用户名: 密码: 验证码:
大容量光伏逆变系统接入弱电网运行可行域研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的枯竭及其造成的环境危害日趋严重,各种方式的可再生能源发电快速增长。太阳能资源丰富,可多方式开发利用,光伏发电是现今的主要可再生能源发电方式之一。光伏发电联网运行是实现太阳能大规模开发利用的重要途径。但由于受资源禀赋的约束,大规模光伏电站多位于电网结构薄弱地区。在光伏发展初期,光伏联网规模与接入电网容量相比很小,可不考虑电网约束对光伏发电系统运行的影响;但随着光伏电站容量的增大,所接入电网将呈现弱电网特征。
     光伏发电通常经逆变系统接入电网,即光伏逆变系统。逆变器不仅将光伏电池产生的直流变换为交流送入电网,还承担着调控光伏电池运行状态以实现最大功率跟踪的任务。在电网结构相对较强时,常规设计的光伏逆变系统具有较好的运行控制性能;当较大容量的光伏逆变系统接入弱电网时,光伏逆变系统的控制性能将会恶化,甚至存在系统运行失稳的风险。在光伏入网规模快速发展的背景下,评估弱电网对光伏逆变系统运行性能的影响,研究相应的改进措施以提高光伏逆变系统接入弱电网的运行品质和安全性,具有重要的理论意义和现实意义。
     本文以单级式三相联网光伏逆变系统为研究对象,建立了包括光伏阵列,含(?)L滤波器逆变器的光伏逆变系统基础数学模型,分析了光伏阵列的输出特性.给出了主电路参数的设计方法,构建了MPPT控制与逆变器功率控制结合的不闭环控制系统结构,并基于PSCAD/EMTDC平台搭建了联网光伏逆变仿真系统,为光伏逆变系统接入弱电网运行分析与控制研究提供有效的工具。
     在分析光伏逆变系统接入电网现实场景的基础上,给出了描述电网强弱的指标,并基于此指标给出了弱电网的定义;建立了光伏逆变系统接入弱电网运行可行域的概念,光伏逆变系统接入弱电网运行约束的边界可以用相应的电网阻抗际幺值来定量描述,即稳定域由满足控制器稳定裕量约束和满足接入点电压调节品质约束围成。提出了可行域边界的计算方法。
     针对运行可行域的控制器稳定裕量约束边界,分析了弱电网对控制器稳定裕量的不利影响,提出了取消电压前馈的控制器结构改进方案,以拓展光伏逆变系统接入弱电网运行的可行域,在结构优化的基础上构建了控制器参数优化设计方法。
     针对运行可行域的接入点电压调节约束,分析了弱电网引起的功率传输瓶颈,比较了不同无功控制方式对运行可行域的影响。提出了一种面向接入点电压调节的无功控制策略,以改善光伏逆变系统接入弱电网的电压调节品质,并规避光伏逆变系统接入弱电网运行中潜在的电压失稳风险。
With the depletion of fossil fuels and the increasingly serious environment pollution, the demand for the utilization of renewable energy sources to generate electricity is increasing. Due to the advantages of decreasing cost and flexible installation, solar energy has become one of the dominating renewable energy sources. Solar energy can be utilized on a large scale through the integration into the existing power distribution infrastructure. However, restricted by the geographical conditions, most large-scale PV power plants are located in desert or semi-desert regions where the grid infrastructure is weak. Under this scenario, the network equivalent impedance of long transmission lines cannot be ignored. For systems with low PV penetration the connected grid can be regarded as a strong power grid because of the small capacity of the PV power plants. With the expansion of the PV power plants to a level comparable to the reference utility power generation capability, the connected grid should be treated as a weak grid.
     PV power generation systems are connected into the grid through PV inverters. PV inverters change the DC energy into AC to feed into the grid. Additional functionality of the grid-tie PV inverter includes operating the PV modules at the conditions where the maximum power is captured. When PV systems are connected to a grid which is relatively strong, the PV systems can be well controlled. With the expansion of PV inverter systems, the grid has the potential of being overcome by the PV systems. The inconsistency of power generation of PV systems, combined with its dominate position over a weak utility infrastructure could eventually bring the system into collapse. Therefore, it has important theoretical significance and practical value to evaluate the impacts of the high penetration of PV systems on a weak grid. New methods to improve the operation quality and maintain the safety margin of the system with high P V penetration need to be investigated
     Based on a single-stage three-phase PV inverter system, the mathematical model including the PV array, LCL filter and DC/AC inverter is established. The output characteristic of the PV array is analyzed, the design method of main circuit parameters is given. A dual closed-loop control structure combined with maximum power point tracking (MPPT) and inverter power controls is built. Using the PSCAD/EMTDC platform, a PV inverter simulation system is created. This provides effective tools for the study of operation analysis and control of PV inverter systems, which are connected with the weak grid.
     Based on the field test of PV inverter systems connected with the grid, the index to evaluate the fragility of power grid and the definition of a weak grid are given. Then the concept of the feasible operation region of PV inverter system is established. Per unit value of the grid impedance on the boundary of feasible operation regions are used to measure the adaptability of PV inverter systems connected to the weak grid. The methods to analyze the boundary of the feasible region to meet the controller's stability margin constraints and voltage regulation constraints are also presented.
     For the controller's stability margin constraints the adverse effects of weak network on controller stability margin are analyzed. An improved control structure without using voltage feedforward is presented, which can significantly extend the feasible operation regions. The methods to optimize the controller parameters are presented.
     In the end with regard to the voltage regulation constraints on the access point, the impact of weak power grid on power transmission constraints is analyzed. Comparisons between the operation regions of PV inverter systems with different reactive power control methods show that it is necessary to improve the reactive power control strategy under weak grid conditions. Based on the simulation and field test results, the reactive adjustability of the single stage P V inverter is studied. The reactive control strategy to regulate the access point voltage is derived, which can be used to improve the voltage level of PV inverter systems to avoid the potential risk of voltage instability in the system.
引文
[1]国家中长期科学和技术发展规划纲要(2006-2020年)(中华人民共和国国家发展和改革委员会发展规划司网站)http://ghs.ndrc.gov.cn/ghwb/default.htm
    [2]许洪华.中国光伏发电技术发展研究[J].电网技术,2007,31(20):77-81
    [3]赵杰.光伏发电并网系统的相关技术研究[D].天津:天津大学,2012
    [4]赵为.太阳能光伏并网发电系统的研究[D].合肥:合肥工业大学,2003
    [5]马亮.大功率光伏并网逆变器系统研究[D].北京:北京交通大学,2012
    [6]赵玉文,吴达成,王斯成,等.中国光伏产业发展研究报告(2006-2007)(下)[J].太阳能,2008(8):6-13
    [7]赵争鸣,等,太阳能发电综合应用系统[J].电力电子,2003,(2):7-10
    [8]蔡宣三.太阳能光伏发电发展现状与趋势[J].电力电子,2007,(2):3-6
    [9]艾欣,韩晓男,孙英云.光伏发电并网及其相关技术发展现状与展望[J].现代电力,2013,30(1):1-7
    [10]马胜红,陆虎俞.太阳能光伏发电技术(1)光伏发电与光伏发电系统[J].大众用电,2006,(1):38-40
    [11]谢建,马勇刚,廖华,等.太阳电池及其应用技术讲座(五)光伏发电系统[J].可再生能时性源,2007,25(5):117-120
    [12]Myrzik J M A, Calais M. String and module integrated inverters for single-phase grid connected photovoltaic systems-a review. Power Tech Conference Proceedings,2003 IEEE Bologna. IEEE,2003, Vol.2:2-8
    [13]王长贵.并网光伏发电系统综述(上)[J].太阳能,2008,(2):14-17
    [14]张兴,曹仁贤.太阳能光伏并网发电及其逆变控制[M].北京:机械工业出版社,2010
    [15]丁明,王伟胜,王秀丽,等.大规模光伏发电对电力系统影响综述[J].中国电机工程学报,2014,34(1):1-14
    [16]刘辉,吴麟章,江小涛,等.太阳能电池最大功率跟踪技术研究[J].武汉科技学院学报,2005,18(8):12-16
    [17]龙腾飞,丁宣浩,蔡如华.MPPT的三点比较法与登山法比较分析[J].大众科技,2007,4(8):48~51
    [18]Geoff Walker. Evaluating MPPT converter topologies using a matlab PV model. Journal of Electrical & Electronics Engineering,2001, Vol.21(1): 49-55
    [19]Kawamura, Harada K, Ishihara Y, et al. Analysis of MPPT characteristics in photovoltaic power system. Solar Energy Materials and Solar Cells,1997, Vol.47(1):155-165
    [20]李春华,朱新坚.光伏/燃料电池联合发电系统的建模和性能分析[J].电网技术,2009,33(12):88~92
    [21]孙自勇,宇航,严干贵,等.基于PSCAD的光伏阵列和MPPT控制器的仿真模型[J].电力系统保护与控制,2009,37(19):61-64
    [22]李晶,许洪华,赵海翔,等.并网光伏电站动态建模及仿真分析[J].电力系统自动化,2008,32(24):83-87
    [23]焦阳,宋强,刘文华.光伏电池实用仿真模型及光伏发电系统仿真[J].电网技术,2010,34(11):198~202
    [24]苏建徽,余世杰,赵为,等.硅太阳电池工程用数学模型[J].太阳能学报,2001,22(4):409-412
    [25]H. Patel and V. Agarwal, "MATLAB-based modeling to study the effects of partial shading on PV array characteristics," IEEE Trans. EnergyConvers., Vol.23(1), pp.302-310
    [26]刘邦银,段善旭,康勇.局部阴影条件下光伏模组特性的建模与分析[J].太阳能学报,2008,29(2):188-190
    [27]黄汉奇,毛承雄,陆继明,等.光伏发电系统的小信号建模与分析[J].中国电机工程学报,2012,32(22):7-14
    [28]戴训江,蔺红,晁勤.三相光伏并网逆变器动态建型与灵敏度分析[J].电力电子技术,2009,43(11):18~20
    [29]谢文涛,张东,吕征宇.光伏发电系统中前端DC/DC变换器的设计[J].机电工程,2007,24(9):101-104
    [30]Aganah K A, Leedy A W. A constant voltage maximum power point tracking method for solar powered systems. System Theory (SSST),2011 IEEE 43rd Southeastern Symposium on. IEEE,2011:125-130
    [31]周林,武剑,栗秋华,等.光伏阵列最大功率点跟踪控制方法综述[J].高电压技术,2008,34(6):1145-1154
    [32]Xiong Y, Qian S, Xu J. Research on Constant Voltage with Incremental Conductance MPPT Method. Power and Energy Engineering Conference (APPEEC),2012 Asia-Pacific. IEEE,2012:1-4
    [33]李晶,窦伟,徐正国,等.光伏发电系统中最大功率点跟踪算法的研究[J].太阳能学报,2007,28(3):268-273
    [34]Palizban O, Mekhilef S. Modeling and control of photovoltaic panels base perturbation and observation MPPT method. Control System, Computing and Engineering (ICCSCE),2011 IEEE International Conference on.IEEE, 2011:393-398
    [35]任碧莹,申明,孙向东.一种新颖的光伏电池最大功率点跟踪方法[J].电力电子技术,2010,44(11):10-12
    [36]Rodriguez C, Amaratunga G A J. Dynamic maximum power injection control of AC photovoltaic modules using current-mode control. IEE Proceedings-Electric Power Applications,2006, Vol.153(1):83-87
    [37]蔡明想,姜希猛,谢巍.改进的电导增量法在光伏系统MPPT中的应用[J].电气传动,2011,41(7):21-24
    [38]沈旦立,李振璧,皇淼淼,等.基于改进滞环比较法的光伏阵列MPPT[J].电力电子技术,2012,46(9):4-6+15
    [39]K.-H. Chao, J. Li, and M.-H. Wang, "A maximum power point tracking method based on extension neural network for PV systems," in Adv. Neural Netw., Proc.6th Int. Symp. Neural Networks (ISNN2009),2009, vol.5551 LNCS, Lecture Notes in Computer Science, pt.1, pp.745-755
    [40]S. D. Anitha, S. Prabha, S.B. Jeya, "Artifical Neural Network Based Maximum Power Point Tracker for Photovoltaic System", Sustainable Energy and Intelligient Systems (SEISCON 2011) International Conference on,2011:130-136
    [41]Hsiao, Y.-T., and Chen, C.-H. Maximum power tracking for photovoltaic power system.In Industry Applications Conference Record (37thIEEE IAS Annual Meeting),2002, vol.2:1035-1040
    [42]徐志英,许爱国,谢少军.采用LCL滤波器的并网逆变器双闭环入网电流控制技术[J].中国电机工程学报,2009,29(27):36-41
    [43]严干贵,李军徽,蒋桂强,等.背靠背电压源型变流器的非线性解耦矢量控制[J].电工技术学报,2010,25(5):129~135
    [44]严干贵,王茂春,穆钢,等.双馈异步风力发电机组联网运行建模及其无功静态调节能力研究[J].电工技术学报,2008,23(7):98-104
    [45]Garcia-Cerrada A, Pinzon-Ardila O, Feliu-Batlle V, et al. Application of a repetitive controller for a three-phase active power filter. Power Electronics, IEEE Transactions on,2007, Vol.22(1):237-246
    [46]王斯然,吕征宇.LCL型并网逆变器中重复控制方法研究[J].中国电机工程学报,2010,30(27):69-75
    [47]吴华波.基于双闭环重复控制的并网逆变器的研究[J].电力电子技术,2010,44(11):7-9
    [48]Jog A N, Apte N G. An adaptive hysteresis band current controlled shunt active power filter. Compatibility in Power Electronics,2007. CPE'07. IEEE,2007:1-5
    [49]戴训江,晁勤.基于LCL滤波的光伏并网逆变器电流滞环控制[J].电力电子技术,2009,43(7):33-35+57
    [50]顾和荣,杨子龙,邬伟扬.并网逆变器输出电流滞环跟踪控制技术研究[J].中国电机工程学报,2006,26(9):108-112
    [51]黄天富,石新春,魏德冰等.基于电流无差拍控制的三相光伏并网逆变器的研究[J].电力系统保护与控制,2012,40(11):36-41
    [52]李冬辉,郝鹏.三相并网逆变器无差拍控制技术[J].低压电器,2013,(3):41-43+54
    [53]Premrudeepreechacharn S, Poapornsawan T. Fuzzy logic control of predictive current control for grid-connected single phase inverter. Photovoltaic Specialists Conference,2000. Conference Record of the Twenty-Eighth IEEE. IEEE,2000:1715-1718
    [54]王晓涛,曾成碧,刘晨曦.基于模糊控制的并网逆变器的研究[J].电力系统保护与控制,2011,39(9):97-101
    [55]陈炜,艾欣,吴涛,等.光伏并网发电系统对电网的影响研究综述[J].电力自动化设备,2013,33(2):26-32+39
    [56]韩民晓,刘迅.分布式电源并网中电能质量相关规范探讨[J].电力设备,2007,8(1):57~60
    [57]T.Aekermann,VKnyazkin,Interaction between distributed generation and the distribution network:Peration asPeets, in Transmission and Distribution Conference and Exhibition2002:Asia Paific. IEEE/PES,2002, Vol.2:PP. 1357-1362
    [58]ISHIKAWA T. Grid-connected photovoltaic power systems:survey of inverter and related protection equipments [R]. Tokyo, Japan:Report IEA-PVPS Task,2002
    [59]易映萍,芦开平,王林.基于LCL滤波器的光伏并网逆变器控制策略[J].电力自动化设备,2011,31(12):54-58
    [60]安树怀,王明渝,邓威,等.可用于光伏并网的双频逆变器控制策略[J].电力自动化设备,2011,31(1):84~88
    [61]刘劲.影响光伏并网发电谐波水平的主要因素分析[J].电工技术,2009,(12):66-67
    [62]马杰,张建成.光伏并网系统的谐波检测与分析[J].电网与清洁能源,2010,26(11):112-115
    [63]钱军,陶梅玉,孙智一,等.光伏电站接入电网对电力系统电压闪变的影响[J].低压电器,2011,(22):19-22
    [64]鲁力,刘芳,张兴,等.弱电网条件下单相光伏并网逆变器的控制研究[J].电力电子技术,2012,46(5):36-38
    [65]Midtsund T, Suul J A, Undeland T. Evaluation of current controller performance and stability for voltage source converters connected to a weak grid. Power Electronics for Distributed Generation Systems (PEDG),2010 2nd IEEE International Symposium on. IEEE,2010:382-388
    [66]李晟婷,戴训江.弱电网对光伏并网逆变器电流滞环控制的影响分析[J].低电压器,2010,56(20):8-13
    [67]胡国珍,段善旭,陈昌松,等.弱电网下储能电池能量回馈系统自适应并网控制策略[J].电力系统自动化,2013,37(1):84-89
    [68]Liserre M, Teodorescu R, Blaabjerg F. Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Transactions on Power Electronics,2006, Vol.21(1):263-272
    [69]雷一,赵争鸣,袁立强,等.LCL滤波的光伏并网逆变器阻尼影响因素分析[J].电力系统自动化,2012,36(21):36~40
    [70]Juan Luis Agorreta, Mikel Borrega, Jes'us L'opez. Modeling and Control of N-Paralleled Grid-Connected Inverters With LCL Filter Coupled Due to Grid Impedance in PV Plants. IEEE Transactions on power electronics, Pamplona, Spain,2011:770-785
    [71]Chen Xin, Gong Chun Yin, Wang Hui Zhen, et al. Stability analysis of LCL-type grid-connected inverter in weak grid systems. Renewable Energy Research and Applications (ICRERA), Nagasaki,2012:1-6
    [72]Yang Shuitao, Lei Qin, Peng F Z, et al. A robust control scheme for grid-connected voltage-source inverters. IEEE Transactions on Power Electronics,2011, Vol.58(1):202-212
    [73]傅望,周林,郭珂,等.光伏电池工程用数学模型研究[J].电工技术学报,2011,26(10):211~216
    [74]赵富鑫,魏彦章.太阳电池及其应用[M].北京:国防工业出版社,1985
    [75]Singer S, Bozenshtein B, Surazi S. Characterization of PV array output using a small number of measured parameters [J]. Solar Energy,1984,32(5): 603-607
    [76]廖志凌,阮新波.任意光强和温度下的硅太阳电池非线性工程简化数学模型[J]. 太阳能学报,2009,30(4):430-435
    [77]赵争鸣,刘建政,孙晓瑛,等著.太阳能光伏发电及其应用[M].北京:科学出版社,2005
    [78]杨海柱,刘洁,等.基于状态空间平均法的光伏并网逆变器控制建模[J].河南理工大学学报(自然科学版),2009,28(1):90-93
    [79]王飞.太阳能光伏并网发电系统的研究[J].电工技术学报,2005,20(5):72-74
    [80]张兴.PWM整流器及其控制策略的研究[D].合肥:合肥工业大学,2003
    [81]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998
    [82]沈玉梁,苏建徽,等.不可调度式单相光伏并网装置的平波电容容量的选择[J].太阳能学报,2003,(5):655-658
    [83]汪海宁.光伏并网功率调节系统及其控制的研究[D].合肥:合肥工业大学,2005
    [84]黄挚雄,徐保友,沈玲菲,等.LCL并网逆变器新型电流双闭环控制策略研究[J].电力系统保护与控制,201 2,40(17):1-5
    [85]Teodorescu R, Blaabjerg F, Borup U, et al. A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation[C], Applied Power Electronics Conference and Exposition, APEC'04,19th Annual IEEE,2004,1:580-581
    [86]刘超,赵争鸣,鲁挺.三电平PWM整流器网侧LCL滤波器设计[J].电工电能新技术,2012,31(1):56-59
    [87]易映萍,刘刚,胡四全.20kW三电平并网变流器主电路参数的设计[J].电力系统保护与控制,2010,38(20):193-195
    [88]Riad Kadri, Jean-Paul Gaubert, "An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage oriented control," IEEE Transactions on Industrial Electronics,2011, vol.58(1):66-75
    [89]T.J. Liang, Y. C. Kuo, J. F. Chen. Single-stage photovoltaic energy conversion system. IEE Proc-Electr. Power Appl.2001, Vol.148(4):339- 344
    [90]张兴,张崇巍,曹仁贤.光伏并网逆变器非线性控制策略的研究[J].太阳能学报,2002,23(6):770~773
    [91]雷一,赵争鸣,鲁思兆.LCL滤波的光伏并网逆变器有源阻尼与无源阻尼混合控制[J].电力自动化设备,2012,32(11):23-27
    [92]N. P. W. Strachan and D. Jovcic, "Stability of avariable-speed permanent magnet wind generatorwith weak ac grids," IEEE Transactions on PowerDelivery,2010, vol.25(4):2779-2788
    [93]《数学辞海》编辑委员会编.数学辞海·第五卷[M].北京:中国科学技术出版社.2002
    [94]徐涛,康海珍,张振程,等.用电路分析法研究电力系统潮流可行域[J].电力系统保护与控制,2009,37(15):5-9
    [95]余贻鑫,宿吉峰,贾宏杰,等.电力大系统电压稳定可行域可视化初探[J].电力系统自动化,2001,25(22):1-5
    [96]易善军,郭志忠,柳焯.调谐型相间功率控制器稳态电压基本可行域的解析[J].继电器,2004,32(1):6-11
    [97]余贻鑫.电力系统安全域方法研究述评[J].天津大学学报,2008,41(6):635-646
    [98]邹伯敏.自动控制理论[M].北京:机械工业出版社,2007
    [99]T. Shimizu, K. Wada, and N. Nakamura, "A flyback-type single-phase utility interactive inverter with low-frequency ripple current reduction on the dc input for an ac photovoltaic module system," in Proc. PESC'02 Conf.,2002, vol.3:1483-1488
    [100]祝达康,程浩忠.求取电力系统PV曲线的改进连续潮流法[J].电网技术,1999,23(4):1-9
    [101]彭谦,马晨光,杨雪梅,等.线性模态分析中的参与因子与贡献因子[J].电网技术,201 0,34(2):92-96
    [102]张兴,曹仁贤.PWM整流器及其控制[M].北京:机械工业出版社,2012
    [103]张尧,张建设,袁世强.求取静态电压稳定极限的改进连续潮流法[J].电力系统及其自动化学报,2005,17(2):21-25
    [104]王庆红,周双喜,胡国根.基于扩展潮流模型的电力系统电压稳定分析[J].电网技术,2002,26(10):25-29
    [105]Huang Yafeng, Yan Gangui, Chao Chuyan, et al. Mining and utilization of reactive power capability of doubly fed induction generator system for wind turbines[C]. The First International Conference on Sustainable Power Generation and Supply. NangJing, China:IEEE,2009:1-5
    [106]贾俊川,刘晋,张一工.双馈风力发电系统的新型无功优化控制策略[J].中国电机工程学报,2010,30(30):87-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700