用户名: 密码: 验证码:
大型液化天然气储罐泄漏扩散数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着液化天然气(LNG)全球贸易量的快速增长,大批的LNG工程项目纷纷投产,LNG储罐的数量不断增多,储罐泄漏风险进一步增大。大型LNG储罐内储存着大量的极低温(-162℃)且易燃易爆的LNG,一旦发生泄漏将对周边人群、财产及大气环境造成极大的危害。选择合理方法与合适工具对大型LNG储罐可能的泄漏及蒸汽云扩散危害后果进行模拟研究,对于LNG接收站选址、应急预案制定、紧急疏散区域划定以及事故危害后果评估与索赔等都有重要意义。
     为了在众多气体扩散模型工具中确定一个适合本研究的模型,本文综合了大量文献研究成果,结合本研究的特点,制定了LNG泄漏扩散模型定量评价方法,借助于国外大型LNG泄漏扩散现场实验数据集,对基于Fluent的CFD模型在LNG储罐泄漏扩散模拟上的“有效性”进行定量评价,评价结果表明:同其它的模拟工具相比,Fluent对LNG储罐泄漏扩散行为的模拟具有更好的“有效性”。
     考虑到储罐周边空气流动对LNG泄漏扩散的重要影响,本模拟研究分两步进行,即,首先对LNG储罐周边环境风场进行数值模拟,风场计算收敛后再进行LNG泄漏扩散数值模拟。
     为了对储罐风场进行数值模拟,本文分析了近地面的大气边界层流动特性及主要特征参数,确定了平均风剖面以及湍流特征参数的计算方式,并用C语言编制了相应的UDF程序(用户自编程序);按照阻塞率、模型摆放位置以及风出流面最佳位置等风工程计算流域确定原则创建了包含有LNG储罐物理模型的计算流域;采用了分体加密方法进行网格划分和网格质量控制;最后对LNG储罐风场进行数值模拟。LNG储罐风场数值模拟结果不但表明了本文在计算流域建模上合理性,而且详细地显示了LNG储罐附近区域的滞流、分流、绕流、回流等复杂流动特征。
     然后文章分析了LNG泄漏扩散过程的基本特征,研究了流体在泄漏孔中的可能流动状态及判断方式,解决了LNG储罐泄漏速率计算问题;采用了欧拉—拉格朗日多相流模型和颗粒的随机轨道方法模拟LNG从泄漏孔泄漏后射流的发展变化过程;结合地面传热实际情况,构建了考虑LNG与地面间沸腾状态的地面传热模型,并通过用户自编程序(UDF)与多相流模型耦合。耦合了气体相流动、液体相流动以及地面传热等模型的LNG储罐泄漏扩散模拟不但在三维空间上直观形象地显示出气云不同浓度区域随时间动态变化过程,而且很好地模拟出气云重力沉降、叶状分叉、两侧堆积等气云扩散特征。
     LNG泄漏扩散过程中出现的“白雾”现象是由于泄漏扩散形成的低温场导致空气中水蒸气发生结冰结露相变引起的。为了考察空气中的水蒸气在LNG储罐泄漏扩散过程中的相变行为及其对气云扩散的影响,本文利用VOF多相流模型与物质输运模型来求解冰、水和水蒸气各相的无相变流动,再根据冰、水和水蒸气相间的传质传热机理分别构建了水的蒸发冷凝模型、升华和凝华模型以及凝固和融化模型,通过UDF程序解决了水蒸气与水、冰相间的传质传热问题,最终实现了LNG泄漏扩散过程水蒸气相变数值模拟。数值模拟结果表明:温度场是水蒸气发生相变的直接推动力;空气湿度对结冰结露的范围有较大影响,对气云扩散速度有一定影响,但对气云下风向最大危害距离、爆炸范围等影响有限。
     所有与事故相关过程的模拟研究都是为减灾救灾服务的。为此,本文最后对储罐围堰、建筑物、泄漏源以及风等对LNG储罐泄漏扩散的作用进行数值模拟,模拟结果表明:围堰能有效地堵截气云,阻碍或减少气云往下风向漂移;泄漏形成的气云容易集聚在储罐与建筑物之间,将对建筑物构成极大威胁;泄漏源与事故危害后果有直接关系,泄漏率越大,LNG泄漏扩散造成危害越大。根据这些模拟应用结果对LNG站选址、站内建筑设施布局规划、事故防范及应急反应措施制定等提出相应的科学建议。
With the prompt growth of liquefied natural gas (LNG) trades, more and more LNG projects and storage tanks have been set up, the risk of LNG release from tanks greatly increased. Due to the fact that a great deal of flammable, explosive and low temperature LNG was stored in large-scale tank, the accident of LNG release from the large-scale storage tank will pose a disastrous risk to people, structures and atmospheric environment in proximity to such release. The modeling of LNG release from tank and vapor dispersion in air can provide scientific guidelines for site of LNG receiving terminals, establishment of emergency response plan, delimitation of exclusion zones and evaluation&claims of hazard suffered from accident.
     In order to choose an appropriate model or modeling tool among a wide range of vapor dispersion models, numerous previous research works were firstly referred to, the methodologies for quantitative assessing the validity of LNG dispersion models were set up. The suitability of Fluent for modeling LNG dispersion was quantitatively evaluated by means of the datasets from the large scale LNG release field trials. The results of evaluation indicated that the Fluent-based numerical dispersion model was more "valid" in predicting dispersion of LNG than the others.
     In view of great influence of air flow in the vicinity of storage tank on the LNG release and dispersion, wind field simulation of LNG tank become necessary. So the flow characteristics and main Parameters of Atmosphere boundary layer were analyzed, the calculating methods of mean wind profile and turbulence characteristics Parameters were decided and their User-Defined Function (UDF) was written. After this, the calculating domain of numerical simulation was set up according to the theory of Computational Wind Engineering (CWE), and the technology of partition refinement was used in domain meshing and grid quality controlling. The numerical simulation of wind field showed:the flow-field around LNG storage tank is highly complicated, which is filled with series of complicated movements, such as separation, circulation, vortices etc.
     In next part of this dissertation, the phenomenology of LNG release and dispersion was investigated, the possible flow state of the internal orifice and its determining criterion were studied, and calculating method of discharge rate from LNG storage tank was solved. The Eulerian-Lagrangian multiphase flow models and the stochastic trajectory model were applied to simulate numerically the movement, mass transfer, heat transfer and coupling of LNG droplets phase and vapor phase. On the basis of the mechanism of heat transfer from the substrate, the model of heat transfer form ground which embodied LNG boiling regime was constructed and programmed with UDF. Successful coupling and calculating of the gas phase model, the droplet phase model and ground heat transfer model made the simulation does not only show three-dimensionally the development of the vapor cloud but also model accurately the important dispersion characteristics of LNG dense gas, such as gravity-spreading, lower and significantly wider cloud, bifurcating and sides-accumulating.
     Low temperature LNG vapor caused the air to be cooled so that atmospheric water vapor condensed to form a white cloud or fog. In order to study the condensation of atmospheric water vapor by the cold temperature and its effect on the behavior of LNG cloud, Volume of Fluid (VOF) model and species transport model were used to solve respective single-phase flow of steam, water and ice. However VOF model can not solve interphase heat transfer and mass transfer, so condensation, ice formation and sublimation models for water were set up in the light of the mechanism of interphase heat and mass transfer, thus interphase heat and mass exchange was solved too. Results of phase change modeling of atmospheric water vapor suggested that:moisture in air had great effect on phase change zones, but the graphs of concentration against time were very similar-the water vapor apparently has essentially no significant effect.
     In last part of the paper, the numerical simulation was applied to analyze the influence of dike, buildings, release source and wind on LNG cloud dispersion, Results of application indicated:the dike around tank can effectively contain liquid released from storage tank and constrain down-wind dispersion of vapor. Due to obstructing of buildings, dangerous cloud resulted from LNG release tended to accumulate around buildings, and this would pose a risk to people who were working in buildings; release rate had important relation with the hazard consequence, the more rapid of release, the more serious consequence was. All these researches could serve to provide scientific guidelines for site and design of LNG receiving terminals, establishment of preventive measures and emergency response plans.
引文
[1]BP. Statistical Review of World Energy 2011 [R/OL]. UK:BP,2011. www. bp.com/Statistical Review.htm.
    [2]张抗.2015年天然气供需预测及对策[J].天然气技术与经济,2011,5(1):3-8.
    [3]国际石油经济.全球LNG接收站统计[J].国际石油经济,2009,(6):69-72.
    [4]邢云.构建中国液化天然气产业法规标准体系[J].化工学报,2009,60(S1):1-10.
    [5]王冰,陈学东,王国平.大型低温LNG储罐设计与建造技术的新进展[J].天然气工业,2010,30(05):104-112.
    [6]Britain Standard Institute. BS 7777 Flat-bottomed, vertical, cylindrical storage tanks for low temperature service [S]. London:Britain Standard Institute,1993.
    [7]谢尊贤,朱永全,陈绍华,等.高原地区隧道施工作业环境卫生标准研究[J].两安建筑科技大学学报(自然科学版),2011,43(02):247-252.
    [8]Anay L H.Luketa-Hanlin, Anay.A review of large-scale LNG spills Experiments and modeling[J]. Journal of Hazardous Materials,2006,132(2):119-140.
    [9]Ronald P K, Donald L E. Lessons learned from LNG safety research[J]. Journal of Hazardous Materials,2007,140(3):412-428.
    [10]Meroney R N, Neff D E, The Behavior Of Lng Vapor Clouds:Wind-Tunnel Tests on the Modeling of Heavy Plume Dispersion [R]. Gas Research Institute Report, Chicago,1982.
    [11]Meroney R N, Neff D E. LNG Vapor Barrier And Obstacle Evaluation Wind-Tunnel Prefield Test Results [R]. Lawerence Livermore Laboratory Report, California,1986.
    [12]Meroney R N, Shin S H, Neff D E. LNG Vapor Barrier And Obstacle Evaulation: Wind-Tunnel Simulation of 1987 Falcon Spill Series[R]. Gas Research Institute Report, Chicago,1989.
    [13]Havens J, Spicer T, Sheppard W. Wind Tunnel Studies of LNG Vapor Dispersion from Impoundments[C]. Houston:AIChE,2007:255-265.
    [14]Nielsen M, Ott S. A collection of data from dense gas experiments [EB/OL]. Denmark:Riso National Laboratory,1996[2010-03-05]. http://www.risoe.dtu.dk/research/sustainable_energy/energy_systems/projects/rediphem.aspx.
    [15]杨成坤.LNG船舶瞬时泄漏扩散研究[D].大连:大连海事大学,2006.
    [16]黄琴,蒋军成.液化天然气泄漏扩散模型比较[J].中国安全生产科学技术,2007,3(5):3-6.
    [17]Chan S T. FEM3A, simulation of selected LNG vapor barrier verification field tests[R]. Lawerence Livermore Laboratory Report, California,1990.
    [18]Meroney R N. Wind Tunnel and Numerical Simulation of Pollution Dispersion:A Hybrid Approach[R]. Wind Engineering and Fluids Laboratory, Colorado State University,2004.
    [19]孙珀,黄平.液化天然气泄漏扩散数学模型分析[J].科技导报,2008,26(10):83-86.
    [20]Hanna S R. Hazardous gas model evaluation with field observations[J]. Atmospheric environment,1993,27(15):2265-2285.
    [21]Brighton P W, Byrne A J, Cleaver R P, et al. Comparison of heavy gas dispersion models for instantaneous releases[J]. J Hazardous Mat,1994,36(3):193-208.
    [22]Daish N C, Britter R E, Linden P F, et al. SMEDIS:Scientific model evaluation of dense gas dispersion models[J]. Int J Envir Pollution,2000,14(1-6):39-51.
    [23]Lvings M J, Jagger S F, Lee C J. Evaluating Vapor Dispersion Models for Safety Analysis of LNG Facilities Research Project[R]. The Fire Protection Research Foundation, Quincy,Massachusetts,2007.
    [24]Phil C, Mike J, Ben H. A summary of some experimental data on LNG safety[J]. Journal of Hazardous Materials,2007,140(3):429-438.
    [25]Kovalets I V, Maderich V S. Numerical Simulation of Interaction of the Heavy Gas Cloud with the Atmospheric Surface Layer [J]. Environmental Fluid Mechanics,2006,4(6): 313-340.
    [26]Spyros Sklavounos, Fotis Rigas. Simulation of Coyote series trials-Part I:CFD estimation of non-isothermal LNG releases and comparison with box-model predictions [J], Chemical Engineering Science,2006,(61):1434-1443.
    [27]Koopman R P, Baker J, Cederwall R T, et al. Burro series data report LLNL/NWC 1980 LNG spill tests[R]. Lawrence Livermore National Laboratory, California,1982.
    [28]Goldwire H C, Rodean H C, Cederwall R T, et al.1983, Coyote series data report: LLNL/NWC 1981 LNG spill tests dispersion, vapor burn and rapid-phase transitions [R]. Lawrence Livermore National Laboratory, California,1983.
    [29]黄琴,蒋军成.液化天然气泄漏扩散实验的模拟CFD验证[J].工业安全与环保,2008,34(1):21-23.
    [30]Hansen O R, Melheim J A, Storvik I E. CFD-Modeling of LNG Dispersion Experiments [C]//2007 AIChE Spring National Meeting-Conference Proceedings. Houston, Texas: AIChE,2007.
    [31]Brown T C, Cederwall R T, Chan S T, et al. Falcon series data report:1987 LNG vapor barrier verification field[R]. Gas Research Institute Report,Chicago,1990.
    [32]Coldrick S, Lea C J,Ivings M J. Validation Database for Evaluating Vapor Dispersion Models for Safety Analysis of LNG Facilities[R]. The Fire Protection Research Foundation, Quincy,Massachusetts,2010.
    [33]Gavelli F, Bullister E, Kytomaa H. Application of CFD (Fluent) to LNG spills into geometrically complex environments[J]. Journal of Hazardous Materials,2008,159(1): 158-168.
    [34]Gavelli F, Chernovsky M, Bullister E,et al. Validation of a CFD Model for Vapor Dispersion from LNG Spills into an Impoundment[C]//2007 AIChE Spring National Meeting-Conference Proceedings, Houston, Texas:AIChE,2007.
    [35]Hansen O R, Gavelli F, Ichard M, et al. Validation of FLACS against experimental data sets from the model evaluation database for LNG vapor dispersion[J]. Journal of Loss Prevention in the Process Industries,2010,23(6),857-877.
    [36]中华人民共和国建设部.建筑结构荷载规范(GB50009-2001)[S].北京:中国建筑工业出版社,2002.
    [37]陆峰.大跨度平屋面结构的风振响应和风振系数研究[D].浙江:浙江大学,2001.
    [38]ESDU International. Characteristics of wind speed in the lower layers of the atmosphere in the near ground:Strong winds (neutral atmosphere)[M]. London:ESDU International,1982.
    [39]Yukio T, Takeshi O, Hisashi O, et al. Wind loading standards and design criteria in Japan[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83(3):555-566.
    [40]Architectural Institute of Japan, AIJ Recommendations for loads on buildings[S]. Tokyo,Japan:Architectural Institute of Japan,2004.
    [41]Yoshihide Tominaga, Akashi Mochida, Ryuichiro Yoshie, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(10):1749-1761.
    [42]Counihan J. Adiabatic atmospheric boundary layers:A review and analysis data from the period 1880-1972[J]. Atmospheric Environment,1975(9):1-35.
    [43]Fluent Incorporated. Gambit 6.2 User's Guide [M]. Cavendish:Fluent Incorporated,2005.
    [44]Baetke F, Werner H. Numerical simulation of turbulent flow oversurface-mounted obstacles with sharp edges and corners [J] Journal of Wind Engineering andIndustrial Aerodynamics,1990(35):129-147.
    [45]Bekele S A, Hangan H. A comparative investigation of the TTU pressure envelope Numerical versus laboratory and full scale results[J].Wind and Structures,2002, 5(2-4):337-346.
    [46]Easom G, Improve turbulence models for computational wind engineering[D]. Nottingham UK:The University of Nottingham,2000.
    [47]Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics:The Finite Volume Method[M]. UK London:Longman Group Ltd.,1995.
    [48]殷慧君.膜结构风荷载的数值模拟研究[D].上海:同济大学,2006.
    [49]Lakehal D. Computation of turbulent shear flows over rough-walled circularcylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,80(1):47-68.
    [50]Oliveira P J, Younis B A. On the prediction of turbulent flows around full-scale buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,86(2):203-220.
    [51]朱自强.应用计算流体力学[M].北京:北京航空航天大学出版社,2001.
    [52]孙标,郭开华.LNG重气扩散安全距离及影响因素[J].天然气工业,2010,30(7):110-115.
    [53]Fluent Incorporated. Fluent 6.2 User Guide[M].Cavendish:Fluent Incorporated,2005: 358-490.
    [54]韩占忠,FLUENT:流体工程仿真计算实例与分析[M].北京:北京理工大学出版社,2009:6-50.
    [55]Tauseef S M. CFD-based simulation of dense gas dispersion in presence of obstacles [J]. Journal of Loss Prevention in the Process Industries,2011,24 (4):371-376.
    [56]王志强,中二次风水平摆角对炉内气固流场影响的数值模拟[D],哈尔滨:哈尔滨工业大学,2003:32-33.
    [57]陶文铨,数值传热学[M].西安:西安交通大学出版社,2004:135-182.
    [58]Ohba R. Validation of heavy and light gas dispersion models for the safety analysis of LNG tank [J]. Journal of Loss Prevention in the Process Industries,2004,17(5):325-337.
    [59]John Baik. Consequence Modelling of LNG Marine Incidents[C], Kingdom of Bahrain:7th Professional Development Conference & Exhibition,2006.
    [60]Soteriou C, Andrews R, Smith M. Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization [EB/OL]. SAE:SAE,1995[2010-03-15]. http://papers. sae.org/950080/.
    [61]Payri F, Bermudez V, Payri R. The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles[J]. Fuel,2004,83(4-5):419-431.
    [62]Schmidt D P, Corradini M L. Analytical Prediction of the Exit Flow of Cavitating Orifices[J]. Atomization and Sprays,1997,7(6):603.
    [63]Nurick W H. Orifice Cavitation and Its Effects on Spray Mixing[J]. Journal of Fluids Engineering,1976,98(4):681-687.
    [64]Berlemont A, Grancher M S, Goueset G. Heat and mass transfer coupling between vaporizing droplets and turbulence using a Lagrangian approach[J]. Int J Heat Mass Transfer, 1995,38(16):3023-3034.
    [65]Allen J T. Laser-based measurements in two-phase flashing propane jets. Part two:Velocity profiles[J]. Journal of Loss Prevention in the Process Industries,1998,11:299-298.
    [66]Lee C, Kim B, Ko S. A new Lagrangian stochastic model for the gravity-slumping/spreading motion of a dense gas [J]. Atmospheric Environment,2007,41(36):7874-7886.
    [67]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1994:89-150.
    [68]李萍,丁珏,翁培奋.气液两相流泄漏扩散的数值模拟[J].应用力学学报,2006,23(6):182-187.
    [69]王福军,计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004:126-131.
    [70]Fluent Incorporated. FLUENT6.3 User's Guide [M]. Cavendish:Fluent Incorporated,2006.
    [71]Cebeci T, Bradshaw P. Momentum Transfer in Boundary Layers[M]. New York: Hemisphere Publishing Corporation,1977:45-69.
    [72]Morsi S A, Alexander A J. An Investigation of Particle Trajectories in Two-Phase Flow Systems [J]. J. Fluid Mech.,1972,55(2):193-208.
    [73]Dukowicz J K. Quasi-steady droplet change in the presence of convection[R]. California:Los Alamos Scientific Laboratory,1979.
    [74]Kuo K K Y. Principles of Combustion[M]. New York:John Wiley and Sons,1986.
    [75]张靖周,常海萍.传热学[M].北京:科学出版社,2009:154-200.
    [76]Vesovic V. The influence of ice formation on vaporization of LNG on water surfaces[J]. Journal of Hazardous Materials,2007,140 (3):518-526.
    [77]Kunsch J P, Fannelop T K. Unsteady heat-transfer effects on the spreading and dilution of dense gas clouds[J].Journal of Hazardous Materials,1995,43(3):169-193.
    [78]Thyer A M. A review of data on spreading and vaporisation of cryogenic liquid spills[J]. Journal of Hazardous Materials,2003,99(3):31-40.
    [79]林宗虎,气液两相流和沸腾传热[D],西安:两安交通大学出版社,2003:120-150.
    [80]Maoqiong Gong, Jia Ma, Jianfeng Wu, et al. Nucleate pool boiling of liquid methane and its natural gas mixtures[J]. International Journal of Heat and Mass Transfer,2009,52(11-12): 2733-2739.
    [81]conrado C,Vesovic V. The influence of chemical composition on vaporization of LNG and LPG on unconfined water surface[J].chem. Eng. Sci.,2000,55(2):4549-4562.
    [82]John L. Woodward,Robin Pitbaldo, LNG Risk Based Safety:Modeling and Consequence AnalysisfM]. published by John Wiley & Sons.Inc..Hoboken. New Jersey,2010.
    [83]Kalinin E K, Berlin I I, Kostyuk VV, et al. Heat Transfer in Transition Boiling of Cryogenic Liquids[J]. Advances in Cryogenic Engineering,1975,21:273-277.
    [84]王彦,信鹏,高萃仙,等.LNG接收站蒸发气的发生与气量计算[J].油气储运,2010,29(5):363-364.
    [85]顾安忠,鲁雪生,汪荣顺,等.液化天然气技术手册[M].北京:机械工业出版社,2010:65-116.
    [86]郭揆常,液化天然气(LNG)应用与安全[M].北京:中国石化出版社,2008:25-50.
    [87]于勇FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008:159-175.
    [88]Noh W F, Woodward P R. SLIC (simple line interface calculation)[C]. Springer, Berlin: Proceedings of the Fifth International Conference on Fluid Dynamics,1976:330-340.
    [89]Ahn, H T, Mikhail S. Geometric Algorithms for 3D Interface Reconstruction[C]. Washington:Proceedings of 16th International Meshing Roundtable,2007:405-422.
    [90]严家騄,余晓福,王永青.水和水蒸汽热力性质图表[M]. 北京:高等教育出版社,2005:22-26.
    [91]Mikami S, Kobayashi K, Ota T, et al.Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation [J]. Experimental Thermal and Fluid Science, 2006,30(8):795-800.
    [92]Sandra C K, De Schepper, Geraldine J,et al.Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker[J]. Computers and Chemical Engineering,2009,33(1):122-132.
    [93]Sandra C K, De Schepper, Geraldine J, et al. CFD modeling of all gas-liquid and vapor-liquid flow regimes predicted by the Baker chart[J].Chemical Engineering Journal, 2008,138 (1-3):349-357.
    [94]Lide D R. CRC handbook of chemistry and physics[M]. Boston:CRC Press,1998:9-21.
    [95]Ghajar A J, Tang C C. Heat transfer measurements, flow pattern maps, and flow visualization for non-boiling two-phase flow in horizontal and slightly inclined pipe[J].Heat Transfer Engineering,2007,28 (6):525-540.
    [96]高建成.焊接熔池相变传热特性及流体动力学分析[D].北京:北京工业大学,2009.
    [97]Zeoli N, Gu S, Kamnis S. Numerical modelling of metal droplet cooling and solidification[J]. International Journal of Heat and Mass Transfer,2008,51(15-16):4121-4131.
    [98]周建辉.高温固液相变蓄热器的结构设计和数值模拟[D].哈尔滨:哈尔滨工程大学,2004.
    [99]刘凤青.泡沫金属对相变蓄热强化性能的数值模拟及实验研究[D].河北:河北科技大学,2010.
    [100]Voller V R, Swaminathan C R.Generalized Source-Based Method for Solidification Phase Change[J].Numer.Heat Transfer B,1991,19(2):175-189.
    [101]Fluent Inc., Fluent 6.3 UDF Manual, Lebanon, USA:Fluent Inc.,2006.
    [102]National Fire Protection Association. NFPA59A, Standard for the Production, Storage, and Handling of Liquefied Natural Gas (LNG) [S]. Quincy, Massachusetts:National Fire Protection Association,2009.
    [103]中华人民共和国国家质量技术监督局.GB/T 20368-2006,液化天然气生产、储存和装运[S].北京:中国标准出版社,2004.
    [104]中华人民共和国建设部.GB 50183-2004,石油天然气工程设计防火规范[s].北京:中国计划出版社,2004.
    [105]中华人民共和国国家质量技术监督局.GB/T 19204-2003,液化天然气装置和设备:液化天然气的一般特性(S).北京:中国标准出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700