用户名: 密码: 验证码:
慢病毒介导中国人产甲酸草酸杆菌中草酸分解基因FRC和OXC转染肝干细胞的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:中国人产甲酸草酸杆菌中甲酰辅酶A转移酶基因FRC和草酰辅酶A脱羧酶基因OXC慢病毒过表达载体的构建及慢病毒制备
     目的:产甲酸草酸杆菌(Oxalobacter fomigenes, Ox.F)是一种能降解草酸的肠道厌氧菌,其中降解草酸的关键酶是甲酰辅酶A转移酶(Formyl-CoA transferase, FCoAT)和草酰辅酶脱羧酶(Oxalyl-CoA Decarboxylase, OcoAD)。从中国人肠道产甲酸草酸杆菌Ox.F中克隆编码FCoAT的FRC基因和OCoAD的OXC基因,并将FRC基因和OXC基因分别与过表达慢病毒载体重组,制备能表达FCoAT和FCoAT的慢病毒,为下一步转染肝干细胞治疗高草酸尿症奠定基础。
     方法:用细菌基因组提取试剂盒提取中国人Ox.F的基因组DNA作为模板,用Taq高保真DNA聚合酶分别扩增FRC基因和OXC基因片段,用DNA凝胶回收试剂盒切胶回收扩增片段,用DNA连接试剂盒将回收产物分别与pMD18-T Simple载体连接,分别获得FRC基因和OXC基因的克隆载体,并转化大肠杆菌DH5α感受态细胞,挑取阳性克隆并进行测序,筛选出携带完整目的基因的质粒pMD18T simple- FRC和pMD18T simple-OXC,质粒提取,用BamHⅠ限制性内切酶分别对pMD18T simple-FRC和pMD18T simple-OXC进行酶切获得目的基因,连接目的基因片段FRC和携带绿色荧光蛋白的pLenti6.3/v5 DEST-IRES-EGFP,连接基因片段OXC与表达红色荧光蛋白的pLenti6.3/v5 DEST-IRES-DsRED,分别转化大肠杆菌DH5α感受态细胞,挑取阳性克隆,质粒小量提取并测序鉴定。重组慢病毒过表达载体pLenti6.3-FRC-IRES-EGFP和pLenti6.3-OXC-IRES-DsRED转染HEK293T细胞,包装收集并测定慢病毒滴度。结果:PCR扩增分别获得含有大小约为1.3 kb和1.7 kb的DNA片段,大小与Genebank中FRC和OXC基因序列相符。测序鉴定证实pLenti6.3-FRC-IRES-EGFP和pLenti6.3-OXC-IRES-DsRED分别含有正向的FRC cDNA和OXC cDNA,转染HEK293T细胞实验24小时后,在荧光显微镜下分别可见大量绿色荧光和红色荧光,病毒滴度分别为1.15×108TU/ml和9.75×107TU/ml。
     结论:成功构建表达中国人肠道产甲酸草酸杆菌FCoAT基因FRC的慢病毒载体pLenti6.3-FRC-IRES-EGFP和OcoAD基因OXC的慢病毒pLenti6.3-OXC-IRES-DsRED,并制备了高滴度的过表达慢病毒载体。
     第二部分:胚胎来源大鼠肝干细胞的分离培养鉴定及绿色荧光转染
     目的:研究大鼠胚胎来源的肝干细胞分离培养鉴定,将绿色荧光蛋白转入原代肝干细胞为后续转基因肝干细胞移植动物实验提供示踪条件。
     方法:体外联合机械分离和胶原酶消化法分离孕13.5 d SD大鼠胚胎来源肝干细胞,随后通过半量换液法纯化细胞,采用间接免疫荧光法、Real—time PCR和Western Blot对培养原代5天的细胞进行鉴定,应用特异性培养基培养传代纯化的细胞。利用电转染技术将绿色荧光蛋白转入传至第三代的细胞。
     结果:原代培养的胎肝干细胞24 h后显微镜下可见细胞半贴壁状态,形态大致相同,呈圆形或卵圆形;第2天观察细胞为大小几乎一致的圆形;培养第3天出现一些由3、5个形态一致的细胞集落,细胞直径6~10μm;细胞集落不断增大,至第5天集落中细胞数量增至10个左右,集落由大小不等的致密圆形细胞组成,界限清楚;第8天后细胞呈上皮样铺展;第12天时,细胞变大呈煎蛋样摊开,形态不规则,细胞浆内可见颗粒,生长变得缓慢;传代后细胞扩增速度无明显变化,至第3代仍保持较均一的上皮细胞状。通过间接免疫荧光法和Western Blot从蛋白水平检测出纯化细胞表达干细胞标志物CD34和胆管细胞标志物CK19, Real-time PCR检测出甲胎蛋白AFP和白蛋白ALB在基因水平表达,可认为分离纯化细胞为肝干细胞;绿色荧光能在电转后的肝干细胞中稳定表达。
     结论:联合机械分离法和酶消化法分离纯化出孕鼠胎肝干细胞是一种简单、经济、有效的方法,稳定表达绿色荧光的肝干细胞为下一步草酸分解基因转染的肝干细胞移植治疗PH提供相应基础。
     第三部分:慢病毒介导甲酰辅酶A转移酶FRC基因和草酰辅酶A脱羧酶OXC基因转染肝干细胞的实验研究
     目的:观察甲酰辅酶A转移酶FRC基因和草酰辅酶A脱羧酶OXC基因慢病毒表达载体转染后的肝干细胞的目的基因表达情况和草酸分解功能分析。
     方法:用前期构建的慢病毒过表达载体pLenti6.3-FRC-IRES-EGFP和pLenti6.3-OXC-IRES-DsRED转染分离纯化的肝干细胞,然后流式分选,并用Real—time PCR和Western Blot检测阳性细胞中目的基因的表达情况。最后用离子色谱仪检测转染目的基因、转染空质粒后细胞对于含草酸培养液中的草酸分解功能。
     结果:pLenti6.3-FRC-IRES-EGFP和pLenti6.3-OXC-IRES-DsRED两种慢病毒过表达载体成功转染肝干细胞,分别可见绿色荧光和红色荧光,流式细胞仪分选能提高阳性表达率。Real—time PCR和Western Blot分别检测到FRC和OXC在基因水平和蛋白水平表达。离子色谱仪检测出pLenti6.3-FRC-IRES-EGFP稳转的细胞培养一周后各组草酸浓度分别为空白组[(1.58±0.03)g/L]、转染空质粒细胞组[(1.57±0.01)g/L]、转染细胞组[(1.37±0.02)g/L],三组相比有统计学显著差异(P<0.01)
     结论:慢病毒转染草酸分解基因是肝干细胞持续获得草酸分解能力的一种有效途径,具有草酸分解功能的肝干细胞为细胞移植治疗高草酸尿奠定基础。
PartⅠConstruction and Identification of Recombinant Lentiviral Expressing Vectors FRC and OXC From Chinese Oxalobacter Formigenes
     OBJECTIVE:Oxalobacter formigenes(Ox.F) is an obligate anaerobe which can degrades oxalates using oxalyl-CoA decarboxylase and formyl-CoA transferase encoded by the OXC and FRC genes, respectively. To clone FRC and OXC from Oxalobacter formigenes in Chinese people intestines, then construct and manufacture recombinant lentiviral expressing vectors pLenti6.3-FRC-IRES-EGFP and pLenti6.3-OXC-IRES-DsRED,providing a basis for further study on transgenic hepatic stem cells for treatment for hyperoxalurias.
     MATERIALS AND METHODS:The Oxalobacter formigenes were isolated from Chinese fecal specimens previously and stored in our laboratory. Then template DNA from Chinese Oxalobacter formigenes was isolated by bacterial genome extraction kit, the cDNA of FRC and OXC were cloned by PCR with Taq DNA polymerases and then ligated with pMD18T simple vectors after retrieve and purification. The ligation products were transformed into competent E.coli DH5α.The positive recombinant clones were selected and identified by a complementation, restriction endonuclease digestion. The cloning vector first digested with BamHⅠand the lentivirus vectors pLenti6.3/v5 DEST-IRES-EGFP and pLenti6.3/v5 DEST-IRES- DsRED were ligated and transformed respectivly. The DNA sequence analysis were performed to confirm the recombinant lentiviral vector and the titer of constucted lentivirus vectors were detected.
     RESULTS:Two fragments of 1287 bp and 1707bp was obtained by PCR respectivly. The enzyme and PCR analyses revealed that the correct FRC and OXC cDNA was cloned. The sequence of pLenti6.3-FRC-IRES-EGFP and pLenti6.3-OXC-IRES-DsRED was identical to the sequence of cloned cDNA respectivly.HEK293T cells were observed green and red fluorescent after 24h transfection, Two type of virus titers were 1.15×108TU/ml and 9.75×10'TU/ml respectively.
     CONCLUSIONS:FRC and OXC was cloned correctly and the recombinant lentiviral vector pLenti6.3-FRC-IRES-EGFP and pLenti6.3-OXC-IRES-DsRED was constructed successfully, then high titer of Lentivirus was prepared
     PartⅡThe identification and GFP transfection of fetal hepatic stem cells with mechanical separation and enzymatic digestion methods
     OBJECTIVE:To isolate and identificate hepatic stem cells by mechanical separation and enzymatic digestion methods from rat fetal liver and observe green fluorescent protein (GFP) expression after tranfection with pEGFP-C1 plasmid.
     MATERIALS AND METHODS:Mechanical separation and enzymatic digestion method were used to isolate fetal hepatic stem cells from fetal Sprague Dawley rat liver tissues following pregnant for 13.5 days. Half-amount medium replacement was used for purify isolated fetal liver cells following cultured in specific medium. Immunofluorescence technique, Real-time PCR and Western Blot was used to identify adherent cells.The fetal hepatic stem cells of 3 passage were tranfected by electroporation with pEGFP-C1 plasmid.
     RESULTS:The isolated fetal hepatic stem cells adhered to the culture plastic and presented with round or oval shape after 24-hours cultivation in vitro. Isolated cells were almost equal circular after 2 days cultivation. Cells grew into a colony which was constructed by 3 or 5 cells at 3 days, with cell diameter of 6-10μm; cell colony became more bigger and constructed by 10 cells; the colony was composed of dense round cells of various sizes with clear boundary at 5 days. At 8 days, they grew like epithelium cell. At 12 days, cells became big and extended like fried egg with irregular forms, especially in cytoplasm. Following passage, there were no significant changes in cell amplification speed. Cells still presented epithelium-like shape at the passage 3. The adhered cells at 5 days following primary incubation were positively for human stem cell factor receptor CD34 and cytokeratin 19 using immunofluorescence technique and Western Blot. Real-time PCR detected the AFP and ALB expressed in the adhered cells. GFP can stably express in transgenic cells after pEGFP-C1 plasmid transfection.
     CONCLUSIONS:The mechanical separation and enzymatic digestion methods is a simple, economic and effective method to isolate hepatic stem cells from rat fetal liver. The transgenic fetal hepatic stem cell with GFP is the basis of hepatic stem cell transplantation for curation of PHs.
     PartⅢFunctional Analysis of transgenic fetal hepatic stem cells with PLenti6.3-FRC-IRES-EGFP和pLenti6.3-OXC-IRES-DsRED
     OBJECTIVE:To investigate the oxalate-degrading effects of fetal hepatic stem cells with lentivirul vector transfection of genes encoding oxalate-degrading enzyme from Chinese Ox.F in vitro.
     MATERIALS AND METHODS:We applied the pre-constucted over-expression lentiviral vector pLenti6.3-FRC-IRES-EGFP and pLenti6.3-OXC-IRES-DsRED to transfect fetal hepatic stem cells, and then sort positive cells by flow Cytometry.Then detect the expression of oxalate-degrading enzyme genes used Real—time PCR and western Blot. Finally, The oxalate-degrading function of transgenic cells was analyzed by ion chromatography.
     RESULTS:The hepatic stem cells were successfully transfected with Lentiviral overexpression vector pLenti6.3-OXC-IRES-DsRED and pLenti6.3-FRC-IRES-EGFP. Real—time PCR and Western Blot respectively detected in the expression of FRC and the OXC in gene and protein levels. Compared with the three cell groups,The concentration of oxalate in culture medium of pLenti6.3-FRC-IRES-EGFP transgenic cells[(1.37±0.02)g/L] was lower than that of blank vector transgenic cells control group [(1.57±0.01)g/L]and blank control group [(1.58±0.03)g/L] (P< 0.01).
     CONCLUSIONS:Lentiviral vector transfection of oxalate-degrading enzyme genes is an effective way which make fetal heptic stem cells have potency of oxalate-degrading sustainably, It lay a good foundation for cell transplantation in the management of Hyperoxaluria.
引文
1. Parmar MS. Kidney stones. BMJ 2004 328(7453):1420-4.
    2.叶章群,邓耀良,董诚,陈志强,主编.泌尿系结石(第2版).北京人民卫生出版社,2010.
    3. Kwak C, Kim HK, Kim EC, et al. Urinary oxalate levels and the enteric bacterium Oxalobacter formigenes in patients with calcium oxalate urolithiasis[J]. Eur Urol, 2003,44(4):475-481
    4. Holmes RP, Goodman HO, Assimos DG. Contribution of dietary oxalate to urinary oxalate excretion[J]. Kidney Int,2001;59:270-6
    5. Hoppe B, Beck BB, Milliner DS. The primary hyperoxalurias[J]. Kidney Int. 2009,75(12):1264-71.
    6. Lewandowski S, Rodgers AL. Idiopathic calcium oxalate urolithiasis:risk factors and conservative treatment[J]. Clinica Chimica Acta,2004,345:17-34
    7. Hoppe, B, Langman, CB. A United States survey on diagnosis, treatment, and outcome of primary hyperoxaluria[J]. Pediatr Nephrol,2003,18(10):986-991.
    8. Jaeger P, Robertson WG. Role of dietary intake and intestinal absorption of oxalate in calcium stone formation [J]. Nephron Physiol,2004,8:64-71.
    9. Goldfarb DS. Microorganisms and calcium oxalate stone disease [J]. Nephron Physiol. 2004,98:48-54.
    10. Mittal RD, Kumar R.Gut-inhabiting bacterium Oxalobacter formigenes:role in calcium oxalate urolithiasis [J].J Endourol,2004;18:418-24
    11.陈志强,郭辉,叶章群等.人肠道产甲酸草酸杆菌的分离培养[J].中华实验外科杂志,2005,22(11):1402-1403.
    12. H Sidhu, SD Ogden, HY Lung,et al.DNA sequencing and expression of the formyl coenzyme A transferase gene, frc, from Oxalobacter formigenes [J]. J. Bacteriol.1997, 107:3378-3381.
    13. Lung, H.Y., A. L. Baetz, and A. B. Peck.. Molecular cloning, DNA sequence, and gene expression of the oxalyl-coenzyme A decarboxylase gene,oxc, from the bacterium Oxalobacter formigenes[J]. J Bacteriol.1994; 176:2468-2472.
    14. Danpure CJ. Primary hyperoxaluria. In:Scriver CR, Beaudet AL, Sly WS et al. (eds). The Metabolic and Molecular Bases of Inherited Disease.McGraw-Hill:New York, 2001, pp 3323-3367.
    15. Bobrowski AE, Langman CB:Hyperoxaluria and systemic oxalosis:current therapy and future directions [J]. Expert Opin Pharmacother 2006; 7:1887-1896.
    16. Hoppe B, Kemper MJ, Benkamp A, Portale AA, Cohn RA, Langman CB:Plasma calcium oxalate supersaturation in children with primary hyperoxaluria and end-stage renal failure[J]. Kidney Int 1999; 56:268-274.
    17. Milliner D:Treatment of the primary hyperoxalurias:a new chapter[J]. Kidney Int 2006; 70:1198-1200
    18. Connelly S. Adenoviral vectors for liver-directed gene therapy [J]. Curr Opin Mol Ther. 1999,1(5):565-572.
    19. Bartosch B, Cosset FL. Strategies for retargeted gene delivery using vectors derived from lentiviruses [J]. Curr Gene Ther.2004;4:427-443.
    20. Jonsson S,Ricagno S,Lindqvist Y, et al.Kinetic and mechanistic characterization of the formyl—CoA transferase from Oxalobacter formigenes [J]. J Biol Chem,2004, 279(34):36003—36012.
    21. Kwak C,Jeong BC,Kim HK,et al.Molecular epidemiology of fecal Oxalobacter formigenes in healthy adults living in Seoul, Korea[J]. J Endourol,2003,17(4): 239-243.
    1.叶章群.泌尿系结石研究现状与展望.中华实验外科杂志[J],2005,22(3):261-262
    2. Lewandowski S, Rodgers AL. Idiopathic calcium oxalate urolithiasis:risk factors and conservative treatment[J]. Clinica Chimica Acta,2004,345:17-34
    3. Bernd H, Bodo BB, Dawn S.M. The primary hyperoxalurias[J].Kidney Int 2009, 75:1264-1271
    4. Kwak C, Kim HK, Kim EC, et al. Urinary oxalate levels and the enteric bacterium Oxalobacter formigenes in patients with calcium oxalate urolithiasis [J]. Eur Urol 2003 44(4):475-481
    5. Leumann E, Hoppe B.The primary hyperoxalurias[J]. J Am Soc Nephrol 2001,12: 1986-1993
    6. Mitry RR, Hughes RD, Aw MM,et al. Human hepatocyte isolation and relationship of cell viability to early graft function[J]. Cell Transplant.2003;12(1):69-74.
    7. Terry C, Hughes RD. An optimised method for cryopreservation of human hepatocytes[J]. Methods Mol Biol.2009;481:25-34.
    8. Yock Young Dan, George C Yeoh. Liver stem cells:A scientific and clinical perspective[J]. Journal of Gastroenterology and Hepatology,2008,23:687-698
    9. Ellor S, Shupe T, Petersen B. Stem cell therapy for inherited metabolic disorders of the liver[J]. Exp Hematol.2008;36(6):716-725
    10. Maggie H. Walkup, David A. Gerber. Gerber.Hepatic Stem Cells:In Search of[J]. Stem Cells 2006; 24; 1833-1840
    11. R.M. Arahuetes, E. Sierra, J. Codesal,et al. Optimization of the technique to isolate fetal hepatocytes,and assessment of their functionality by transplantation[J]. Life Sciences, 2001,68:763-772
    12. Kravchenko L, Petrenko A, Shanina I,et al. A simple non-enzymatic method for the isolation of high yields of functional rat hepatocytes[J]. Cell Biol. Int,2002,26 (11) 1003-1006.
    13.Yasui O,Miura N,Terada K,et al. Isolation of oval cells from Long-Evans Cinnamon rats and their transformation into hepatocytes in vivo in the rat liver[J]. Hepatology,1997,25(12):329-334
    14. Suzuki A, Sekiya S, Onishi M,et al. Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver[J]. Hepatology. 2008;48(6):1964-1978.
    15. Wright N, Samuelson L, Walkup MH,et al. Enrichment of a bipotent hepatic progenitor cell from naive adult liver tissue[J]. Biochem Biophys Res Commun.2008;366(2): 367-372.
    16. VanThor JJ. Photoreactions and dynamics of the green fluorescent protein[J],Chem Soc Rev,2009,38(10):2935-2950
    17. Kubota H, Reid LM. Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigen[J]. Proc Natl Acad Sci U S A.2000;97(22):12132-12137.
    18. Millar AJ, Carre IA, Strayer CA,et al. Circadian clock mutants in Arabidopsis identified by luciferase imaging[J]. Science.1995;267(5201):1161-1163.
    19. Murai N, Miyake Y, Tsuzuki S,et al. Involvement of the cytoplasmic juxtamembrane region of matriptase in its exclusive localization to the basolateral membrane domain of Madin-Darby canine kidney epithelial cells[J]. Cytotechnology.2009;59(3):169-176.
    20. Paic F, Igwe JC, Nori R,et al. Identification of differentially expressed genes between osteoblasts and osteocytes[J]. Bone.2009;45(4):682-692.
    21.Zaret KS. Liver specification and early morphogenesis. Mech Dev[J].2000;92(1): 83-88.
    22. Lemaigre F, Zaret KS. Liver development update:new embryo models, cell lineage control, and morphogenesis[J]. Curr Opin Genet Dev.2004;14(5):582-590.
    23. Sandhu JS, Petkov PM, Dabeva MD,et al. Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells[J]. Am J Pathol.2001;159(4): 1323-1334.
    24. Lowes KN, Croager EJ, Olynyk JK,et al. Oval cell-mediated liver regeneration:Role of cytokines and growth factors[J]. J Gastroenterol Hepatol.2003;18(1):4-12.
    25. Swenson ES, Kuwahara R, Krause DS,et al. Physiological variations of stem cell factor and stromal-derived factor-1 in murine models of liver injury and regeneration[J]. Liver Int.2008;28(3):308-318.
    26. Malhi H, Irani AN, Gagandeep S,et al. Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes[J]. J Cell Sci.2002;115(Pt 13):2679-2688.
    27. Hanington PC, Patten SA, Reaume LM,et al. Analysis of leukemia inhibitory factor and leukemia inhibitory factor receptor in embryonic and adult zebrafish (Danio rerio) [J]. Dev Biol.2008;314(2):250-260.
    28. Oh SH, Miyazaki M, Kouchi H,et al. Hepatocyte growth factor induces differentiation of adult rat bone marrow cells into a hepatocyte lineage in vitro[J]. Biochem Biophys Res Commun.2000;279(2):500-504.
    29. Wang J, Clark JB, Rhee GS,et al. Proliferation and hepatic differentiation of adult-derived progenitor cells[J]. Cells Tissues Organs.2003;173(4):193-203.
    30. Julie S Nielsen, Kelly M McNagny. Novel functions of the CD34 family[J]. Journal of Cell Science2008; 121,3683-3692
    31. Tee LB, Kirilak Y, Huang WH, et al.Dual phenotypic expression of hepatocytes and bile ductular markers in developing and preneoplastic rat liver[J].Carcinogenesis. 1996;17(2):251-9.
    32. Jain Richa, Fischer Sandra, Serra Stefano. et al.The Use of Cytokeratin 19 (CK19) Immunohistochemistry in Lesions of the Pancreas, Gastrointestinal Tract, and Liver. Applied Immunohistochemistry & Molecular Morphology[J].2010;18(1):9-15
    33.Koul S, Johnson T, Pramanik S, Koul H. Cellular transfection to deliver alanine-glyoxylate aminotransferase to hepatocytes:a rational gene therapy for primary hyperoxaluria-1 (PH-1). Am J Nephrol.2005;25:176-82.
    1. Ramello A, Vitale C, Marangella M.Epidemiology of nephrolithiasis[J]. J Nephrol2000;13(Suppl.3):S45-50
    2. Parmar MS. Kidney stones[J]. BMJ 2004 328(7453):1420-4.
    3. Kwak, Cheol; Kim, Hee Kyung; Kim, Eui Chong, et al. Urinary oxalate levels and the enteric bacterium Oxalobacter formigenes in patients with calcium oxalate urolithiasis[J]. Eur Urol 2003 44(4):475-481
    4. Bernd Hoppe, Bodo B. Beck, Dawn S. Milliner. The primary hyperoxalurias[J]. Kidney Int 2009 75:1264-1271
    5. Leumann E, Hoppe B.The primary hyperoxalurias[J]. J Am Soc Nephrol 200112: 1986-1993
    6. Allison MJ, Dawson KA, Mayberry WR et al.Oxalobacter formigenes gen. nov., sp. nov.:oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol[J].1985,141:1-7,.
    7. Doane LA,Liebman M,Caldwell DR.Microbial oxalate degradation:effects on oxalate and calcium balance in humans[J].Nutr Res 1989 9:957-964
    8. Sidhu H, Allison M, Peck AB. Identification and classification of Oxalobacter formigenes strains by using oligonucleotide probes and primers[J]. J Clinic Microbio 199735(2):350-353
    9. Sidhu, H., S. D. Ogden, H. Lung, B. G. Luttge, A. L. Baetz, and A. B. Peck.DNA sequencing and expression of the formyl coenzyme A transferasegene, frc, from Oxalobacter formigenes [J]. J. Bacteriol.1997.179:3378-3381.
    10. Lung, H.Y., A. L. Baetz, and A. B. Peck.. Molecular cloning, DNA sequence, and gene expression of the oxalyl-coenzyme A decarboxylase gene,oxc, from the bacterium Oxalobacter formigenes[J].J. Bacteriol.1994; 176:2468-2472.
    11.Sandhu JS, Petkov PM, Dabeva MD, Shafritz DA. Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells[J]. Am J Pathol 2001;159:1323-1334.
    12. Milliner D, Wilson D, Smith L. Phenotypic expression of primary hyperoxaluria: comparative features of types Ⅰ and Ⅱ[J]. Kidney Int.2001;59:31-6.
    13. Milliner D, Wilson D, Smith L. Clinical expression and long-term outcomes of primary hyperoxaluria types 1 and 2[J]. J Nephrol.1998;11 Suppl:56-9.
    14. Cochat P, Liutkus A, Fargue S et al. Primary hyperoxaluria type 1:still challenging! [J]. Pediatr Nephrol 2006; 21:1075-1081.
    15. Van Woerden CS, Groothoff JW, Wanders RJ et al. Primary hyperoxaluria type 1 in The Netherlands:prevalence and outcome[J]. Nephrol Dial Transplant 2003; 18: 273-279.
    16. Rumsby G, Williams E, Coulter-Mackie M. Evaluation of mutation screening as a first line test for the diagnosis of the primary hyperoxalurias[J]. Kidney Int 2004; 66: 959-963.
    17. Danpure CJ, Lumb MJ, Birdsey GM et al. Alanine:glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting in human hereditary kidney stone disease[J]. Biochim Biophys Acta 2003; 1647:70-75.
    18. Leumann E, Hoppe B, Neuhaus T. Management of primary hyperoxaluria:efficacy of oral citrate administration[J]. Pediatr Nephrol 1993; 7:207-211.
    19. Hamm LL. Renal handling of citrate[J]. Kidney Int 1990; 38:728-735.
    20. Milliner DS, Eickholt JT, Bergstralh EJ et al. Results of long term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria[J]. N Engl J Med 1994; 331:1553-1558.
    21. Hatch M, Freel RW, Vaziri ND. Regulatory aspects of oxalate secretion in enteric oxalate elimination[J]. J Am Soc Nephrol 1999; 10:S324-S328.
    22. Jamieson NV, European PHI Transplantation Study Group. A 20-year experience of combined liver/kidney transplantation for primary hyperoxaluria (PHI):the European PHI transplant registry experience 1984-2004[J]. Am J Nephrol 2005; 25:282-289.
    23. Saborio P, Scheinman JI. Transplantation for primary hyperoxaluria in the United States[J]. Kidney Int 1999; 56:1094-1100.
    24. Monico CG, Milliner DS. Combined liver-kidney and kidney alone transplantation in primary hyperoxaluria[J]. Liver Transplantation 2001; 7:954-963.
    25. Nolkemper D, Kemper MJ, Burdelski M et al. Long term results of preemptive liver transplantation in primary hyperoxaluria type 1[J]. Pediatr Transplant 2000; 3: 177-181.
    26. Matas AJ, Sutherland DE, Steffes MW, et al. Hepatocellular transplantation for metabolic deficiencies:decrease of plasma bilirubin in Gunn rats[J]. Science. 1976; 192:892-894.
    27.曾令启,陈志强,叶章群等.离子色谱法测定尿草酸的研究[J].中华实验外科杂志,2003,20(10):933—934.
    28.吴义启,陈志强,叶章群等.离子色谱法测定血草酸浓度的研究[J].临床泌尿外科杂志,2007,22(5):374—376
    29.陈志强,张旭,杨为民等.草酸钙沉淀作为离子色谱尿草酸测定的尿样预处理法[J].同济医科大学学报,2000,29(6):540—541
    30.朱旋,陈志强,邹义华等.特发性高草酸尿大鼠模型的建立[J].华中科技大学学报(医学版),2008,37(5):691—695
    1. Danpure CJ. Primary hyperoxaluria:from gene defects to designer drugs.Nephrol Dial Transplant 2005; 20:1525-1529.
    2. Cregeen DP, Williams EL, Hulton S et al. Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat 2003; 22:497-506.
    3. Monico CG, Persson M, Ford GC et al. Potential mechanisms of marked hyperoxaluria not due to primary hyperoxaluria Ⅰ or Ⅱ. Kidney Int 2002; 62:392-400.
    4. Monico CG, Milliner DS,Wilson DM, Rumsby G. Atyp-ical primary hyperoxaluria:PH type III? Nephrol Dial Transplant.1999;5:2784-9.
    5. Lieske JC, Monico CG, HolmesWS, et al. International Registry for Primary Hyperoxaluria. Am J Nephrol.2005;25:290-6.
    6. Leumann E, Hoppe B. The primary hyperoxalurias. J Am Soc Nephrol 2001;12: 1986-1993.
    7. Sikora P, von Unruh GE, Beck B et al. [13C2]oxalate absorption in childrenwith idiopathic calcium oxalate urolithiasis or primary hyperoxaluria.Kidney Int 2008; 73: 1181-1186.
    8. Van Woerden CS, Groothoff JW, Wanders RJ et al. Primary hyperoxaluria type 1 in The Netherlands:prevalence and outcome. Nephrol Dial Transplant 2003; 18:273-279.
    9. Hoppe B, Langman C. A United States survey on diagnosis, treatment and outcome of patients with primary hyperoxaluria. Pediatr Nephrol 2003;18:986-991.
    10. Cochat P, Liutkus A, Fargue S et al. Primary hyperoxaluria type 1:still challenging!. Pediatr Nephrol 2006; 21:1075-1081.
    11. Hoppe B, Kemper MJ, Bo"kenkamp A et al. Plasma calcium-oxalate supersaturation in children with primary hyperoxaluria and end stage renal disease. Kidney Int 1999; 56: 268-274.
    12. Herrmann G, Krieg T, Weber M et al. Unusual painful sclerotic like plaques on the legs of a patient with late diagnosis of primary hyperoxaluria type Ⅰ. Br J Dermatol 2004; 151:1104-1107.
    13. Kopp N, Leumann E. Changing pattern of primary hyperoxaluria in Switzerland. Nephrol Dial Transplant 1995; 10:2224-2227.
    14. Milliner DS. The primary hyperoxalurias:an algorithm for diagnosis. Am J Nephrol 2005; 25:154-160.
    15. Hoppe B, Latta K, von Schnakenburg C, Kemper MJ on behalf of the Arbeitsgemeinschaft fu"r pa"diatrische Nephrologie. Primary Hyperoxaluria:the German experience. Am J Nephrol 2005; 25:276-281.
    16. Lorenzo V, Alvarez A, Torres A et al. Presentation and role of transplantation in adult patients with type 1 primary hyperoxaluria and the I244T AGXT mutation: single-center experience. Kidney Int 2006; 70:1115-1119.
    17. Coulter-Mackie, MB, Rumsby G. Genetic heterogeneity in primary hyperoxaluria type 1:impact on diagnosis. Mol Genet Metab 1904; 83:38-46.
    18. Latta K, Brodehl J. Primary hyperoxaluria type Ⅰ. Eur J Pediatr 1990; 59:518-522.
    19. Takayama T, Nagata M, Ichiyama A et al. Primary hyperoxaluria type 1 in Japan. Am J Nephrol 2005; 25:297-302. Erratum in:Am J Nephrol.2005;25:416.
    20. Hoppe B, Danpure CJ, Rumsby G et al. A vertical (pseudodominant) pattern of inheritance in the autosomal recessive disease primary hyperoxaluria type Ⅰ. Lack of relationship between genotype, enzymic phenotype and disease severity. Am J Kidney Dis 1997; 29:36-44.
    21. Rumsby G, Williams E, Coulter-Mackie M. Evaluation of mutation screening as a first line test for the diagnosis of the primary hyperoxalurias. Kidney Int 2004; 66:959-963.
    22. Kemper MJ, Conrad S, Mu" ller-Wiefel DE. Primary hyperoxaluria type 2. Eur J Pediatr 1997;156:509-512.
    23. Milliner DS, Wilson DM, Smith LH. Phenotypic expression of primary hyperoxaluria: comparative features of types Ⅰ and Ⅱ. Kidney Int 2001; 59:31-36.
    24. Jamieson N. The European PHI transplant registry report 1984-2007:twenty-three years of combined liver and kidney transplantation for primary hyperoxaluria PHI. Paper presented at:8th International Primary Hyperoxaluria Workshop; 2007 June 29-30; London, UK
    25. Williams E, Rumsby G. Selected exonic sequencing of the AGXT gene provides a genetic diagnosis in 50% of patients with primary hyperoxaluria type 1. Clin Chem. 2007;53:1216-21.
    26. Monico CG, Rossetti S, Olson JB et al. Pyridoxine effect in type Ⅰ primary hyperoxaluria is associated with the most common mutant allele. Kidney Int 2005; 67: 1704-1709.
    27. oussaint C. Pyridoxine-responsive PHI:treatment. J Nephrol.1998;11 Suppl:49-50.
    28. Danpure CJ, Lumb MJ, Birdsey GM et al. Alanine:glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting in human hereditary kidney stone disease. Biochim Biophys Acta 2003; 1647:70-75.
    29. van Woerden CS, Groothoff JW, Wijburg FA et al. Clinical implications of mutation analysis in primary hyperoxaluria type 1. Kidney Int 2004; 66:746-752.
    30. Monico CG, Rossetti S, Olson JB et al. Pyridoxine effect in type Ⅰ primary hyperoxaluria is associated with the most common mutant allele. Kidney Int 2005; 67: 1704-1709.
    31. Berger A, Schaumburg H. More on neuropathy from pyroxidine abuse. N Engl J Med. 1984;311:986-7.
    32. Leumann E, Hoppe B, Neuhaus T. Management of primary hyperoxaluria:efficacy of oral citrate administration. Pediatr Nephrol 1993; 7:207-211.
    33. Leumann E, Hoppe B, Neuhaus T, Blau N. Efficacy of oral citrate administration in primary hyperoxaluria.Nephrol Dial Transplant.1995;10 Suppl:14-6.
    34. Hamm LL. Renal handling of citrate. Kidney Int 1990; 38:728-735.
    35. Milliner DS, Eickholt JT, Bergstralh EJ et al. Results of long term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. N Engl J Med 1994;331:1553-1558.
    36. Jiang Z, Asplin JR, Evan AP et al. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 2006; 38:474-478.
    37. Freel RW, Hatch M, Green M, Soleimani M. Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am J Physiol.2006;290:G719-28.
    38. Hatch M, Freel RW, Vaziri ND. Regulatory aspects of oxalate secretion in enteric oxalate elimination. J Am Soc Nephrol 1999; 10:S324-S328.
    39. Monico CG, Weinstein A, Jiang Z et al. Phenotypic and functional analysis of human SLC26A6 variants in patients with familial hyperoxaluria and calcium oxalate nephrolithiasis. Am J Kidney Dis 2008; 52:1096-1103.
    40. Hatch M, Freel RW. Intestinal transport of an obdurate anion:oxalate. Urol Res 2005; 33:1-16.
    41. Hatch M, Cornelius J, Allison M et al. Oxalobacter sp. reduces urinary oxalate excretion promoting enteric oxalate excretion. Kidney Int 2006;69:1-8.
    42. Hoppe B, Beck B, Gatter N et al. Oxalobacter formigenes:a potential tool for the treatment of primary hyperoxaluria type Ⅰ (PH Ⅰ). Kidney Int 2006;70:1305-1311.
    43. Grujic D, Salido EC, Cachero TG, et al. Hyperoxaluria Is Reduced and Nephrocalcinosis Prevented with an Oxalate-Degrading Enzyme in Mice with Hyperoxaluria. Am J Nephrol 2009;29:86-93
    44. Sarica K, Erbagci A, Yagci F, et al. Limitations of apoptotic changes in renal tubular cell injury induced by hyperoxaluria. Urol Res.2004;32:271-7.
    45. Williams ME, Kline Bolton W, Khalifah RG, et al.Effects of pyridoxamine in combined phase 2 studiesof patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol.2007;27:605-14.
    46. Chetyrkin S, Kim D, Belmont J, et al. Pyridoxamine lowers kidney crystals in experimental hyperoxaluria:a potential therapy for primary hyperoxaluria. KidneyInt. 2005;67:53-60.
    47. Lumb M, Birdsey G, Danpure C. Correction of an enzyme trafficking defect in hereditary kidney stone disease in vitro. Biochem J.2003;374:79-87.
    48. Santana A, Salido E, Torres A, Shapiro L. Primary hyperoxaluria type 1 in the Canary Islands:a conformational disease due to I244T mutation in the P11 Lcontaining alanine:glyoxylate aminotransferase. Proc Natl Acad Sci U S A.2003;100:7277-82.
    49. Yu Z, Sawkar AR, Kelly JW. Pharmacologic chaperoning as a strategy to treat Gaucher disease. FEBS J.2007;274:4944-50.
    50. Baker PR, Cramer SD, Kennedy M, et al. Glycolate and glyoxylate metabolism in HepG2 cells. Am J Physiol.2004;287:C1359-65.
    51. Marangella M, Cosseddu D, Petrarulo M, et al. Thresholds of serum calcium oxalate supersaturation in relation to renal function in patients with or without primary hyperoxaluria. Nephol Dial Transplant.1993;8:1333-7.
    52. Milliner D, Wilson D, Smith L. Clinical expression and long-term outcomes of primary hyperoxaluria types 1 and 2. J Nephrol.1998;11 Suppl:56-9.
    53. Franssen C. Oxalate clearance by haemodialysis—a comparison of seven dialysers. Nephrol Dial Transplant.2005;20:1916-21.
    54. Diaz C, Catalinas F, De Alvaro F, et al. Long daily hemodialysis sessions correct systemic complications of oxalosis prior to combined liver-kidney transplantation:case report. Ther Apher Dial.2004;8:52-5.
    55. Hoppe B, Graf D, Offner G, et al. Oxalate elimination via hemodialysis or peritoneal dialysis in children with chronic renal failure. Pediatr Nephrol.1996; 10:488-92.
    56. Illies F, Bonzel KE, Wingen AM et al. Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1. Kidney Int 2006; 70:1642-1648.
    57. Bunchman TE, Swartz RD. Oxalate removal in type Ⅰ hyperoxaluria or acquired oxalosis using HD and equilibration PD. Perit Dial Int 1994; 5:81-84.
    58. Jamieson NV, European PHI Transplantation Study Group. A 20-year experience of combined liver/kidney transplantation for primary hyperoxaluria (PHI):the European PHI transplant registry experience 1984-2004. Am J Nephrol 2005; 25:282-289.
    59. Saborio P, Scheinman JI. Transplantation for primary hyperoxaluria in the United States. Kidney Int 1999; 56:1094-1100.
    60. Jamieson NV, European PHI Transplantation Study Group. A 20-year experience of combined liver/kidney transplantation for primary hyperoxaluria (PHI):the European PHI transplant registry experience 1984-2004. Am J Nephrol 2005; 25:282-289.
    61. Monico CG, Milliner DS. Combined liver-kidney and kidney alone transplantation in primary hyperoxaluria. Liver Transplantation 2001; 7:954-963.
    62. Nolkemper D, Kemper MJ, Burdelski M et al. Long term results of preemptive liver transplantation in primary hyperoxaluria type 1. Pediatr Transplant 2000; 3:177-181.
    63. Guha C, Yamanouchi K, Roy-Chowdhury J, et al.Feasibility of hepatocyte transplantation-based therapies for primary hyperoxaluria. Am J Nephrol. 2005;25:161-70.
    64. Koul S, Johnson T, Pramanik S, Koul H. Cellular transfection to deliver alanine-glyoxylate aminotransferase to hepatocytes:a rational gene therapy for primary hyperoxaluria-1 (PH-1). Am J Nephrol.2005;25:176-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700