用户名: 密码: 验证码:
钢框架结构中2×2区格连续混凝土板抗火性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于钢筋混凝土材料的众多优点,其被广泛应用于各类建筑结构工程中。然而,火灾易造成材料性能恶化,严重时结构出现倒塌,所以近年来结构或构件的抗火性能研究受到国内外学者的广泛关注。
     最近,为了增强对整体结构中构件火灾行为的理解,本课题组开展了钢框架结构中单一区格受火工况的抗火试验研究。然而,在实际结构火灾中,楼板和钢梁多同时受火,单一受火的工况并不多见。因此,自制火灾试验炉,开展了钢框架结构中四区格(2×2)和钢梁同时受火的试验研究,其中梁柱节点、钢柱以及炉墙外围边梁均未受火。此外,鉴于火灾试验费用高、周期长,深入开展受火钢筋混凝土楼板理论分析及数值模拟研究具有重要的现实意义。
     本文主要完成以下几个方面的工作:
     (1)基于Borland C++6.0软件平台,采用面向对象设计方法和非线性温度场有限元理论,开发了考虑水分影响的温度场分析程序,采用若干试验结果验证了程序的有效性。
     (2)参照工业炉设计准则,自制火灾试验炉,对整体结构中楼板和钢梁的火灾行为进行了试验研究;简要介绍了试验炉设计情况、温度及变形测量方案,描述了试验现象、楼板裂缝以及节点、填充墙等破坏特征,主要分析了不同结构单元(楼板、钢梁和钢柱)的温度和变形规律,与相关试验结果进行了对比分析。结果表明,受火板格的开裂模式取决于其自身边界条件,非受火板格开裂模式取决于受火板格的数量和位置;相比单一受火钢梁构件,由于受到周围结构单元的约束作用,结构中钢梁具有较强的抗火承载能力;对比高强度螺栓连接节点,混合连接节点有效防止受火钢梁发生局部屈曲。最后,采用温度场非线性程序对楼板温度场进行了数值分析,计算结果和试验结果吻合较好。
     (3)基于塑性铰线理论,考虑塑性铰线处钢筋合力的竖向分量,结合板的配筋率,提出常温下钢筋混凝土板达到极限状态的应力和变形判断准则,利用改进板块平衡法对钢筋混凝土简支板的极限状态进行对比分析。结果表明,极限承载力计算值与试验结果吻合较好;与试验极限位移相比,极限位移计算值相对保守。此外,通过力学分析,解释了在相同挠度下方板极限承载力小于矩形板的破坏机理。
     考虑温度对材料特性的影响,将常温改进模型推广到高温状态,建立改进的受火钢筋混凝土板极限承载力计算模型,建议变形破坏准则取为l/30,使得计算结果偏于保守。
     (4)基于大挠度板单元、三维退化壳单元以及弹塑性理论,建立了常温和高温下钢筋混凝土板有限元分析方法,编制钢筋混凝土双向简支板非线性分析程序。
     对常温下钢筋混凝土双向板数值分析,考察了板底裂缝模式及拉压薄膜力分布图,探讨了钢筋混凝土板的受拉薄膜作用机理;分析轴向约束混凝土试件的应力—温度曲线变化规律,指出了瞬态热应变作用机理及其重要性;基于瞬态热应变单轴模型,提出瞬态模量的概念,建立瞬态热应变双轴计算模型,结合热弹塑性本构理论,对钢筋混凝土双向板的火灾行为进行了数值分析,揭示钢筋混凝土双向板的三阶段变形模式及每一阶段的力学机理;对火灾下钢筋混凝土板变形行为进行参数分析,结果表明自由膨胀应变和材料性能退化是影响钢筋混凝土板火灾行为的主要因素;混凝土瞬态热应变、钢筋蠕变及其破坏应变对钢筋混凝土板后期火灾行为有重要影响。
     研究表明,本文数值模型能够较好地模拟钢筋混凝土双向板火灾行为,这为进一步研究整体结构中楼板抗火性能提供了良好的分析平台。
Reinforced concrete structures are often used in the buildings due to a numeberof advantages over other construction materials. However, the material properties ofconcrete have been singificantly affected by the high temperature, sometimes thestructure collapse will occur. In recent years, many researchers have paid wideattention to the fire-resistant performance of the concrete structures or members.
     Recently, to further understand the fire behavior of structural members, ourteam has conducted several fire tests on one panel in a full-scale steel-framedbuilding. However, this case does not represent a real fire situation in a buildingbecause the steel beams are awalys subjected to fire. Therefore, a fire test furnacewas built to heat the four panels (two by two) and steel beams, and all of thebeam-to-column connections and columns were protected from direct fire exposureand the supporting members at the perimeters of the furnace wall were placed toavert fire. Additionally, the cost of fire tests is very high as well as long period. It isvery important to have analytical and numerical methods that can predict thebehavior of reinforced concrete slabs in fire.
     The main contents are listed as follows:
     (1) Based on Borland C++6.0and the object-oriented method, the nonlinearfinite element model, in which the moisture was taken into account, has beendeveloped with a computer program, and several comparisons were carried out todemonstrate the efficiency of this program.
     (2) According to the industrial furnace principle, a special furnace wasdesigned to study the fire behavior of floor slab and steel beams in a buidling. Thispaper briefly presents the furnace, temperature measurement, deflectionmeasurement. The experimental phenomena were discussed in detail as well as thefloor crack characteristic, joint fracture and filled wall crack. The temperaturedistribution of structural elements (floor, steel beams and columns) were mainlyanalyzed, together with their displacements, the present results were also comparedwith the other testing results. The test indicates that the cracking patterns in theheated panels depend on the restraint conditions, the number and locations of theheated panels in the floor have a considerable influence on the cracking patterns ofunheated panels. Also, the steel beams show better fire-resistant performance thanthat indicated in standard fire tests depending on their structural integrity and theinteraction between structural members. Unlike the high-strength bolt connections,the welded-bolted connections did not cause local buckling of the steel beams in fire.Finally, the floor temperature was simulated by the nonlinear temperature program, and the predictions agreed well with the testing results.
     (3) According to the yield-hinge line theory, the vertical component of steelforce was considered in the developed model. Based on the reinforcement ratio ofreinforced concrete slabs, two failure criteria (deflection and stress) were proposedto determine the load and displacement of the slabs. The effectiveness of thedeveloped model was validated through satisfactory comparison with testing results.The results show that the calculated carrying capacity of the slab was agreementwith the tests, and the calculated limit displacement was relatively conservative.Addtionally, according to the mechanical analysis, the model also explained thefailure mechanism that the limit carrying capacity of the square slab was lower thanthat of the rectangular slab under the same deflection.
     The above method can easily be adapted for analyzing the ultimate loads of theconcrete slabs in fire, through incorporating the thermal effects on the materialproperties. To obtain the conservative results, it is suggested that the deflectionfailure criterion can be considered to be l/30.
     (4) Based on the shell elements (flat and three-demensional degenerated) andthe elasto-plastic theory, the nonlinear finite element model was developed tosimulate the structural behaviour of the reinforced concrete slabs at ambient andelevated temperatures.
     The proposed model has been used to predict the structural behavior ofreinforced concrete slabs at ambient temperature, the predicted bottom layer crackpatterns were discussed and distributions of the membrane tractions were presentedto illustrate the tensile membrane action. The paper discussed the stress-temperaturebehavior of restrainted concrete specimens, and this was used to demonstrate theimportance of the transient strain as well as its mechanism. According to the unaxialtransient strain, this paper proposed transient strain model of concrete with transientmodulus under the biaxial stress state. The propsed model was used to simulate thefire behavior of the slab, and the three-stage response mode was revealed as well asthe mechanism of each stage. The free thermal strain and the material degerationhave significant influence on the fire behavior of reinforced concrete slabs. Theconcrete tranisent strain, the steel creep strain and its crush strain have played animportant part in the later fire behaviour of the slabs.
     In all, the results show that the propsoed model can be used to analyze the firebehavior of the slabs and the simulation system offers an efficient platform toinvestigate the fire behavior of floor in the building.
引文
[1]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.
    [2]丁发兴.圆钢管混凝土结构受力性能与设计方法研究[D].长沙:中南大学博士学位论文,2006.
    [3] Foster S,Bailey C G,Burgess I W,et al. Experimental Behaviour of ConcreteFloor Slabs at Large Displacements[J]. Engineering Structures,2004,26(9):1231-1247.
    [4] Bailey C G. Membrane Action of Slab/Beam Composite Floor Systems in Fire[J].Engineering Structures,2004,26(12):1691-1703.
    [5]张智梅.火灾下钢筋混凝土构件的热反应数值分析和抗火设计方法研究[D].上海:上海大学博士学位论文,2007.
    [6] Eurocode2. Design of Concrete Structures. ENV1992: Part1-2:General RulesStructural Fire Design[S]. BelgianApplication Document,Brussels,1999.
    [7]陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究[J].土木工程学报,1993,26(3):47-54.
    [8]时旭东,过镇海.钢筋混凝土结构的温度场[J].工程力学,1996,13(1):35-43.
    [9] Lie T,Irwin R. Method to Calculate the Fire Resistance of ReinforcedConcrete[J].ACI Structural Journal,1993,90(1):52-60.
    [10]胡克旭.高温下钢筋混凝土粘结滑移性能及钢筋混凝土门式框架抗火性能研究[D].上海:同济大学博士学位论文,1989.
    [11] Youssef M,Moftah M. General Stress-Strain Relationship for Concrete atElevated Temperatures[J]. Engineering Structures,2007,29(10):2618-2634.
    [12] Li L Y,Purkiss J. Stress–Strain Constitutive Equations of Concrete Material atElevated Temperatures[J]. Fire Safety Journal,2005,40(7):669-686.
    [13]陆洲导,朱伯龙,姚亚雄.钢筋混凝土框架火灾反应分析[J].土木工程学报,1995,28(6):18-27.
    [14]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究,1991,17(1):37-43.
    [15] Anderberg Y,Thelandersson S. Stress and Deformation Characteristics ofConcrete at Elevated Temperatures. Part II:Experimental Investigation andMaterial Behaviour Model. Bulletin,1976.
    [16] Zhang Y X,Bradford M A. Nonlinear Analysis of Moderately Thick ReinforcedConcrete Slabs at Elevated Temperatures Using a Rectangular Layered PlateElement with Timoshenko Beam Functions[J]. Engineering Structures,2007,29(10):2751-2761.
    [17] Gernay T,Franssen J M. A Formulation of the Eurocode2Concrete Model atElevated Temperature that Includes an Explicit Term for Transient Creep[J]. FireSafety Journal,2012,51(1):1-9.
    [18] Kodur V K R,Wang T C,Cheng F P. Predicting the Fire Resistance Behaviour ofHigh Strength Concrete Columns[J]. Cement and Concrete Composites,2004,26(2):141-153.
    [19] Lie T. Structural Fire Protection,Manuals and Reports on Engineering Practice,No.78.ASCE[M]. New York,1992.
    [20] Nechnech W,Meftah F,Reynouard J M. An Elasto-Plastic Damage Model forPlain Concrete Subjected to High Temperatures[J]. Engineering Structures,2002,24(5):597-611.
    [21] Sadaoui A,Khennane A. Effect of Transient Creep on the Behaviour ofReinforced Concrete Columns in Fire[J]. Engineering Structures,2009,31(9):2203-2208.
    [22] Nielsen C,Pearce C,Bi ani N. Theoretical Model of High Temperature Effectson Uniaxial Concrete Member under Elastic Restraint[J]. Magazine of ConcreteResearch,2002,54(4):239-249.
    [23] Thienel K C,Rostasy F S. Transient Creep of Concrete under Biaxial Stress andHigh Temperature[J]. Cement and Concrete Research,1996,26(9):1409-1422.
    [24] Kodur V K R,Dwaikat M M S. Effect of High Temperature Creep on the FireResponse of Restrained Steel Beams[J]. Materials and Structures,2010,43(10):1327-1341.
    [25] Lin T,Yang Y,Huang C. Inelastic Nonlinear Behavior of Steel Trusses CooledDown from a Heating Stage[J]. International Journal of Mechanical Sciences,2010,52(7):982-992.
    [26]南建林,过镇海,时旭东.混凝土的温度—应力耦合本构关系[J].清华大学学报,1997,37(6):23-29.
    [27] Lie T,Stanzak W. Empirical Method for Calculating Fire Resistance of ProtectedSteel Columns[J]. Engineering Journal,1974,57(56):73-80.
    [28] Poh K W. Stress-Strain-Temperature Relationship for Structural Steel[J]. Journalof Materials in Civil Engineering,2001,13(5):371-379.
    [29] Yang H,Han L H,Wang Y C. Effects of Heating and Loading Histories onPost-Fire Cooling Behaviour of Concrete-Filled Steel Tubular Columns[J].Journal of Constructional Steel Research,2008,64(5):556-570.
    [30] Kodur V K R,Cheng F P,Wang T C,et al. Effect of Strength and FiberReinforcement on Fire Resistance of High-Strength Concrete Columns[J].Journal of Structural Engineering,2003,129(2):1-22.
    [31] Huang Z F,Tan K H,Ting S K. Heating Rate and Boundary Restraint Effects onFire Resistance of Steel Columns with Creep[J]. Engineering Structures,2006,28(6):805-817.
    [32] Bratina S, as B,Saje M,et al. Numerical Modelling of Behaviour of ReinforcedConcrete Columns in Fire and Comparison with Eurocode2[J]. InternationalJournal of Solids and Structures,2005,42(21):5715-5733.
    [33] Bratina S,Saje M,Planinc I. The Effects of Different Strain Contributions on theResponse of RC Beams in Fire[J]. Engineering Structures,2007,29(3):418-430.
    [34] Anderberg Y. Modelling Steel Behaviour[J]. Fire Safety Journal,1988,13(1):17-26.
    [35] Harmathy T. A Comprehensive Creep Model[J]. Transactions of the ASME.Journal of Basic Engineering,1967,89(3):496-502.
    [36] Harmathy T,Stanzak W. Elevated-Temperature Tensile and Creep Properties ofSome Structural and Prestressing Steels[J]. ASTM Special Technical Publication,1970,4(64):186-208.
    [37] Lim L,BuchananA,Moss P,et al. Numerical Modelling of Two-Way ReinforcedConcrete Slabs in Fire[J]. Engineering Structures,2004,26(8):1081-1091.
    [38]陈礼刚.钢筋混凝土板受火性能的试验研究[D].西安:西安建筑科技大学博士学位论文,2004.
    [39]王滨,董毓利.四边简支钢筋混凝土双向板火灾试验研究[J].建筑结构学报,2009,30(6):23-33.
    [40]高立堂.无粘结预应力混凝土板火灾行为的试验研究及热弹塑性有限元分析
    [D].西安:西安建筑科技大学博士学位论文,2003.
    [41]李国强,周昊圣,郭士雄.火灾下钢结构建筑楼板的薄膜效应机理及理论模型[J].建筑结构学报,2007,28(5):40-47.
    [42]李国强,张娜思.组合楼板受火薄膜效应试验研究[J].建筑结构学报,2010,43(4):24-31.
    [43] Moss P,Dhakal R,Wang G,et al. The Fire Behaviour of Multi-Bay, Two-WayReinforced Concrete Slabs[J]. Engineering Structures,2008,30(12):3566-3573.
    [44] Tan K H,Toh W S,Huang Z F,et al. Structural Responses of Restrained SteelColumns at Elevated Temperatures. Part I: Experiments[J]. EngineeringStructures,2007,29(8):1641-1652.
    [45] Huang Z H,Burgess I W,Plank R J. Modeling Membrane Action of ConcreteSlabs in Composite Buildings in Fire. I:Theoretical Development[J]. Journal ofStructural Engineering,2003,129(8):1093-1102.
    [46] Wang Y. Tensile Membrane Action in Slabs and its Application to the CardingtonFire Tests[C]. Proceedings of the Second Cardington Conference,1996.
    [47] Wang Y,Lennon T,Moore D. The Behaviour of Steel Frames Subject to Fire[J].Journal of Constructional Steel Research,1995,35(3):291-322.
    [48] Huang Z H,Burgess I W,Plank R J. Modeling Membrane Action of ConcreteSlabs in Composite Buildings in Fire. II: Validations[J]. Journal of StructuralEngineering,2003,129(8):1103-1112.
    [49] Burgess I W,Huang Z H,Plank R J,et al.火灾下钢结构和组合结构的非线性模拟[J].建筑钢结构进展,2004,6(3):23-30.
    [50]吕俊利,董毓利,杨志年.受火条件下整体结构中组合梁破坏形态研究[J].沈阳建筑大学学报,2010,26(5):823-827.
    [51]杨志年,董毓利,吕俊利,等.整体结构中钢筋混凝土双向板火灾试验研究[J].建筑结构学报,2012,33(9):96-103.
    [52]成祥生.应用板壳理论[M].济南:山东科学技术出版社,1989.
    [53] Bailey C G. Computer Modelling of the Corner Compartment Fire Test on theLarge-Scale Cardington Test Frame[J]. Journal of Constructional Steel Research,1998,48(1):27-45.
    [54] Bailey C G,Burgess I W,Plank R J. Computer Simulation of a Full-ScaleStructural Fire Test[J]. Structural Engineer,1996,74(60):93-100.
    [55] Bailey C G,Toh W S. Behaviour of Concrete Floor Slabs at Ambient andElevated Temperatures[J]. Fire Safety Journal,2007,42(6-7):425-436.
    [56] Bailey C G,Toh W S. Small-Scale Concrete Slab Tests at Ambient and ElevatedTemperatures[J]. Engineering Structures,2007,29(10):2775-2791.
    [57] Li G Q,Guo S X,Zhou H S. Modeling of Membrane Action in Floor SlabsSubjected to Fire[J]. Engineering Structures,2007,29(6):880-887.
    [58]李国强,郭士雄,周昊圣.火灾下钢结构建筑楼板的薄膜效应模型验证及实用方法[J].建筑结构学报,2007,28(5):48-53.
    [59] Dong Y L. Tensile Membrane Effects of Concrete Slabs in Fire[J]. Magazine ofConcrete Research,2010,62(7):497-505.
    [60] Dong Y L,Zhu E C. Limit Load Carrying Capacity of Two-Way Slabs with TwoEdges Clamped and Two Edges Simply Supported in Fire[J]. Journal ofStructural Engineering,2010,137(10):1182-1192.
    [61]王振清,苏娟,王永军,等.火灾下钢筋混凝土楼板的薄膜效应分析[J].哈尔滨工程大学学报,2009,30(8):878-882.
    [62]苏娟.火灾作用下钢筋混凝土结构非线性分析[D].哈尔滨:哈尔滨工程大学博士学位论文,2008.
    [63] Huang Z H,Burgess I W,Plank R J. NonlinearAnalysis of Reinforced ConcreteSlabs Subjected to Fire[J].ACI Structural Journal,1999,96(1):127-135.
    [64] Kodur V K R,Sultan M. Structural Behaviour of High Strength ConcreteColumns Exposed to Fire[C]. Proceedings:International Symposium on HighPerformance and Reactive Powder Concrete,1998,pp.217-232.
    [65] Tan K H,Yao Y. Fire Resistance of Four-Face Heated Reinforced ConcreteColumns[J]. Journal of Structural Engineering,2003,129(9):1220-1229.
    [66] Franssen J M. Failure Temperature of a System Comprising a Restrained ColumnSubmitted to Fire[J]. Fire Safety Journal,2000,34(2):191-207.
    [67] Arezki S,Amar K. Effect of Transient Creep on the Behaviour of ReinforcedConcrete Columns in Fire[J]. Engineering Structures,2009,31(5):2203-2208.
    [68] Tan K H,Ting S K,Huang Z F. Visco-Elasto-PlasticAnalysis of Steel Frames inFire[J]. Journal of Structural Engineering,2002,128(1):105-114.
    [69]赵金城,沈为平.高温下钢框架结构非线性有限元分析[J].上海交通大学学报,1996,30(8):55-59.
    [70]陈适才,任爱珠,王静峰,等.钢筋混凝土楼板火灾反应数值计算模型[J].工程力学,2008,25(3):107-112.
    [71]刘永军.钢筋混凝土结构火灾反应数值模拟及软件开发[D].大连:大连理工大学博士学位论文,2002.
    [72] Han L H. Fire Performance of Concrete Filled Steel Tubular Beam-Columns[J].Journal of Constructional Steel Research,2001,57(6):697-711.
    [73] Ju C,Ben Y. Design of High Strength Steel Columns at Elevated Temperatures[J].Journal of Constructional Steel Research,2008,64(6):689-703.
    [74] Calvert C. C++Builder应用开发大全[D].北京:清华大学出版社,1999.
    [75]钱能. C++程序设计教程[M].清华大学出版社,2005.
    [76]谭浩强. C++面向对象程序设计[M].清华大学出版社,2006.
    [77]谭浩强. C语言程序设计题解与上机指导[M].清华大学出版社,2000.
    [78] Bittencourt M L. Using C++Templates to Implement Finite Element Classes[J].International Journal for Computer-Aided Engineering,2000,17(7):775-788.
    [79] Capua D D,MariAR. NonlinearAnalysis of Reinforced Concrete Cross-SectionsExposed to Fire[J]. Fire Safety Journal,2007,42(2):139-149.
    [80]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [81]吴晓涵.面向对象结构分析程序设计[M].北京:科学出版社,2002.
    [82] Lim L,BuchananA,Moss,P,et al. Computer Modeling of Restrained ReinforcedConcrete Slabs in Fire Conditions[J]. Journal of Structural Engineering,2004,130(12):1964-1971.
    [83] Bailey C G. Membrane Action of Unrestrained Lightly Reinforced Concrete Slabsat Large Displacements[J]. Engineering Structures,2001,23(5):470-483.
    [84] Gillie M,Usmani A,Rotter J M. A Structural Analysis of the First CardingtonTest[J]. Journal of Constructional Steel Research,2001,57(6):581-601.
    [85] Yang Z N,Dong Y L,Xu W J. Fire Tests on Two-Way Concrete Slabs in aFull-Scale Multi-Storey Steel-Framed Building[J]. Fire Safety Journal,2013,58:38-48.
    [86]王秉铨.工业炉设计手册[M].北京:机械工业出版社,2010.
    [87]杨志年.不同边界约束条件的混凝土双向板抗火性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2013.
    [88]吕俊利,董毓利,杨志年.钢框架边跨梁抗火性能试验研究和理论分析[J].建筑结构学报,2011,32(9):92-98.
    [89]吕俊利,董毓利,杨志年.单跨组合梁火灾变形性能研究[J].哈尔滨工业大学学报,2011,43(8):16-20.
    [90]董毓利.两层两跨组合钢框架抗火性能的试验研究[J].建筑钢结构进展,2009,11(3):37-50.
    [91]董毓利.混凝土结构的火安全设计[M].北京:科学出版社,2001.
    [92]贾宝荣,董毓利,李晓东.不同跨受火时两层两跨钢框架火灾行为试验[J].哈尔滨工业大学学报,2008,40(12):2024-2028.
    [93] Eurocode2. Design of Concrete Structures ENV1992:Part1-2:General RulesStructural Fire Design[S].1995.
    [94] Jones L L,Wood R H. Yield-Line Analysis of Slabs[M]. New York: AmericanElsevier Publishing Company,1967.
    [95]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1993.
    [96]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2003.
    [97]董毓利.用变形和分解原理求混凝土板的受拉薄膜效应[J].力学学报,2010,42(6):1180-1187.
    [98] Dong Y L,Fang Y Y. Determination of Tensile Membrane Effects by SegmentEquilibrium[J]. Magazine of Concrete Research,2010,62(1):17-23.
    [99] Park R, Gamble W L. Reinforced Concrete Slabs[M]. New York:John Wiley&Sons Inc,2000.
    [100] Taylor R,Maher D,Hayes B. Effect of theArrangement of Reinforcement on theBehavior of Reinforced Concrete Slabs[J]. Magazine Concrete Research,1966,18(55):85-94.
    [101] Ghoneim M G,McGregor J G. Tests of Reinforced Concrete Plates underCombined Inplane and Lateral Loads[J].ACI Structural Journal,1994,91(1):19-30.
    [102] Lim L,Wade C A. Experimental Fire Tests of Two-Way Concrete Slabs;FireEngineering Research Report02/12[R]. Christchurch,University of CanterburySchool of Engineering,2002.
    [103] Feist C,Aschabar M,Hofstetter G. Numerical Simulation of the Load-CarryBehavior of RC Tunnel Structures Exposed to Fire[J]. Finite Elements in Analysisand Design,2009,45(10):958-965.
    [104]宋启根.钢筋混凝土计算力学[M].南京:东南大学出版社,1995.
    [105]孟凡中.弹塑性有限变形理论和有限元方法[M].北京:清华大学出版社,1985.
    [106]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [107]谢贻权,何福保.弹性和塑性力学中的有限元法[M].北京:机械工业出版社,1981.
    [108]殷有泉.固体力学非线性有限元引论[M].北京:北京大学出版社,清华大学出版社,1987.
    [109]王仁.塑性力学基础[M].北京:科学出版社,1982.
    [110] Hinton E,Owen D. Finite Element Software for Plates and Shells[M]. PineridgePress,1984.
    [111]何政,欧进萍.钢筋混凝土结构非线性分析[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [112] Liu T. Finite Element Modelling of Behaviours of Steel Beams and Connectionsin Fire[J]. Journal of Constructional Steel Research,1996,36(3):181-199.
    [113] Xu Y,Wu B. Fire Resistance of Reinforced Concrete Columns with L-, T-,and+-Shaped Cross-Sections[J]. Fire Safety Journal,2009,44(6):869-880.
    [114] Crisfield M A. An Arc-Length Method Including Line Searches andAccelerations[J]. International Journal for Numerical Methods in Engineering,1983,19(9):1269-1289.
    [115]姜峰,李博宁,丁丽娜.面向对象的钢筋混凝土有限元非线性分析程序设计[J].计算力学学报,2003,20(5):592-596.
    [116]万正权,徐秉汉,朱邦俊.弹塑性板壳结构非线性有限元分析[J].船舶力学,1997,1(1):32-39.
    [117]武振宇,戴仰山,姚熊亮.板壳结构非线性分析的数值方法[J].船舶力学,1998,2(6):44-49.
    [118]武振宇.直接焊接钢管节点静力工作性能的研究[D].哈尔滨:哈尔滨建筑大学博士学位论文,1997.
    [119] De Borst R,Peeters P P J M. Analysis of Concrete Structures under ThermalLoading[J]. Computer Methods in Applied Mechanics and Engineering,1989,77(3):293-310.
    [120] Huang Z H,Burgess I W,Plank J R. Effective Stiffness Modelling of CompositeConcrete Slabs in Fire[J]. Engineering Structures,2000,22(9):1133-1144.
    [121] Riks E. An Incremental Approach to the Solution of Snapping and BucklingProblems[J]. International Journal of Solids and Structures,1979,15(7):529-551.
    [122] Crisfield M. Accelerating and Damping the Modified Newton-RaphsonMethod[J]. Computers and Structures,1984,18(3):395-407.
    [123]过镇海,李卫.混凝土在不同应力—温度途径下的变形试验和本构关系[J].土木工程学报,1993,26(5):58-69.
    [124]李卫,过镇海.高温下混凝土的温度和变形性能的试验研究[J].建筑结构学报,1993,14(1):8-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700