用户名: 密码: 验证码:
基于并行自适应有限元的互连线建模与分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从集成电路的诞生到现在的短短半个多世纪,快速发展的集成电路技术,为电子信息科学发展注入了新的活力,推动了计算机、通信、消费类电子、移动互联网产业的蓬勃发展。集成电路的工艺和集成电路设计方法学的不断进步,促进集成电路的高速发展。一方面,随着集成电路器件特征尺寸按比例缩小到纳米尺度,电路工作频率达到GHz,互连线寄生效应带来的互连线串扰、IR-drop、延迟、噪声等越来越严重,互连线成为影响集成电路性能和可靠性的关键因素。因此,集成电路设计方法学经历了从以器件为中心的设计转变到以互连线为中心的设计的变革,寄生参数提取成为以互连线为中心的第二代集成电路设计方法学的核心科学问题。另一方面,持续的工艺技术的进步驱动了集成电路不断的微小型化,但是随着一些工艺技术开始达到物理极限,器件特征尺寸的进一步缩小将会导致技术和成本两方面面临越来越大的挑战,三维芯片(Three dimensional integrated circuit,3D IC)成为继续驱动集成电路沿着摩尔定律道路不断前进最有希望的技术。三维集成电路是一种系统级构架新方法,它通过硅通孔(Through-silicon via,TSV)垂直互连实现多平面芯片的层叠。相比与二维平面芯片,三维芯片能够提高芯片器件密度、减小信号延迟、降低芯片功耗,同时通过TSV垂直互连实现的三维芯片同质集成或异质集成,能比传统系统集成芯片(SoC)能够提供更好的性能。虽然三维芯片能够带来电性能方面的巨大收益,然而严重的散热问题极大影响三维芯片的性能和可靠性。
     基于以上两方面因素,本文集中研究集成电路互连线建模与分析方法,包括大规模复杂结构集互连线寄生电容参数提取算法研究和多TSV垂直互连结构的三维芯片热分析方法的研究。本论文针对从版图提取、初始网格生成到全自动的寄生参数提取与三维芯片热分析等各个步骤展开了研究。
     互连线参数提取广泛应用于构造互连线等效电路模型,是超大规模集成电路设计的关键技术之一;三维芯片热分析是三维芯片设计面临的首要挑战,为EDA领域的热点研究领域之一。集成电路庞大的、复杂的互连线结构以及几百上千的TSV垂直互连线结构分别对寄生参数提取和三维芯片热分析都带来了计算复杂度的瓶颈问题。本论文首次将并行自适应有限元(Adaptive finite element method, AFEM)应用于集成电路互连线建模与分析方法的研究,主要包括并行自适应有限元互连线电容提取算法(ParAFEMCap)和并行自适应有限元三维芯片稳态热分析方法(ParAFEMThermo).本文提出的ParAFEMCap和ParAFEMThermo算法具有很高的并行扩展性和数值精度。首先,通过采用一些先进的并行技术,比如并行网格加密和动态负载平衡技术,本文提出的ParAFEMCap和ParAFEMThermo算法具有很高的并行扩展性。目前已知,ParAFEMCap是第一个能并行运行在成百上千CPU核上的电容提取的场求解器。其次,本文提出的ParAFEMCap和ParAFEMThermo算法基于自适应有限元(Adaptive FEM),能够以理论可证的最优收敛的方式收敛到问题的精确解。通过改变后验误差估计子的阂值,ParAFEMCap和ParAFEMThermo解的精度能够很容易的得到控制,同时通过增加CPU核的数目,ParAFEMCap和ParAFEMThermo运行时间能够迅速的减小。再次,本文提出的ParAFEMCap算法具有线性复杂度,使得ParAFEMCap对于大规模互连线电容提取具有非常大的优势,同时ParAFEMThermo也是具有强大计算能力的高性能三维芯片热分析工具。
     本文采用完整的数值实验验证了以上方法的高计算效率,高精确性和高并行可扩展性。
From the birth of the first integrated circuit (IC) chip to nowadays, rapid development of integrated circuit technology has injected vast vitality to electronic information industry and promoted the flourish of computer, communications, consumer electronics and mobile internet industries in just a half century. As the integrated circuit manufacture process and IC design methodology advance, integrated circuits have been continuously upgraded. On the one hand, as the VLSI thechnology scales to nanoscale and the circuit frequency reaches gigahertz, interconnect cross-talk, IR-drop, signal delay and noise induced by the parasitic interconnect effect become more and more serious.The interconnects of integrated circuits become the key effect which affects the performance and reliability of the circuits. Therefore, the IC design methodology has experienced the revolution from the device-centric design to interconnect-centric design, and the parasitic extraction of interconnects has been the key issue in the second generation interconnect-centric IC design methodology. On the other hand, the continuous advance of manufacture process enables the miniaturization of the integrated circuits, but some manufacture processes have reached their physical limits, such that further scaling down of the technology size will result in more and more challenges in the cost and the manufacture process. Three-dimensional integrated circuit (3D IC) is a system-level architecture which implements chip stacking by using Through-silicon via (TSV) as vertical interconnections. Compared to2D ICs,3D ICs can get smaller footprint size, higher density of the devices and reduce the signal delay and the power. At the same time,3D-IC can implement homogeneous integration or heterogeneous integration by TSV.3D-IC is a promising technology to extend the Moore's Law. Though3D IC can bring on huge improvement in IC's electrical performance, serious thermal issue becomes the major challenge in the performance and reliability of3D IC.
     Considering the above significant issues, modeling and analysis methods for interconnect of integrated circuits has been proposed in this paper, including parasitic capacitance extraction of large scale and complex structure interconnect in integrated circuits and thermal analysis of3D IC with TSV vertical interconnections. In this paper, comprehensive research on layout extraction, mesh generation to fully automatic parasitic extraction of interconnects and fully automatic thermal analysis of3D IC has been conducted.
     Parasitic extraction is one of key techniques in very scale integrated circuit design that has been widely used to build the equivalent-circuit model of interconnects; thermal has been the major challenge in3D IC design and it is one of important research issues in EDA. Large-scale interconnects with complex multilayer structures and vertical interconnects with hundreds of TSVs bring on huge computational bottleneck of parasitic extraction and3D IC thermal analysis respectively. In this paper, a parallel adaptive finite element method is first applied to modeling and analysis method for interconnects of integrated circuits, including a parallel adaptive finite element method for capacitance extraction of large scale interconnects (ParAFEMCap) and a parallel adaptive finite element method for steady thermal analysis of3D IC (ParAFEMThermo). The proposed modeling and analysis method for interconnects can provide extremely high parallel scalability and numerical accuracy. First, the proposed ParAFEMCap and ParAFEMThermo have the potential of high parallel scalability by taking advantages of several advanced parallel techniques, such as parallel adaptive mesh refinement and dynamic load balancing. To the best of authors'knowledge, this is the first capacitance extraction and thermal analysis field solver that is able to run in parallel on hundreds of and even thousands of CPU cores. Second, based on the adaptive finite element method, the proposed ParAFEMCap and ParAFEMThermo are proved to converge to the exact solution of the electromagnetic problems and heat diffusion problem in a theoretically quasi-optimal rate. The solution precision of ParAFEMCap and ParAFEMThermo can easily be controlled by varying the threshold for the a posteriori error estimator, while the computational time can easily be reduced by increasing the number of CPU cores. Moreover, ParAFEMCap is shown to have the same linear computation complexity as those integral equation methods, which make it very promising for capacitance extraction of large-scale interconnect problems, while ParAFEMThermo also is an effective thermal analysis tool with high computational ability.
     Numerical results will demonstrate that ParAFEMCap and ParAFEMThermo have the advantages of high computational efficiency, high accuracy and high parallel scalability.
引文
[1].Khan, A., Recent developments in high-performance system-on-chip 1C design[A]. In:IEEE. International Conference on Integrated Circuit Design and Technology[C].2004:151-158.
    [2],Intel Corporation. Intel(?) CoreTM i7-3960X Processor Extreme Edition[EB/OL].2012. URL:http://ark.intel.com/products/63696/Intel-Core-i7-3960X-Processor-Extreme-Edition-%281 5M-Cache-3_30-GHz%29.
    [3].BusinessTechnology, Mastering the art of electronics evolution[EB/OL].2011.URL http://biztechreport.co.uk/2011/10/mastering-the-art-of-electronics-evolution/
    [4].The International Technology Roadmap for Semiconductors 2009 Edition[R].2009.
    [5]. Sabelka. R., C. Harlander and S. Selberherr, The state of the art in interconnect simulation [A]. in IEEE. International Conference on Simulation of Semiconductor Processes and Devices[C].2000:6-11.
    [6].Cong, J., An interconnect-centric design flow for nanometer technologies[J]. Proceedings of the IEEE,2002.89(4):505-528.
    [7].Meindl, J.D., Beyond Moore's Law:the interconnect era[J]. Computing in Science and Engineering,2003,5(1):20-24.
    [8].Jain, A., et al., Analytical and Numerical Modeling of the Thermal Performance of Three-Dimensional Integrated Circuits[J]. IEEE Trans. Components and Packaging Technologies, 2010,33(1):56-63.
    [9].Patti, R.S., Three-Dimensional Integrated Circuits and the Future of System-on-Chip Designs[J]. Proceedings of the IEEE,2006,94(6):1214-1224.
    [10]. Cong, J., J. Wei and Y. Zhang, A thermal-driven floorplanning algorithm for 3D ICs[A], in IEEE. International Conference on Computer Aided Design[C].2004:306-313.
    [11], Cong, J., G. Luo and Y. Shi, Thermal-aware cell and through-silicon-via co-placement for 3D ICs[A], in IEEE. Design Automation Conference[C].2011:670-675.
    [12]. Sridhar, A., et al.,3D-ICE Fast compact transient thermal modeling for 3D ICs with inter-tier liquid cooling[A]. in IEEE. International Conference Computer-Aided Design[C].2010:463 470.
    [13].Fourmigue, A., et al., A linear-time approach for the transient thermal simulation of liquid-cooled 3D ICs[A]. in IEEE. International Conference on Hardware/Software Codesign and System Synthesis[C].2011:197-205.
    [14]. Feng, Z. and P. Li, Fast thermal analysis on GPU for 3D-ICs with integrated microchannel cooling[A], in IEEE. International Conference on Computer-Aided Design[C].2010:551-555.
    [15]. Kim, J., et al., High-Frequency Scalable Electrical Model and Analysis of a Through Silicon Via (TSV)[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011,1(2):181-195.
    [16].Kamon, M., S. McCormick and K. Shepard, Interconnect Parasitic Extraction in the Digital IC Design Methodology [A]. in Proc. IEEE. International Conference on Computer-Aided Design[C].1999:223-230..
    [17].Nabors, K. and J. White, FastCap:a multipole accelerated 3-D capacitance extraction program [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1991,10(11):1447-1459.
    [18].Kamon, M., M.J. Tsuk mid J.K. White, FASTHENRY:a multipole-accelerated 3-D inductance extraction program[J]. IEEE Trans. Microw. Theory Tech.,1994,42(9):1750-1758.
    [19].Zhu, Z., B. Song and J. White, Algorithms in FastImp:a fast and wideband impedance extraction program for complicated 3-D geometries[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2005,24(7):981-998.
    [20]. Jiao, D., et al.,A novel technique for full-wave modeling of large-scale three-dimensional high-speed on/off-chip interconnect structures[A]. in IEEE. International Conference on Simulation of Semiconductor Processes and Devices[C].2003:39-42.
    [21]. Hu, X., et al., Analysis of full-wave conductor system impedance over substrate using novel integration techniques[A]. in IEEE. Design Automation Conference[C].2005:147-152.
    [22].McFee, S., et al., Parallel and distributed processing for H-P adaptive finite-element analysis: A comparison of simulated and empirical studies[J]. IEEE Transactions on Magnetics,2004,40(2): 928-933.
    [23].Carstea. I.T. and D.P. Carstea, Parallel computing in finite element applications [A]. in WSEAS. WSEAS international conference on Mathematical and computational methods in science and engineering[C].2008:180-185.
    [24]. Yu, W., Z. Wang and J. Gu, Fast capacitance extraction of actual 3-D VLSI interconnects using quasi-multiple medium accelerated BEM[J]. IEEE Trans. Microw. Theory Tech.,2003, 51(1):109-119.
    [25].Zhou. Y., Z. Li and W. Shi, Fast capacitance extraction in multilayer, conformal and embedded dielectric using hybrid boundary element method[A]. in IEEE. Design Automation Conference[C].2007:835-840.
    [26].Sabelka, R. and S. Selberherr, A finite element simulator for threedimensional analysis of interconnect structures [J]. Microelectronics Journal,2001,32(2):163-171.
    [27].Veremey, V. and R. Mittra, A technique for fast calculation of capacitance matrices of interconnect structures [J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B:Advanced Packaging,1998,21(3):241-249.
    [28]. Phillips, J. and J. White, A precorrected-FFT method for capacitance extraction of complicated 3-D structures [A], in IEEE. International Conference on Computer-Aided Design[C]. 1994:268-271.
    [29]. Shi, W., et al., A fast hierarchical algorithm for three-dimensional capacitance extraction [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2002,21(3): 330-336.
    [30]. Yan. S., V. Sarin and W. Shi, Sparse transformations and preconditioners for 3-D capacitance extraction [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2005,24(9):1420-1426.
    [31]. Jiang, R., Y.H. Chang and C.P. Chen, ICCAP-a linear time sparsification and reordering algorithm for 3-D BEM capacitance extraction. IEEE Transactions on Microwave Theory and Techniques,2006,54(7):3060-3068.
    [32].Chai, W. and D. Jiao, A direct integral-equation solver of linear complexity for large-scale 3-D capacitance and impedance extraction [A]. in IEEE. Design Automation Conference [C].2009: 752-757
    [33].Chai, W. and D. Jiao, An LU decomposition based direct integral equation solver of linear complexity and higher-order accuracy for largescale interconnect extraction [J]. IEEE Transactions on Advanced Packaging,2010,33(4):794-803.
    [34].Chai, W. and D. Jiao, Dense matrix inversion of linear complexity for integral-equation-based large-scale 3-D capacitance extraction [J]. IEEE Transactions on Microwave Theory and Techniqucs,2011,59(10):2404-2421.
    [35].Coz, Y.L.L. and R.B. Iverson, A stochastic algorithm for high speed capacitance extraction in integrated circuits[J]. Solid-State Electronics,1992.35(7):1005-1012.
    [36].Coz, Y.L.L., H.J. Greub and R.B. Iverson, Performance of random-walk capacitance extractors for IC interconnects:A numerical study [J]. Solid-State Electronics,1998,42(4):581-588.
    [37], Yuan, Y. and P. Banerjee, A parallel implementation of a fast multipole-based 3-D capacitance extraction program on distributed memory multicomputers[A]. in IEEE. International Parallel and Distributed Processing Symposium[C].2000:323-330.
    [38],Gong, F., H. Yu and L. He, PiCAP:A parallel and incremental capacitance extraction considering stochastic process variation[A].in IEEE. Design Automation Conference.2009:764-769.
    [39].Zhao, X. and Z. Feng, Fast multipole method on GPU tackling 3-D capacitance extraction on massively parallel SIMD platfomis[A]. in IEEE. Design Automation Conference.2011:558-563.
    [40]. Xu, J., et al., Capacitance extraction of three-dimensional interconnects using element-by-Element finite element method (EBE-FEM) and preconditioned conjugate gradient (PCG) technique[J]. IEICE Trans. Electron.,2007,E90-C(1):179-188.
    [41].Ozgun, O., R. Mittra and M. Kuzuoglu, CBFEM-MPI:A parallelized version of characteristic basis finite element method for extraction of 3-D intercoimect capacitances[J]. IEEE Transactions on Advanced Packaging,2009,32(1):164-174.
    [42].Toselli, A. and O.B. Widlund, eds. Domain Decomposition Methods-Algorithms and Theory (Springer Series in Computational Mathematics. Vol.34)[M]. Berlin, Germany:Springer, 2005:450.
    [43].Loi, G.L., et al., A thermally-aware performance analysis of vertically integrated (3-D) processor-memory hierarchy[A]. in IEEE. Design Automation Conference[C].2006:991-996.
    [44].Huang, P. and Y. Lee, Full-Chip Thermal Analysis for the Early Design Stage via Generalized Integral Transforms [J]. IEEE Trans. Very Large Scale Integration (VLSI) Systems, 2009,17(5):613-626.
    [45]. Chen, Z., X. Luo and S. Liu, Thermal analysis of 3D packaging with a simplified thermal resistance network model and finite element simulation [A]. in IEEE. International Conference on Electronic Packaging Technology & High Density Packaging[C].2010:737-741.
    [46].骆祖莹等,可热扩展的三维并行散热集成方法:用于大规模并行计算的片上系统关键技术[J]计算机学报,2011,34(4):第717-728页.
    [47]. Xu, H., V.F. Pavlidis and G. De Micheli, Analytical heat transfer model for thermal through-silicon vias[A]. in IEEE. Design,Automation & Test in Europe Conference & Exhibition[C].2011:1-6.
    [48].Yang, Y., et al., ISAC:Integrated Space-and-Time-Adaptive Chip-Package Thermal Analysis [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007,26(1):86-99.
    [49].Daya. B., Microprocessor Thermal Analysis using the Finite Element Method[R]. Massachusetts Institute of Technology.2010.
    [50]. Clarke, H.A. and K. Murakami, Thermal Effect of TSVs in 3D Die-Stacked Integrated Circuits[C]. in IEEE. Euromicro Conference on Digital System Design (DSD)[C].2011:503-508.
    [51].Govind Singh, S. and C.S. Tan. Thermal mitigation using thermal through silicon via (TTSV) in 3-D ICs[A], in IEEE.Microsystems, Packaging. Assembly and Circuits Technology Conference[C].2009:182-185.
    [52]. Ding. U., et al., Thermal modeling of three-dimensional integrated circuits considering the thermal removal capability of different TSVs[A]. Asia Symposium on Quality Electronic Design (ASQED)[C].2011:1-7.
    [53].Noritake, C. et al., Thermal Cycle Reliability of 3D Chip Stacked Package Using Pb-free Solder Bumps:Parameter Study by FEM Analysis [A].in IEEE.International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems[C].2006:1-6.
    [54].PHG, Parallel Hiarachical Grid[CP]. URL:http://lsec.cc.ac.cn/phg/.
    [55]. Chen. Z., L. Wang and W. Zheng, An adaptive multilevel method for time-harmonic maxwell equations with singularities[J].SIAM Journal on Scientific Computing,2007,29(1):118-138.
    [56]. Babuska, I. and W.C. Rheinboldt, Error Estimates for Adaptive Finite Element Computations[J]. SIAM Journal on Numerical Analysis,1978.15(4):736-754.
    [57]. Chen. J., et al., An adaptive finite element method for the eddy current model with circuit/field couplings[J].SIAM Journal on Scientific Computing,2010,32(2):1020-1042.
    [58].Chen, Z. and S. Dai, On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients[J].SIAM Journal on Scientific Computing,2002,24(2): 443-462.
    [59].Verfurth, R., A review of a posteriori error estimation and adaptive mesh-refinement techniques(Wiley-Teubner series, advances in numerical mathematics)[M]. Wiley-T eubner.1996: 127.
    [60]. Zhang, L., A Parallel Algorithm for Adaptive Local Refinement of Tetrahedral Meshes using Bisection[J]. Numerical Mathematics:Theory, Methods and Applications,2009,2(1):65-89.
    [61]. Van Emden Henson and U.M. Yang, BoomerAMG:a parallel algebraic multigrid solver and preconditioner[J], Applied Numerical Mathematics,2002,41(1):155-177.
    [62].Hypre[CP]. URL:http://acts.nersc.gov/hypre/.
    [63].沈熙宁,电磁场与电磁波[M].北京科学出版社,2006:483.
    [64].Garg, A.A.L.C., et al., Accurate high-speed performance prediction for full differential current-mode logic:the effect of dielectric anisotropy[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1999.18(2):212-219.
    [65].Magma,QuickCap[CP].URL:http://www.magma-da.com/products-solutions/libraryCharacteri zation/quickcap.aspx.
    [66].Synopsys,StarRC[CP].URL:http://www.synopsys.com/Tools/Implementation/SignOff/Pages/ StarRC-ds.aspx.
    [67].Hansen, PC., Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank[J]. SIAM Journal on Scientific and Statistical Computing,1990.11(3):503-518.
    [68].冯康,基于变分原理的差分格式[J].应用数学与计算数学,1965,2(4):第238页.
    [69].崔涛,基于PHG平台的三维时谐电磁场并行自适应有限元计算研究[D].北京:中国科学院数学与系统科学研究院,2010.
    [70]. Guru, B.S. and H.R. Hiziroglu, Electromagnetic Field Theory Fundamentals.(2nd ed.)[M] Cambridge, U.K.:Cambridge Univ. Press,2004:624.
    [71].Zienkiewicz, O.C., R.L. Taylor and J. Zhu, The Finite Element Method:Its Basis and Fundamentals (6th ed.)[M].2005, Oxford, U.K.:Butterworth-Heincmann,2005:733.
    [72]. Li, X.S. and J.W. Demmel. SuperLU_DIST:A Scalable Distributed-Memory Sparse Direct Solver for Unsymmetric Linear Systems [J]. ACM Trans. Mathematical Software,2003,29(2): 110-140.
    [73]. Saad, Y. and M.H. Schultz, GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing,1986,7(3): 856-869.
    [74].Plonsey, R. and R.E. Collin, Principles and Applications of Electromagnetic Fields[M]. New York:McGraw-Hill,1961.
    [75].Shewchuk, J.R., Tetrahedral mesh generation by Delaunay refinement[A]. in ACM. Proceedings of the fourteenth annual symposium on Computational geometry[C],1998:86-96.
    [76]. Si, H., TetGen A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator[R]. 2011.
    [77].Arnold, D.N., A. Mukherjee and L. Pouly, Locally Adapted Tetrahedral Meshes Using Bisection[J].SIAM Journal on Scientific Computing,2000,22(2):431--448.
    [78].MPI, message passing interface[CP].URL:http://www.mcs.anl.gov/mpi.
    [79]. OpenMP[CP].URL:, http://www.openmp.org.
    [80]. Li, C. and Y. Feng, Algorithm for Analyzing N-Dimensional Hilbert Curve, in Advances in Web-Age Information Management[M]. Springer:Berlin/Heidelberg,2005:657-662.
    [81].Brandt, A., Algebraic multigrid theory:The symmetric case[J].Applied Mathematics and Computation,1986,19(1-4):23-56.
    [82].Ruge, J.W. and K.S. Uben, eds. Algebraic multigrid (AMG) (Multigrid Methods Vol.3)[M]. PA:SIAM,1987:73-130.
    [83].Briggs, W.L., Van Emden Henson and S.F. McCormick, A Multigrid Tutorial Second Edition. Philadephia:SIAM,2000:193.
    [84].Sarin, V. and A. Sameh, Parallel Preconditioners for Elliptic PDEs[A].in IEEE. Proceedings of Conference on Supercomputing[C].1996:30-30.
    [85].Ortigosa, E.M., L.F. Romero and J.I. Ramos, Parallel scheduling of the PCG method for banded matrices rising from FDM/FEM[J]. J. Parallel Distrib. Comput.,2003,63(12):1243-1256.
    [86].Wilkerson, P., A. Raman and M. Turowski, Fast, automated thermal simulation of three-dimensional integrated circuits[A]. in IEEE.The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems[C].2004:706-713.
    [87]. Yan, H., QiangZhou and XianlongHong, Thermal aware placement in 3D ICs using quadratic uniformity modeling approach[J]. Integration, the VLSI journal,2009,42(2):175-180.
    [88], Cong, J. and Y. Zhang, Thermal-driven multilevel routing for 3D ICs[A]. in IEEE. Proceedings of Asia and South Pacific Design Automation Conference[C].2005:121-126.
    [89].Mikliailov, M.D. and M.N. Oziik., Unified analysis and solutions of heat and mass diffusion[M]. New York:Wiley,1984:544.
    [90].Olcer, N.Y., On the theory of conductive heat transfer in finite regions [J]. International Journal of Heat and Mass Transfer,1964,7(3):307-314.
    [91].Mikhailov, M.D., Generalsolutions of the heatequation in finiteregions[J]. International Journal of Engineering Science,1972,10(7):577-591.
    [92]. Chiang. T.Y., K. Banerjee and K.C. Saraswat, Compact modeling and SPICE-based simulation for electrothermal analysis of multilevel ULSI interconnects[A].in IEEE./ACM international conference on Computer-aided dcsign[C].2001:165-172.
    [93]. Kim, D.H., K. Athikulwongse and S.K. Lim, A study of Through-Silicon-Via impact on the 3D stacked IC layout[A].in IEEE. International Conference on Computer-Aided Design[C].2009: 674-680.
    [94].Mitra, J., et al., A fast simulation framework for full-chip themio-mechanical stress and reliability analysis of through-silicon-via based 3D ICs[A], in IEEE.61st Electronic Components and Technology Conference (ECTC)[C].2011:746-753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700