly the conventional MPPT algorithm can be used to achieve excellent tracking performance, finally an engineering design method of the key parameters of incremental conductance algorithm is presented.
     The leakage current suppression, low frequency ripple current suppression and the coordinate control of the photovoltaic dc building modules and centralized inverter module are the important issues in the centralized inverter module of the dc-module-base BIPV system. A single-phase hybrid bridge three-level inverter topology and its modulating strategy are proposed to suppress the leakage current in this paper, and its output filter design method is given to satisfy the need of the double-mode inverter with grid-connection and stand-alone. The propagation model of the low frequency ripple current in dc-module-based BIPV system is derived, and its effect to the utility efficiency of the photovoltaic module is analyzed. The design method of the input filter capacitor considering to suppress low frequency ripple current and improve the photovoltaic module utility efficiency is given. At first, the essence of coordinate control for the dc-module-based BIPV system is opened out, the second the accurate model for the dc bus voltage control is established, at last its control strategy is investigated.
     In order to satisfy the need of some building loads on the power quality and reliability, the concept of dc-module-base BIPV system is extended to multi-energy hybrid BIPV system, which can integrate effectively the other generation and storage unit based on wind turbine, fuel cell, battery and so on. Three energy conversion configurations are presented to response the demand for some building loads, then the problems of energy flow and energy balance under stand alone operation mode are analyzed. The definition, constitution and object of energy management for multi-energy hybrid BIPV system are discussed. The basic principle of energy balance control and energy management strategy under the grid-connection and stand-alone mode are analyzed firstly, and then the modeling method of energy management for multi-energy hybrid BIPV system is researched, finally its time-domain stability analysis is performed.
引文
[1]世界能源展望2006 -综述和结论.国际能源署, 2006.
    [2] World Energy Outlook 2007 - Executive Summary. International Energy Agency, 2007.
    [3]江泽民.对中国能源问题的思考.上海交通大学学报. 2008, 42(3): 345-359.
    [4]能源技术展望2006 -主要内容与政策建议.国际能源署, 2006.
    [5]孙前元.建筑节能刻不容缓.四川建筑. 2007, 27(1): 1-1.
    [6] S.Rahman, B.D.Kroposki. Photovoltaics and demand side management performance analysis at a university building. IEEE Transactions on Energy Conversion. 1993, 8(3): 491-498.
    [7] Dinwoodie, T. L., Shugar, D. S. Optimizing roof-integrated photovoltaics a case study of the PowerGuard roofing tile. in: IEEE Photovoltaic Specialists Conference: vol. 1, 1994. 1004-1007.
    [8] M.Posnansky, S.GnosM, S.Coonen. The importance of hybrid PV-building integration. in: IEEE Photovoltaic Specialists Conference: vol. 1, 1994. 998-1003.
    [9] Yoshino, M., Nakada, N., Mori, T., Yamagishi, K., et al. Photovoltaic modules integrated with a metal curtain wall. in: IEEE Photovoltaic Specialists Conference: vol. 1, 1994. 969-972.
    [10] Bzura, J. J. Photovoltaic research and demonstration activities at New England Electric. IEEE Transactions on Energy Conversion. 1995, 10(1): 169-174.
    [11] Strong, S. J. Power windows building-integrated photovoltaics. IEEE Spectrum. 1996, 10: 49-55.
    [12] Strong, S. J. World overview of building-integrated photovoltaics. in: IEEE Photovoltaic Specialists Conference. Washington D.C.: 1996. 1197-1202.
    [13] Bower, W., C.Wiles, J. Photovoltaic industry-proposed changes for the 1999 National Electrical Code for PV applications. in: IEEE Photovoltaic Specialists Conference: 1997. 1237-1242.
    [14] S.Shaari, N.Bowman. Photovoltaics in buildings- A case study for rural England and Malaysia. Renewable Enegry. 1998: 558-561.
    [15] Schoen, T., Prasad, D., Toggweiler, P., Eiffert-Taylor, P., et al. Status Report of Task VII of The IEA Program: PV in Buildings. Renewable Enegry. 1998, 15: 251-256.
    [16] Taylor, R. W. Building opportunities in the US for PV (PV bonus) a progress report. in: IEEE First World Conference on Photovoltaic Energy Conversion: vol. 1, 1999. 781 - 783
    [17] Benemann, J., Chehab, O., Schaar-Gabriel, E. Building-integrated PV modules. Solar Energy Materials&Solar Cells. 2000, 67: 345-354.
    [18] G.C.Bakosa, M.Soursosb, N.F.Tsagas. Technoeconomic assessment of a building-integrated PV system for electrical energy saving in residential sector. Enegry and Bulidings. 2003, 35(2003): 758-762.
    [19] Martin, G. Renewable energy gets the green light in Chicago. IEEE Power Energy Magazine. 2003: 34-39.
    [20] M.Castro, A.Delgado, F.J.Argul, A.Colmenar, et al. Grid-connected PV buildings- analysis of future scenarios with an example of Southern Spain. Solar Energy. 2004: 85-96.
    [21] Zahedi, A. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems. Renewable Enegry. 2006, 31: 711-718.
    [22]刘京华,庄向东,景丹阳.太阳光伏与建筑集成化及发展前景(综述).河北省科学院学报. 2000, 17(1): 62-64.
    [23]由世俊,娄承芝,华君等.建筑物用光伏集成系统在中国应用的前景.太阳能学报. 2000, 21(4): 434-438.
    [24]李文婷.建筑一体化光伏并网发电的应用和前景.青海科技. 2004, 3: 25-26.
    [25]杨昭宇,林娃.建筑太阳能系统的材料及构件形式选择.国外建材科技. 2006, 26(5): 47-49.
    [26]北京计科电可再生能源技术开发中心.中国并网光伏发展的现状和建议.世界自然基金会, 2007.
    [27]蔡宣三.太阳能光伏发电发展现状与趋势.电力电子. 2007, 2: 3-6.
    [28] Pavan, A. M., Castellan, S., Quaia, S., Roitti, S., et al. Power Electronic Conditioning Systems for Industrial Photovoltaic Fields: Centralized or String Inverters? in: ICCEP '07: vol. 1, 2007. 208-214
    [29] Juyuois, F., Boulanger, D. P., Malbranche, P. French guidelines for PV grid connection. in: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion: vol. 3, 2003. 2648-2651.
    [30]汪海宁,苏建徽,丁明等.光伏并网功率调节系统.中国电机工程学报. 2007, 27(2): 75-79.
    [31] Huang, Y., Shen, M., Peng, F. Z., Wang, J. Z-Source Inverter for Residential Photovoltaic Systems. IEEE Transactions on Power Electronics. 2006, 21(6): 1776-1782.
    [32] Peng, F. Z. Z-source inverter. Ieee Transactions on Industry Applications. 2003, 39(2): 504-510.
    [33] Peng, F. Z., Shen, M., Qian, Z. Maximum boost control of the Z-source inverter. IEEE Transactions on Power Electronic. 2005, 20(4): 833-838.
    [34] Hemnann, U., Langer, H. G. Low Cost DC to AC Converter for Photovoltaic Power Conversion in Residential Applications. in: IEEE PESC'93: 1993. 588-594.
    [35] Chen, Y.-M., Liu, Y.-C., Wu, F.-Y. Multiinput converter with power factor correction, maximum power point tracking, and ripple-free input currents. IEEE Transactions on Power Electronics. 2004, 19(3): 631-639.
    [36] S.Saha, V.P.Sundarsingh. Novel grid-connected photovoltaic inverter. IEE Proc.-Gener. Trunsm. Distrib. 1996, 143(2): 219-224.
    [37] Meinhardt, M., Cramer, G. Multi-string-converter: The next step in evolution of string-converter technology. in: EPE'01: vol. 1, 2001. 1-5.
    [38] Meinhardt, M., Cramer, G., Burger, B., Zacharias, P. Multi-string-converter with reduced specific costs and enhanced functionality. Solar Energy. 2000, 69: 217-227.
    [39] Sunny Boy 5000TL Multi-String - Operating Instructions. in: www.sma.de, SMA, 2005. .
    [40] Xue, Y., Chang, L., Kj?r, S. B., Bordonau, J., et al. Topologies of Single-Phase Inverters for Small Distributed Power Generators: An Overview. IEEE Transactions on Power Electronics. 2004, 19(5): 1305-1314.
    [41] Kjaer, S. B., Pedersen, J. K., Blaabjerg, F. A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules. IEEE Transactions on Industry Applications. 2005, 41(5): 1292-1306.
    [42] Walker, G. R., Pierce, J. C. PhotoVoltaic DC-DC Module Integrated Converter for Novel Cascaded and Bypass Grid Connection Topologies - Design and Optimisation. in: IEEE PESC'06: 2006. 1-7.
    [43] Walker, G. R., Xue, J., Sernia, P. PV string per-module maximum power point enabling converters. in: AUPEC'03: vol. 1, 2003. 1-6.
    [44] Shimizu, T., Hashimoto, O., Kimura, G. A Novel High-Performance Utility- Interactive Photovoltaic Inverter System. IEEE Transactions on Power Electronics. 2003, 18(2): 704-711.
    [45] Shimizu, T., Hirakata, M., Kamezawa, T., Watanabe, H. Generation control circuit for photovoltaic modules. IEEE Transactions on Power Electronics. 2001, 16(3): 293-300.
    [46] Walker, G. R., Sernia, P. C. Cascaded DC-DC Converter Connection of Photovoltaic Modules. IEEE Transactions on Power Electronics. 2004, 19(4): 1130-1139.
    [47] Román, E., Alonso, R., Iba?ez, P., Elorduizapatarietxe, S., et al. Intelligent PV Module for Grid-Connected PV Systems. IEEE Transactions on Industrial Electronics. 2006, 53(4): 1066-1073.
    [48] Bower, W. The AC PV Building Block-Ultimate Plug-n-Play That Brings Photovoltaics Directly to the Customer. in: NCPV and Solar Program Review Meeting: 2003. 311-314.
    [49] IEA Task 7 - 7 Report: Innovative Electrical Concepts. International Energy Agency, 2001.
    [50] Jantsch, M., Verhoeve, C. W. G. AC PV module inverters with full sine wave burst operation mode for improved efficiency of grid connected systems at low irradiance. in: the 14th European Photovoltaic Solar Energy Conference: vol. 1, 1997. 1-4.
    [51] Kjaer, S. B. Design and Control of an Inverter for Photovoltaic Applications: [PhD thesis]. Institute of Energy Technology, AAlborg University, 2005.
    [52] Haan, S. W. H. d., Oldenkamp, H., Frumau, C. F. A., Bonin, W. Development of a 100W resonant inverter for ac-modules. in: the 12th European Photovoltaic Solar Energy Conference: vol. 1, 1994. 1-4.
    [53] Li, Q. Development of High frequency Power Conversion Technologies for Grid Interactive PV Systems: [M. Eng thesis]. James Goldston Faculty of Engineering, Central Queensland University, 2002.
    [54] Gridfit 250 datasheet. in. www.dde.nl: Exendis, 2004.
    [55] Li, Q. High Frequency Transformer Linked Converters for Photovoltaic Applications: [PhD thesis]. Faculty of Sciences, Engineering and Health, Central Queensland University, 2006.
    [56] Li, Q., Wolfs, P. Recent Development in the Topologies for Photovoltaic Module Integrated Converters. in: IEEE PESC'06: 2006. 1-8.
    [57] Haan, S. W. H. d., Oldenkamp, H., Wildenbeest, E. J. Test results of a 130W AC module: a modular solar AC power station. in: IEEE Photovoltaic Specialists Conference: vol. 1, 1994. 925-928.
    [58] Islam, S., Woyte, A., Belmans, R., Heskes, P., et al. Cost effective second generation AC-modules: Development and testing aspects. Energy. 2006, 31: 1897-1920.
    [59] Islama, S., Woyteb, A., Belmansa, R., Heskesc, P. J. M., et al. Investigating performance, reliability and safety parameters of photovoltaic module inverter: Test results and compliances with the standards. Renewable Enegry. 2006, 31: 1157-1181.
    [60] Wuest, M., Toggweiler, P. Single cell converter system (SCCS). in: IEEE First World Conference on Photovoltaic Energy Conversion: vol. 1, 1994. 813-815
    [61] Riatsch, J., Stemmler, H., Schmidt, R. Single cell module integrated converter system for photovoltaic energy generation. in: EPE'97 Trondheim, Norway: vol. 1, 1997. 71-77.
    [62] Wilk, H., Ruoss, D., Toggweiler, P. Innovative electrical concepts. in: www.iea-pvps.org, IEA PVPS 7-07, 2002. .
    [63] Masoum, M. A. S., Dehbonei, H., Fuchs, E. F. Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking. IEEE Transactions on Energy Conversion. 2002, 17(4): 514-522.
    [64] Noh, H.-J., Lee, D.-Y., Hyun, D.-S. An improved MPPT converter with current compensation method for small scaled PV-applications. in: IEEE IECON'02: 2002. 1113-1118.
    [65] Bekker, B., Beukes, H. J. Finding an optimal PV panel maximum power point tracking method. in: the 7th AFRICON Conf: 2004. 1125-1129.
    [66] Noguchi, T., Togashi, S., Nakamoto, R. Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation system. in: IEEE Int. Symp. Ind. Electron: 2000. 157-162.
    [67] Mutoh, N., Matuo, T., Okada, K., Sakai, M. Prediction-data-basedmaximum-power-point-tracking method for photovoltaic power generation systems. in: IEEE PESC'02: 2002. 1484-1494.
    [68] Yuvarajan, S., Xu, S. Photo-voltaic power converter with a simple maximum-power- point-tracker. in: Int. Symp. Circuits Syst.: 2003. 399-402.
    [69] Koutroulis, E., Kalaitzakis, K., Voulgaris, N. C. Development of a microcontroller-based, photovoltaic maximum power point tracking control system. IEEE Transactions on Power Electronics. 2001, 16(1): 46-54.
    [70] M.Veerachary, T.Senjyu, K.Uezato. Maximum power point tracking control of IDB converter supplied PV system. IEE Proc.-Electr. Power Appl. 2001, 148(6): 494-502.
    [71] Xiao, W., Dunford, W. G. A modified adaptive hill climbing MPPT method for photovoltaic power systems. in: IEEE PESC'04: 2004. 1957-1963.
    [72] Wasynezuk. Dynamic Behavior of A Class of Photovoltaic Power Systems. IEEE Transactions on Power Apparatus and Systems. 1983, PAS-102(9): 3031-3037.
    [73] N.Kasa, T.lida, H.lwamoto. Maximum power point tracking with capacitor identifier for photovoltaic power system. IEE Proc.-Electr. Power Appl. 2000, 147(6): 497-502.
    [74] Jain, S., Agarwal, V. A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems. IEEE Power Electronics Letters. 2004, 2(1): 16-19.
    [75] Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M. Optimization of perturb and observe maximum power point tracking method. IEEE Transactions on Power Electronics. 2005, 20(4): 963-973.
    [76] K.H.Hussein, I.Muta, T.Hoshino, M.Osakada. Maximum photovoltaic power tracking- an algorithm for rapidly changing atmospheric conditions. IEE Proc -Gener.Transrn.Distrib. 1995, 142(1): 59-64.
    [77] Kuo, Y.-C., Liang, T.-J., Chen, J.-F. Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System. IEEE Transactions on Industrial Electronics. 2001, 48(3): 594-601.
    [78] Koizumi, H., Kurokawa, K. A Novel Maximum Power Point Tracking Method for PV Module Integrated Converter. in: IEEE PESC'05: 2005. 2081-2086.
    [79] Lim, Y. H., Hamill, D. C. Simple maximum power point tracker for photovoltaic arrays. IEEE Power Electronics Letters. 2000, 36(11): 997-999.
    [80] Veerachary, M., Senjyu, T., Uezato, K. Neural-Network-Based Maximum-Power- Point Tracking of Coupled-Inductor Interleaved-Boost-Converter-Supplied PV System Using Fuzzy Controller. IEEE Transactions on Industrial Electronics. 2003, 50(4): 749-758.
    [81] Veerachary, M., Senjyu, T., Uezato, K. Feedforward maximum power point tracking of PV systems using fuzzy controller. IEEE Transactions on Aerospace and Electronic Systems. 2002, 38(3): 969-981.
    [82] Salas, V., Olias, E., Barrado, A., La′zaro, A. Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar EnergyMaterials&Solar Cells. 2006, 90: 1555-1578.
    [83] Esram, T., Chapman, P. L. Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. IEEE Transactions on Energy Conversion. 2007, 22(2): 439-449.
    [84] Bodur, M., Ermis, M. Maximum power point tracking for low power photovoltaic solar panels. in: the 7th Mediterranean Electrotechnical Conference: 1994. 758-761.
    [85] Noguchi, T., Togashi, S., Nakamoto, R. Short-current pulse-based maximum-power- point tracking method for multiple photovoltaic-and-converter module system. IEEE Transactions on Industrial Electronics. 2002, 49(1): 217-223.
    [86] Kobayashi, K., Takano, I., Sawada, Y. A Study on a Two Stage Maximum Power Point Tracking Control of a Photovoltaic System under Partially Shaded Insolation Conditions. in: Proc. IEEE Power Engineering Society General Meeting vol. 4, 2003. 2612-2617.
    [87] Wu, W., Pongratananukul, N., Qiu, W., Rustom, K., et al. DSP-based Multiple Peak Power Tracking for Expandable Power System. in: IEEE APEC'03: vol. 1, 2003. 525-530.
    [88] IEEE Std 1547-2003: IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems. IEEE Standards Coordinating Committee 21. 2003.
    [89] IEEE Std 929-2000: IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems. IEEE Standards Coordinating Committee 21. 2000.
    [90] Prodanovic, M., Green, T. C. Control and filter design of three-phase inverters for high power quality grid connection. IEEE Transactions on Power Electronics. 2003, 18(1): 373-380.
    [91] Bolsens, B., Brabandere, K. D., Keybus, J. V. d., Driesen, J., et al. Model-based generation of low distortion currents in grid-coupled PWM-inverters using an LCL output filter. IEEE Transactions on Power Electronics. 2006, 21(4): 1032-1040.
    [92] K.H.Ahmed, S.J.Finney, B.W.Williams. Passive Filter Design for Three-Phase Inverter Interfacing in Distributed Generation. in: Compatibility in Power Electronics: 2007. 1-9.
    [93] Kim, R.-Y. R., Choi, S.-Y., suh, I.-Y. Instantaneous control of average power for grid tie inverter using single phase D-Q rotating frame with all pass filter. in: IEEE IECON'04: vol. 1, 2004. 274-279.
    [94]赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究.中国电机工程学报. 2007, 27(16): 60-64.
    [95] Roshan, A., Burgos, R., Baisden, A. C., Wang, F., et al. A D-Q Frame Controller for a Full-Bridge Single Phase Inverter Used in Small Distributed Power Generation Systems. in: IEEE APEC'07: 2007. 641-647.
    [96] Bojoi, R. I., Griva, G., Bostan, V., Guerriero, M., et al. Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame. IEEE Transactions on Power Electronics. 2005, 20(6): 1402-1411.
    [97]郭小强,邬伟扬,赵清林.新型并网逆变器控制策略比较和数字实现.电工技术学报. 2007, 22(5): 111-116.
    [98] Liang, J., Green, T. C., Weiss, G., Zhong, Q.-C. Evaluation of repetitive control for power quality improvement of distributed generation. in: IEEE PESC'02: vol. 4, 2002. 1803-1808
    [99] Zhong, Q.-C., T.Green, Liang, J., G.Weiss. Robust repetitive control of grid-connected DC-AC converters. in: Proceedings of the 41st IEEE Conference on Decision and Control vol. 3, 2002. 2468-2473
    [100] Shicheng, Z., Peizhen, W., Lusheng, G. Study on Improving Output Current Waveform of Photovoltaic Grid-Connected System. in: IEEE ICIEA'06: 2006. 1-5.
    [101] Kojabadi, H. M., Yu, B., Gadoura, I. A., Chang, L., et al. A novel DSP-based current-controlled PWM strategy for single phase grid connected inverters. IEEE Transactions on Power Electronics. 2006, 21(4): 985-993.
    [102] Bode, G. H., Loh, P. C., Newman, M. J., Holmes, D. G. An improved robust predictive current regulation algorithm. in: IEEE PEDS'03: vol. 2, 2003. 1058-1063.
    [103] Premrudeepreechacharn, S., Poapornsawan, T. Fuzzy logic control of predictive current control for grid connected single phase inverter. in: IEEE Photovoltaic Specialists Conference: 2000. 1715-1718.
    [104] Bose, B. K. An adaptive hysteresis–Band current control technique of a voltage-fed PWM inverter for machine drive system. IEEE Transactions on Industrial Electronics. 1990, 37(5): 402-408.
    [105] Yao, Q., Holmes, D. G. A simple novel method for variable-Hysteresis-band current control of a three phase inverter with constant switching frequency. in: IEEE Industry Applications Meeting: 1993. 1122-1129.
    [106] Pan, C. T., Huang, Y. S., Jong, T. L. A constantly sampled current controller with switch status dependent inner bound. IEEE Transactions on Industrial Electronics. 2003, 50(3): 528-535.
    [107]范小波,张代润.光伏并网逆变器数字滞环控制的研究.电力电子技术. 2006, 40(6): 46-48.
    [108]顾和荣,杨子龙,邬伟扬.并网逆变器输出电流滞环跟踪控制技术研究.中国电机工程学报. 2006, 26(9): 108-112.
    [109] Femia, N., Granozio, D., Petrone, G., Spagnuol, G., et al. Optimized One-Cycle Control in Photovoltaic Grid Connected Applications IEEE Transactions on Aerospace and Electronic Systems. 2006, 42(3): 954-972.
    [110] Heskes, P. J. M., Enslin, J. H. R. Power quality behavior of different photovoltaic inverter topologies. in: PCIM'03. Nuremberg, Germany: vol. 1, 2003. 1-6.
    [111] Liserre, M., Teodorescu, R., Blaabjerg, F. Stability of grid-connected PV inverters with large grid impedance variation. in: IEEE PESC'04 vol. 6, 2004. 4773-4779
    [112] Liserre, M., Teodorescu, R., Blaabjerg, F. Stability of Photovoltaic and Wind Turbine Grid-Connected Inverters for a Large Set of Grid Impedance Values. IEEETransactions on Power Electronics. 2006, 21(1): 263-272.
    [113] Enslin, J. H. R., Heskes, P. J. M. Harmonic interaction between a large number of distributed power inverters and the distribution network. IEEE Transactions on Power Electronics. 2004, 19(6): 1586-1593.
    [114] G.A.Smith, P.A.Onions, D.G.Infield. Predicting islanding operation of grid connected PV inverters. IEE Proc.-Electr. Power Appl. 2000, 147(1): 1-6.
    [115] Hung, G.-K., Chang, C.-C., Chen, C.-L. Automatic phase-shift method for islanding detection of grid-connected photovoltaic inverters. IEEE Transactions on Energy Conversion. 2003, 18(1): 169-173.
    [116] Jeraputra, C., Enjeti, P. N. Development of a robust anti-islanding algorithm for utility interconnection of distributed fuel cell powered generation. IEEE Transactions on Power Electronics. 2004, 19(5): 1163-1170.
    [117] Timbus, A. V., Teodorescu, R., Blaabjerg, F., Borup, U. Online grid measurement and ENS detection for PV inverter running on highly inductive grid. IEEE Power Electronics Letters. 2004, 2(3): 77-82.
    [118] Asiminoaei, L., Teodorescu, R., Blaabjerg, F., Borup, U. Implementation and Test of an Online Embedded Grid Impedance Estimation Technique for PV Inverters. IEEE Transactions on Industrial Electronics. 2005, 52(4): 1136-1144.
    [119] Asiminoaei, L., Teodorescu, R., Blaabjerg, F., Borup, U. A Digital Controlled PV-Inverter With Grid Impedance Estimation for ENS Detection. IEEE Transactions on Power Electronics. 2005, 20(6): 1480-1490.
    [120] J.B.Jeong, H.J.Kim. Active anti-islanding method for pv system using reactive power control. Electronics Letters. 2006, 42(17): 1-2.
    [121] Tirumala, R., Mohan, N., Henze, C. Seamless transfer of grid-connected PWM inverters between utility-interactive and stand-alone modes. in: IEEE APEC'02 vol. 2, 2002. 1081-1086.
    [122] Tirumala, R. K. Inverters for distributed energy systems with a seamless transfer between utility interactive and stand alone modes: [PhD Thesis]. The University of Minnesota, 2002.
    [123] Yao, Z., Wang, Z., Xiao, L., Yan, Y. A novel control strategy for grid-interactive inverter in grid-connected and stand-alone modes. in: IEEE APEC '06: 2006. 779-783.
    [124]姚志垒,赞,王.,岚,肖.,严仰光.一种新的逆变器并网控制策略的研究.中国电机工程学报. 2006, 26(18): 61-64.
    [125]王赞,肖岚,姚志垒,严仰光.并网独立双模式控制高性能逆变器设计与实现.中国电机工程学报. 2007, 27(1): 54-59.
    [126] Muselli, M., Notton, G., Louche, A. Design of Hybrid-photovoltaic Power Generator,with Optimization of Energy Management. Solar Energy. 1999, 65(3): 143-157.
    [127] Duryea, S., Islam, S., Lawrance, W. A battery management system for stand-alonephotovoltaic energy systems. IEEE Industry Applications Magazine. 2001: 67-72.
    [128] Newnham, R. H., Baldsing, W. G. A. Advanced management strategies for remote-area power-supply systems. Journal of Power Sources. 2004, 133: 141-146.
    [129] Thanaa, F., El-Shatter, Eskander, M. N., El-Hagry, M. T. Energy flow and management of a hybrid wind/PV/fuel cell generation system. Energy Conversion and Management. 2006, 47: 1264-1280.
    [130] Lee, D.-J., Wang, L. Small-Signal Stability Analysis of an Autonomous Hybrid Renewable Energy Power Generation/Energy Storage System Part I: Time-Domain Simulations. IEEE Transactions on Energy Conversion. 2008, 23(1): 311-320.
    [131] Chaabene, M., Ammar, M. B., Elhajjaji, A. Fuzzy approach for optimal energy-management of a domestic photovoltaic panel. Applied Energy. 2007, 84: 992-1001.
    [132] Marwali, M. K. C., Ma, H., Shahidehpour, S. M., Abdul-Rahma, K. H. Short Term Generation Scheduling in Photovoltaic-Utility Grid With Battery Storage. IEEE Transactions on Power Systems. 1998, 13(3): 1057-1062.
    [133] Lu, B., Shahidehpour, M. Short-term scheduling of battery in a grid-connected PV-battery system. IEEE Transactions on Power Systems. 2005, 20(2): 1053-1061.
    [134] Chakraborty, S., Weiss, M. D., Sim?es, M. G. Distributed Intelligent Energy Management System for a Single-Phase High-Frequency AC Microgrid. IEEE Transactions on Industrial Electronics. 2007, 54(1): 97-109.
    [135]段善旭.模块化逆变电源全数字化并联控制技术研究: [博士学位论文].华中理工大学, 1999.
    [136]林新春. UPS无互联线并联控制技术研究: [博士学位论文].华中科技大学, 2003.
    [137] Lu, L., H.X.Yang. A Study on Simulations of the Power Output and Practical Models for Building Integrated Photovoltaic Systems. Journal of Solar Energy Engineering. 2004, 126: 929-935.
    [138] J.A.Gow, C.D.Manning. Development of a photovoltaic array model for use in power-electronics simulation studies. IEE Proc. Electr.Power Appl. 1999, 146(2): 193-200.
    [139] Kawamura, H., Naka, K., Yonekura, N., Yamanaka, S., et al. Simulation of I2V characteristics of a PV module with shaded PV cells. Solar Energy Materials & Solar Cells. 2003: 613-621.
    [140] Franco, L. C., Pfitscher, L. L., Gules, R. A new high static gain nonisolated DC-DC converter. in: IEEE PESC'03. Acapulco, Mexico: 2003. 1367-1372.
    [141] Wai, R. J., Duan, R. Y. High step-up converter with coupled-inductor. IEEE Transactions on Power Electronics. 2005, 20(5): 1025-1035.
    [142] Wai, R. J., Lin, C. Y. High-efficiency,high-step-up DC-DC converter for fuel-cell generation system. IEE proceedings Electric Power Applications. 2005, 152(5): 1371-1378.
    [143] Wolfs, P. J. A current-sourced DC-DC converter derived via the duality principlefrom the half-bridge converter. IEEE Transactions on Industrial Electronics. 1993, 40(1): 139-144.
    [144] Wilson, C. P., Aragao, F. d., Barbi, I. A comparison between two current-fed push-pull DC-DC converters-analysis , design and experimentation. in: IEEE INTELEC'96: 1996.
    [145] Chen, R. Y., Lin, R. L., Liang, T. J., Chen, J. F., et al. Current-fed full-bridge boost converter with zero current switching for high voltage applications. in: IEEE IAS 2005. Hong Kong: 2005. 2000-2006.
    [146] Wei, S., Lehman, B. Current-fed dual-bridge dc-dc converter. IEEE Transactions on Power Electronics. 2007, 22(2): 461-469.
    [147] Jang, Y., M.Jovanovic, M. New two-inductor boost converter with auxiliary transformer. IEEE Transactions on Power Electronics. 2004, 19(1): 169-175.
    [148] Kim, J.-T., Lee, B.-K., Lee, T.-W., Jang, S.-J., et al. An active clamping current-fed half-bridge converter for fuel-cell generation system. in: IEEE PESC'04. Aachen, Germany: 2004. 4709-4714.
    [149] Han, S.-K., Yoon, H.-K., Moon, G.-W., Youn, M.-J., et al. A new active clamping zero-voltage switching PWM current-fed half-bridge converter. IEEE Transactions on Power Electronics. 2005, 20(6): 1271-1279.
    [150] Yan, L., B, L. An integrated magnetic isolated two-inductor boost converter:analysis,design and experimentation. IEEE Transactions on Power Electronics. 2005, 20(2): 332-342.
    [151] Quan, L., P, W. A current fed two-inductor boost converter with an integrated magnetic structure and passive lossless snubbers for photovoltaic module integrated converter applications. IEEE Transactions on Power Electronics. 2007, 22(1): 309-321.
    [152]苏建徽,余世杰,赵为,吴敏达, et al.硅太阳电池工程用数学模型.太阳能学报. 2001, 22(4): 409-412.
    [153]胡寿松.自动控制原理. (第三版).国防工业出版社, 1998.
    [154] Calais, M., G.Agelids, V., Meinhardt, M. Multilevel converters for single-phase grid connected photovoltaic systems- an overview. Solar Energy. 1999, 66(5): 325-335.
    [155] Gonzalez, R., Lopez, J., Sanchis, P., Gubia, E., et al. High-Efficiency Transformerless Single-phase Photovoltaic Inverter. in: EPE-PEMC'06: 2006. 1895-1900.
    [156] Lopez, O., Teodorescu, R., Doval-Gandoy, J. s. Multilevel transformerless topologies for single-phase grid-connected converters. in: IEEE IECON'06: 2006. 5191- 5196
    [157] González, R., López, J., Sanchis, P., Marroyo, L. Transformerless Inverter for Single-Phase Photovoltaic Systems. IEEE Transactions on Power Electronics. 2007, 22(2): 693-697.
    [158] Lopez, O., Teodorescu, R., Freijedo, F., DovalGandoy, J. Leakage current evaluation of a singlephase transformerless PV inverter connected to the grid. in: IEEE APEC'07: 2007. 907-912.
    [159] Lopez, O., Teodorescu, R., Freijedo, F., Doval-Gandoy, J. Eliminating ground current in a transformerless photovoltaic application. in: IEEE Power Engineering Society General Meeting: 2007. 1-5.
    [160] S.Thomas, B. E., B.Dagenhart, J., A.Barber, R., L.Clapp, A. Distribution system grounding fundamentals. IEEE Industry Applications Magazine. 2005: 67-76.
    [161] Chung, S.-K., Song, Y.-J., Enjeti, P. N. Current-fed high-frequency link inverter with active input filter. Electronic Letters. 2004, 40(7): 1-1.
    [162] Tan, G. H., Wang, J. Z., Ji, Y. C. Soft-Switching Flyback Inverter with Enhanced Power Decoupling for Photovoltaic Applications. IET Electr. Power Appl. 2007, 1(2): 264-274.
    [163] Liu, C., Lai, J.-S. Low Frequency Current Ripple Reduction Technique With Active Control in a Fuel Cell Power System With Inverter Load. IEEE Transactions on Power Electronics. 2007, 22(4): 1429-1436.
    [164] S.B.Dewan, P.D.Ziogas. Optimum Filter Design for a Single-Phase Solid-State UPS System. IEEE Transactions on Industry Applications. 1979, IA-15(6): 664-669.
    [165]陈坚.电力电子学-电力电子变换和控制技术.高等教育出版社, 2002.
    [166]彭力.基于状态空间理论的PWM逆变电源控制技术研究: [博士学位论文].华中科技大学, 2004.
    [167]张凯.基于重复控制原理的CVCF-PWM逆变器波形控制技术研究: [博士学位论文].华中理工大学, 2000.
    [168]王飞.单相光伏并网系统的分析与研究: [博士学位论文].合肥工业大学, 2005.
    [169] Tzou, Y.-Y. DSP-based fully digital control of a PWM DC-AC converter for AC voltage regulation. in: IEEE PESC'95: vol. 1, 1995. 138-144.
    [170] Tzou, Y.-Y., Jung, S.-L. Full control of a PWM DC-AC converter for AC voltage regulation. IEEE Transactions on Aerospace and Electroinc Systems. 1998, 34(4): 1218-1225.
    [171] Anderson, P. M., Bose, A. Stability simulation of wind turbine systems. IEEE Transactions on Power Apparatus and Systems. 1983, PAS-102(12): 3791-3795.
    [172] Senjyu, T., Nakaji, T., Uezato, K., Funabashi, T. A Hybrid Power System Using Alternative Energy Facilities in Isolated Island. IEEE Transactions on Energy Conversion. 2005, 20(2): 406-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700