用户名: 密码: 验证码:
特发性高草酸尿症模型大鼠肝组织的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:在正式进行DIGE实验前,需要进行二维电泳的可行性评价,并测试样品的标记可行性,为荧光差异显示凝胶电泳实验的顺利进行奠定实验基础。
     方法:选择3只24小时尿草酸排泄量较高的特发性高草酸尿症模型大鼠作为实验组,选择3只24小时尿草酸排泄量在正常范围的SD大鼠作为对照组,切取其肝脏组织后分别提取总蛋白,然后利用双向电泳技术分离蛋白,扫描后获得二维电泳的图谱,并对提取的蛋白样品进行荧光标记实验。
     结果:总共获得6张稳定清晰的二维电泳图谱和1张SDS-PAGE荧光标记实验电泳图谱。
     结论:由上述6张二维电泳图谱来看,六个蛋白质样品的蛋白质点的迁移基本稳定正常,且各个蛋白提取液与DIGE荧光染料是兼容的,从而保证后续正式的DIGE实验有较好的重复稳定性和可行性。
Objective To evaluate the feasibility of two-dimensional gel electrophoresis liver in ratswith idiopathic hyperoxaluria and labeling before DIGE, and to lay experimentalfoundation for DIGE.
     Methods 3 male rats with idiopathic hyperoxaluria as study group,3 normal ones ascontrol. The liver of rats with idiopathic hyperoxaluria and the normal liver tissue wereexamined by two-dimensional gel electrophoresis (2-DE) and labeling test.
     Results Six Satisfying two-dimensional electrophoregram and one SDS-PAGEelectrophoregram were obtained.
     Conclusions The mobility shift of the protein spots is stable in the six two-dimensionalelectrophoregrams and the protein extract is compatible with DIGE fluorescent dyes.Thestable repeatability and feasibility of DIGE is ensured.
引文
1. Klose J . Human genetic , 1975 ,26.
    2. O'Farrell PH. J Biol Chem .1975 ,250 (10) :4007.
    3. Zhou G, Li H. DeCamp D,et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics, 2002 .1 (2): 117-124.
    4. Gharbi S. Gaffney P, Yang A,et al.Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics, 2002,l(2):91-98.
    5. Friedman DB. Lilley KS. Optimizing the difference gel electrophoresis (DIGE) technology. Methods Mol Biol, 2008 ,428:93-124.
    6. Minden J. Comparative proteomics and difference gel electrophoresis. Biotechniques, 2007,43(6):739-741.
    7. Karp NA, Kreil DP. Lilley KS.Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis.Proteomics, 2004 ,4(5): 1421-1432.
    1. Ogawa Y, Miyazato T, Hatano T. Oxalate and urinary stones. World J Surg,2000,24(10):1154-9.
    2. Sorrentino F, Fella A, Pota A. Preventive effect of some substances on experimental oxalic calculogenesis in the frog. Urol Res,1981,9(2):63-6.
    3. Wandzilak T R, Williams H E. The hyperoxaluric syndromes. Endocrinol Metab Clin North Am, 1990, 19(4):851-67.
    4. Robertson W G, Peacock M. The cause of idiopathic calcium stone disease:hypercalciuria or hyperoxaluria. Nephron, 1980,26(3):105-10.
    5. Sutton R A, Walker VR. Enteric and mild hyperoxaluria. Miner Electrolyte Metab,1994,20(6):352-60.
    6. Wilkins MR, Williams KL, Hohstrasser DF, et al. Proteome Research:New frontiers in fuctional genomics. New York: Springer, 1997.
    7.陈主初,肖志强.疾病蛋白质组学.化学工业出版社,2006,第一版.
    8. Klose J . Human genetic ,1975,26.
    9. O'Farrell PH. J Biol Chem.1975,250 (10):4007.
    10. Patton WF. Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci.J. 2002, 771(1-2):3-31.
    11. Hamdan M, RighettiPG. Strategies for protein quantification in proteome analysis:advantages and limitations. Mass Spectrom. Rev.2002, 21(4):287-302.
    12. (u丨¨)nlu MR,Morgan ME,Minden JS,et al.Difference gel electrophoresis:a single gel method for detecting changes in protein extracts. Electrophoresis. 1997, 18(11):2071-2077.
    13. Zhou G. Li H, DeCamp D.et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics, 2002,1(2):117-124.
    14. Gharbi S, Gaffney P, Yang A,et al.Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system.Mol Cell Proteomics, 2002,1(2):91-98.
    15. Friedman DB, Lilley KS. Optimizing the difference gel electrophoresis (DIGE)technology. Methods Mol Biol, 2008,428:93-124.
    16. Minden J. Comparative proteomics and difference gel electrophoresis. Biotechniques, 2007,43(6):739-741.
    17. Karp NA, Kreil DP, Lilley KS.Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis.Proteomics. 2004,4(5):1421-1432.
    18.朱旋,陈志强,邹义华,叶章群.特发性高草酸尿大鼠模型的建立.华中科技大学学报(医学版),2008,37(5):691-693.
    1. 赵晓峰,王舒,石学敏.蛋白质组学研究技术进展.北京生物医学工程,2005,24(1):74-77.
    2. Chait BT, Kent SB. Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science,1992,257 (5078):1885-94.
    3. Brown RS, Lennon JJ.Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. Anal Chem. 1995,67(13):1998-2003.
    4. Wilkes JG, Zarrin F, Lay JO Jr, et al.Particle size distribution is not the major factor explaining variable analyte transmission efficiency in liquid chromatography/particle beam/mass spectrometry. Rapid Commun Mass Spectrom, 1995,9(2):133-7.
    5. Jensen ON, Podtelejnikov A, Mann M. Delayed extraction improves specificity in database searches by matrix-assisted laser desorption/ionization peptide maps.Rapid Commun Mass Spectrom. 1996,10(11):1371-8.
    6. Nemere I, Safford SE. Rohe B, et al. Identification and characterization of 1,25D3-membrane-associated rapid response, steroid (1,25D3-MARRS) binding protein. J Steroid Biochem Mol Biol, 2004 , 89-90:281-285.
    7. Primm TP, Gilbert HF. Hormone binding by protein disulfide isomerase, a high capacity hormone reservoir of the endoplasmic reticulum. J Biol Chem, 2001,276(1):281-286.
    8. Larsson B, Nemere I. Effect of growth and maturation on membrane-initiated actions of 1,25-dihydroxyvitamin D3-Ⅱ: calcium transport, receptor kinetics, and signal transduction in intestine of female chickens. J Cell Biochem, 2003, 90(5):901-913.
    9. Veena CK, Josephine A. Preetha SP, et al. Mitochondrial dysfunction in an animal model of hyperoxaluria: a prophylactic approach with fucoidan. Eur J Pharmacol,2008, 579(1-3):330-336.
    10. Kim HK, Park WS, Kang SH. et al. Mitochondrial alterations in human gastric carcinoma cell line. Am J Physiol Cell Physiol, 2007, 293(2):761-771.
    11. Beck FK, Rosenthal TC. Prealbumin: a marker for nutritional evaluation. Am Fam Physician, 2002, 65(8): 1575-1578.
    1. Moe OW. Kidney stones: pathophysiology and medical management.Lancet ,2006,367:333-344.
    2. Sun. BY-C. Lee Y-H, Jiann B-P,et al. Recurrence rate and risk factors for urinary calculi after extracorporeal shock wave therapy. J Urol, 1996,156:903-6
    3. Coe FL,Evan A ,Woreester E .Kidney stone disease.J Clin Invest ,2005,115(10) : 2598-2608 .
    4. Walsh PC,Retik AB.Stamey TA et al .Campbell's urology .sixth edition,WB saunders company George W.Drach:urinary lithasis:etiology,diagnosis andmedical management.2129.
    5. Robertson WG Peacock M. The cause of idiopathic calcium stone disease: Hypercalciuria or hyperoxaluria?Nephron, 1981.26:105-110.
    6. Lemann J Jr,Pleus JA,Worcester EM et al .Urinary oxalate excretion increases with body size and decreases with increasing dietary calcium intake among healthy adults.Kidney Int,1996 ,49(l):200-208.
    7. Hauson PC,Rose GA.Chemical measurement of calcium oxalate crystalluria: results in various causes of calcium urolithiasis.Urol Int,1990,45(6):332-335.
    8. Leonetti F,Dussol B,Berthezene P,et al. Dietary and urinary risk factors for stones in idiopathic calcium stone formers companed with health subjects.Nephrol Dial Transplant, 1998 ,13(3):617-622.
    9. Holmes RP. Oxalate synthesis in humans: Assumptions problems and unresolved issues .Molecular- Urology,2000,4:329-332.
    10. Massey LK, Roman-Smith H, Sutton RAL. Effect of dietary oxalate and calcium on urinary oxalate and risk of formation of calcium oxalate kidney stones. J Am Diet Assoc, 1993,93: 901-906.
    11. Hesse A, Schneeberger W, Engfeld S,et al.Intestinal hyperabsorption of oxalate in calcium oxalate stone formers: application of a new test with[13C2]oxalate. J Am Soc Nephrol,1999, 14:S329-33.
    12. Holmes RP, Goodman HO, Assimos DG. Dietary oxalate and its intestinal absorption. Scanning Microsc, 1995,9:1109-1120.
    13. Jahnen A. Heynck H. GertzB. et al. Dietary fibre: the effectiveness of a high bran intake in reducing renal calcium excretion. Urol Res, 1992,20:3-6.
    14. Caspary WF. Intestinal oxalate absorption .I.Absorption in vitro.Res Exp Med(Berl),1977,171:13.
    15. Prenen JAC. Boer P. Mees EJD. Absorption kinetics of oxalate from oxalate-rich food in man. Am J Clin Nutr. 1984.40:1007-1010.
    16. Barilla DE, Notz C. KennedyD, et al. Renal oxalate excretion following oral oxalate loads in patients with deal disease and with renal and absorptive hypercalci-arias. Am J Med, 1978,64:579-585.
    17. Lindsjo M. Danielson BG, Fellstrom B, et al. Intestinal oxalate and calcium aborption in recurrent renal stone formers and healthy subjects. Scand J Nephrol, 1989. 23:5-59.
    18. Hautmann RE. The stomach: a new and powerful oxalate absorption site in man. J Urol. 1993,149:1401-1404.
    19. CHEN zhiqiang.YE Zhangqun.ZENG lingqi,et al. Clinical investigation on gastric oxalate absorption.Chinese Medical Journal ,2003,116(11): 1749-1751.
    20. Hanes DA, Weaver CM. Wastney ME. Calcium and oxalic acid kinetics differ in rats. J Nutr, 1999,129:165-169.
    21. Hanes DA, Weaver CM. Heaney RP, et al. Absorption of calcium oxalate does not require dissociation in rats. J Nutr. 1999,129:170-173.
    22. Williams HE, Johnson GA. Smith LH Jr. The renal clearance of oxalate in normal subjects and patients with primary hyperoxaluria. Clin Sci, 1971,41(3):213-8.
    23. Osswald H, Hautmann R. Renal elimination kinetics and plasma half-life of oxalate in man. Urol Int, 1979. 34(6):440-50.
    24. Williams HE,Wandzilak TR.Oxalate synthesis,transport and the hyperoxaluric syndromes.J Urol .1989.141:742-747.
    25. Mazzachi BC,Teubner JK.Ryall RL.Factors affecting measurement of urinary oxalate .Clin Chem .1984.30:1339-1343.
    26. Prenen JA,Boer P.Dorhout Mees EJ.Absorption kinetics of oxalate from oxalate-rich food in man.Am J Clin Nutr ,1984,40:1007-1010.
    27. Lindsjo M,Danielaon BQFellstrom B.Intestinal ozalate and calcium absorption in recurrent renal stone formers and healthy subjects.Scand J Urol Nephrol, 1989,23:55-9.
    28. Marangella M,Fruttero B,Bruno M.Hyperoxaluria in idiopathic calcium-stone disease:Further evidence of intestinal hyperabsorption of oxalate.Clin Sci. 1982.63:381-385.
    29. Holmes RP, Goodman HO, Assimos DG .Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001,59:270-276.
    30. Massey LK, Roman-Smith H. Sutton RAL. Effect of dietary oxalate and calcium on urinary oxalate and risk of formation of calcium oxalate kidney stones. J Am Diet Assoc, 1993,93: 901-906.
    31. Holmes RP, Goodman HO, Assimos DG. Dietary oxalate and its intestinal absorption. Scanning Microsc,1995,9:1109-1120.
    32. Unruh GE von, Voss S, Sauerbruch T, et al. Reference range for gastrointestinal oxalate absorption measured with a standardized [~13C_2] oxalate absorption test. J Urol ,2003.169:687.
    33. Siener R.Honow R.Voss R.Oxalate content of cereals and cereal products.Journal of Agicultrure and Food Chemistry, 2006 ,54(8):3008-3011.
    34. Selvam R . Calcium oxalate stone disease: role of lipid peroxidation and antioxidants. Urol Res. 2002, 30: 35.
    35. Jonassen JA, Cao LC, Honeyman T, et al .Mechanisms mediating oxalate-induced alterations in renal cell functions. Crit Rev Eukaryot Gene Expr, 2003 .13: 55.
    36. Holmes RP.Walter T. Dietary oxalate loads and renal oxalate handing.2005,174: 943-947.
    37. Knight J.Holmes RP.Assimos D.Intestinal and renal handing of oxalate loads in normal individuals and stone formers.Urol Res, 2007,35:111-117.
    38. Khan SR,Glenton PA,Byer KJ.Dietary oxalate and calcium oxalate nephrolithiasis.J Urol, 2007,178 (5): 2191-2196.
    39. Schwille PO, Hanisch E, Scholz D. Postprandial hyperoxaluria and intestinal oxalate absorption in idiopathic renal stone disease. J Urol.1984,132:650-655.
    40. Hatch M. Oxalate status in stone-formers. Two distinct hyperoxaluric entities. Urol Res, 1993,21:55-59.
    41. Hesse A, Schneeberger W. Engfeld S. et al. Intestinal hyperabsorption of oxalate in calcium oxalate stone formers: Application of a new test with ['3C2] oxalate. J Am Soc Nephrol, 1999,10:5329-5333.
    42. Von Unruh GE, Voss S, Hesse A. Experience with the[~13C_2] oxalate absorption test. Isotopes Envir-on Health Stud, 2000,36:11-20.
    43. Ebisuno S,Morimoto S.Renal oxalate excretion following oral oxalate load in patients with urinary calculus disease and healthy controls. Hinyokika Kiyo, 1986,32(12): 1773-1779.
    44. Masai M,Ito H,Kotake T.Effect of dietary intake on urinary oxalate excretion in calcium renal stone formers.British J Urology, 1995.76(6):692-696.
    45. Hesse A, Schneeberger W, Engfeld S.et al. Intestinal hyperabsorption of oxalate in calcium oxalate stone formers: application of a new test with[~13C2]oxalate. J Am Soc Nephrol, 1999 ,14:S329-33..
    46. Holmes RP, Assimos DG, Goodman HO. Genetic and dietary influences on urinary oxalate excretion. Urol Res, 1998,26(3): 195-200.
    47. Krishnamurthy M, Hruska KA, Chandhoke PS . The urinary response to an oral oxalate load in recurrent calcium stone formers. J Urol. 2003,169: 2030-3.
    48. Voss S, Hesse A, Zimmermann DJ, et al. Intestinal Absorption is Higher in Idiopathic Calcium Oxalate Stone Formers Than in Healthy Controls: Measurements With the [13C2]Oxalate Absorption Test. J Urology. 2006 .175(5): 1711-5.
    49. Siener R, Ebert D, Nicolay C, et al. Dietary risk factors for hyperoxaluria in calcium oxalate stone formers. Kidney International. 2003 ,63(3): 1037-43.
    50. Curhan GC, Willett WC, Rimm EB, et al. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med,1993,328(12):833-8.
    51. Matsumoto ED, Heller HJ. Adams-Huet B.et al. Effect of High and Low Calcium Diets on Stone Forming Risk During Liberal Oxalate Intake. J Urol, 2006,176(1): 132-6.
    52. Liebman M, Chai W. Effect of dietary calcium on urinary oxalate excretion after oxalate loads. Am JClin Nutr, 1997,65:1453-1459.
    53. Liebman M, Costa G Effects of calcium and magnesium on urinary oxalate excretion after oxalate loads. J Urol,2000.163:1565-1569.
    54. Hatch M. Oxalate status in stone-formers. Two distinct hyperoxalurie entities. Urol Res,1993,21:55-59.
    55. Holmes RP, Assimos DG, Goodman HO. Genetic and dietary influences on urinary oxalate excretion. Urol Res, 1998,26:195-200.
    56. Hatch M, Freel RW. Alterations in intestinal transport of oxalate in disease states. Scanning Microscopy, 1995,9:1121-6.
    57. Brinkley LJ, Gregory J, Pak CYC. A further study of oxalate bioavailability in foods. J Urol, 1990,144:94-96.
    58. Massey LK, Palmer RG, Horner HT. Oxalate content of soybean seeds (Glycine max: Leguminosae), soyfoods and other edible legumes. J Agric Food Chem ,2001,49:4262-4266.
    59. Gleeson MJ, Thompson AS, Mehta S.et al. Effect of unprocessed wheat bran on calciuria and oxaluria in patients with urolithiasis. Urology, 1990,35:231-234.
    60. Kocvara R, Plasgura P, Petrik A,et al. A prospective seudy of nonmedical prophylaxis after a first kidney stone. BJU Int. 1999.84:393-398.
    61. Nomura K, Ito H, Masai M,et al. Reduction of urinary stone recurrence by dietary counseling after SWL. J Endourol, 1995.9:305-312.
    1. Danpure CJ, Jennings PR. Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett. 1986, 201(l):20-4.
    2. Reeders ST, Breuning MH, Davies KE.et al. A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature, 1985,317(6037):542-4.
    3. Hughes J, Ward CJ, Peral B.et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet, 1995,10(2):151-60.
    4. Kimberling WJ, Kumar S, Gabow PA,et al. Autosomal dominant polycystic kidney disease: localization of the second gene to chromosome 4ql3-q23. Genomics, 1993,18(3):467-72.
    5. Bray NJ, Owen MJ. Searching for schizophrenia genes. Trends Mol Med. 2001,7:169-174.
    6. Ulfgren AK, Grondal L, Lindblad S, et al. Interindividual and intra- articular variation of proinflammatory cytokines in patients with rheumatoid arthritis: potential implications for treatment. Ann Rheum Dis. 2000,59:439-447.
    7. Warner TT, Schapira AH. Genetic and environmental factors in the cause of Parkinson's disease. Ann Neurol. 2003.53(Suppl 3):S16- S23.
    8. LinksLee-Kirsch MA, Gong M, Schulz H. et al. Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus. maps to chromosome 3p.Am J Hum Genet, 2006 ,79(4):731-7.
    9. Sheng X, Ward M D, Wesson J A. Adhesion between molecules and calcium oxalate crystals: critical interactions in kidney stone formation. J Am Chem Soc, 2003, 125(10): 2854-2855.
    10. Tiselius, HG. Factors Influencing the Course of Calcium Oxalate Stone Disease. J. European Urology. 1993. 36(5):363-370.
    11. Jaeger P. Robertson WG. Role of dietary intake and intestinal absorption of oxalate in calcium stone formation. Nephron Physiol,2004, 98(2):64-71.
    12. Bihl G. Meyers A. Recurrent renal stone disease-advances in pathogenesis and clinical management. Lancet.2001. 358(9282):651-6.
    13. Holmes RP, Assimos DG, Goodman HO. Molecular basis of inherited renal lithiasis. Curr Opin Urol,1998. 8(4):315-9.
    14. Holmes RP, Assimos DG, Goodman HO. Genetic and dietary influences on urinary oxalate excretion. Urol Res, 1998, 26(3): 195-200.
    15. Goodman HO, Brommage R. Assimos DG, et al.Genes in idiopathic calcium oxalate stone disease. World J Urol, 1997, 15(3): 186-94.
    16. Breakthrough of the year: The runners-up. J. Science, 2006, 314(5807): 1850-5.
    17. Breakthrough of the year: Areas to watch in 2007. J. Science, 2006, 314 (5807): 1854-5.
    18. Pak CY, Adams-Huet B, Poindexter JR et al. Rapid communication: relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int. 2004, 66: 2032-2037.
    19. Worcester EM, Coe FL. New insights into the pathogenesis of idiopathic hypercalciuria. Semin Nephrol. 2008, 28:120-132.
    20. Shaogang WANG.Dongliang HU,Qilin XI et al. The expression and implication of TRPV5, Calbindin-D28K and NCX1 in idiopathic Hypercalciuria. J Huazhong Univ Sci Technol [Med Sci], 2008,28:580-583.
    21. Favus MJ. Karnauskas AJ, Parks JH, et al. Peripheral blood monocyte vitamin D receptor levels are elevated in patients with idiopathic hypercalciuria. J Clin Endocrinol Metab, 2004, 89:4937-4943.
    22. Devuyst O. Pirson Y. Genetics of hypercalciuric stone forming diseases. Kidney Int, 2007, 72:1065-1072.
    23. Pak CY. Poindexter JR, Peterson RD, et al. Biochemical distinction between hyperuricosuric calcium urolithiasis and gouty diathesis. J Urology, 2002, 60(5):789-94.
    24. Hediger MA, Johnson RJ, Miyazaki H, et al. Molecular physiology of urate transport. Physiology (Bethesda, Md),2005, 20: 125-33.
    25. Enomoto A. Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature, 2002. 417 (6887): 447-52.
    26. Danika Bannasch, Noa Safra, Amy Young, et al. Mutations in the SLC2A9 Gene Cause Hyperuricosuria and Hyperuricemia in the Dog. PLoS Genet.2008, 4(11): el 000246.
    27. Li S, Sanna S, Maschio A, et al. The GLUT9 Gene is associated with Serum Uric Acid Levels in Sardinia and Chianti Cohorts. J. PLoS Genet,2007,, 3(11):e194.
    28. Wallace C, Newhouse SJ, Braund P, et al. Genome wide association study identifies genes for biomarkers of cardiovascular disease:serum urate and dyslipidemia. Am J Hum Genet ,2008, 82(1): 139-149.
    29. Doring A. Gieger C, Mehta D, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet ,2008, 40: 430-436.
    30. Vitart V. Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet ,2008, 40: 437-442.
    31. Gisela Di Giusto, Naohiko Anzai, Hitoshi Endou,et al. Oat5 and NaDC1 Protein Abundance in Kidney and Urine After Renal Ischemic Reperfusion Injury. Journal of Histochemistry and Cytochemistry, 2009, 57 (1): 17-27.
    32. Pajor AM. Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters. Pflugers Arch,2006, 451:597-605.
    33. Ho HTB, Ko BCB, Cheung AKH, et al. Generation and characterization of sodium-dicarboxylate cotransporter-deficient mice. Kidney Int. 2007. 72:63-71.
    34. Pajor AM, Sun N. Protein kinase C-mediated regulation of the renal Na+/dicarboxylate cotransporter, NaDC-1. Biochim Biophys Acta .1999, 1420: 223-30.
    35. Okamoto N, Aruga S, Toita K, et al. Chronic acid ingestion promotes renal stone formation in rats treated with vitamin D3. Int J Urol,2007, 14(l):60-66.
    36. Mossetti G, Vuotto P, Rendina D, et al. Association between vitamin D receptor gene polymorphisms and tubular citrate handling in calcium nephrolithiasis. J Intern Med. 2003,253(2): 194-200.
    37. Rendina D, Mossetti G, Viceconti R. et al. Association between vitamin D receptor gene polymorphisms and fasting idiopathic hypercalciuria in recurrent stone-forming patients. Urology, 2004, 64(4):833-838.
    38. Karnauskas AJ, van Leeuwen JP, van den Bemd GJ, et al. Mechanism and function of high vitamin D receptor levels in genetic hypercalciuric stone-forming rats. J Bone Miner Res, 2005, 20(3):447-454.
    39. Mossetti G, Rendina D, Viceconti R, et al. The relationship of 3' vitamin D receptor haplotypes to urinary supersaturation of calcium oxalate salts and to age at onset and familial prevalence of nephrolithiasis. Nephrol Dial Transplant, 2004, 19(9):2259-2265.
    40. Bouillon R. Vitamin D: from photosynthesis, metabolism and action to clinical application. In: DeGroot LI. Jameson JL. eds. Endocrinology. Philadelphia, PA: W.B. Saunders Company, 2001: 1009-28.
    41. Scatena M, Liaw L, Giachelli CM. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vase Biol, 2007. 27:2302-2309.
    42. Miller NL, Evan AP, Lingeman JE. Pathogenesis of renal calculi. Urol clin N Am. 2007,34:295-313.
    43. Asselman M. Verhulst A. De bore M et al. Calcium oxalate crystal adnerence to hyaluronan-, osteopontin-. and CD44- expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol, 2003, 14: 3155-3166.
    44. Evan AP, Coe FL. Rittling SR et al. Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localiztion. Kidney Int, 2005: 68:145-154.
    45. Wesson JA, Johnson RJ, Mazalli M, et al. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol. 2003:14:139-147.
    46. Mo L, Huang HY. Zhu XH. et al. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int. 2004:66:1159-1166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700