用户名: 密码: 验证码:
三峡库区小流域治理模式和决策支持系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山区小流域治理,是以产业结构调整、投资分配和土地利用优化等为基础,通过工程、生物和农业等综合措施,建立以经济植物、防护性植物、观赏性植物为核心的,农、林、牧业综合协调发展的,可为工业和商业提供优越生产、生态环境的人工生态经济系统的一系列活动或过程。目前对小流域治理研究大多集中在三个方面,一是以工程措施和造林措施为主,研究小流域山洪和泥石流等灾害,综合配置和集中实施山区小流域治理措施;二是从水文学、地质学、水利工程学等角度研究小流域陡坡地土壤侵蚀机理,包括侵蚀泥沙、径流和养分的流失特征,影响因素及三者之间的相互关系;三是应用层次分析法、模糊聚类法等定性定量方法在较小尺度上研究小流域分类及其治理优化模式,尺度推绎问题较突出。三峡库区山区分布有大量的小流域,而且小流域类型复杂,是三峡水库泥沙的主要策源地,加之三峡库区土地资源稀缺,小流域亦可提供大量的耕地资源。到目前为止,三峡库区尚未深入开展小流域治理方面的研究,难以为三峡库区山区水土保持、三峡工程建设以及小流域水土资源保护、改良与合理利用提供科学依据。决策支持系统能以迅速和灵活的方式通过模型分析为管理者提供管理决策的支持和帮助。当前决策支持系统更加注重各种技术的综合运用,而且相继提出了群决策支持系统、智能决策支持系统、分布式决策支持系统、集成式决策支持系统等更高层次的决策支持系统,分别适应不同要求,不同层次决策部门的需要,这也代表了决策支持系统发展的趋势。
     本项目采用地理信息技术,开展三峡库区山区小流域现状调查、治理优化模式及决策支持系统研究,查明该地区小流域的现状特征、土壤侵蚀因子及强度,构建出适用于小流域治理规划的决策支持系统,提出三峡库区山区小流域治理优化模式,取得了以下主要研究成果:
     (1)三峡库区小流域特征分析
     在分析三峡库区小流域地貌形成特征的基础上,应用GIS技术及数学模型对三峡库区水土肥流失量进行了预测;并结合典型小流域自然资源分异特征及社会经济结构状况,提出了小流域分区治理模式及发展策略。①小流域地貌是在内外营力的共同作用下形成的,其中地质构造等内营力是形成小流域地貌基本骨架的因素,气候、水文等外营力因素是在内营力作用的基础上对地貌形态的进一步雕饰,对地貌演化的后期或现代地貌的演化起主导作用;小
The administration of the small watershed, which bases on adjusting the industrial structure and choosing the optimum pattern for the land utilization and the invest distribution, is a series of activities or courses which always adapt comprehensive ways, such as engineering, biological and agricultural methods, to change the location into an area rich of economical plants, protecting plants and plants for sightseeing, so that the agriculture, forestry and stockbreeding can developing in balance, and the industry and commerce can undergoing under a good artificial eco-economical system. The research of the small watershed administrating, nowadays, are concentrating at the follow aspects: the first one takes the engineering processes and trees-planting as the main treatments to protect the small watershed from the flood and solifluction; the second one researches the soil erosion principles of the slop land of the small watershed, such as the characteristics and affecting factors of the flow of mud and stone, the water flow and the loss of nutrient respectively, and the relationship among them, according to the knowledge of hydrology, geography and water conservancy; the third and the last one uses the method of gradations-analyzing and obscure-clustering to research the classification of the small watershed and its optimum using model in small dimension, which would company with the problem of how to change it into big reasonable dimension. There are many complicated types of small watersheds scattering in the mountain area of the three-gorge reservoir area, which mainly produce the loss the soil. It, on the other hand, can be help to ease the shortage of the land in the three-gorge area, if being developed. But till now, there is no study on the small watershed administration in this area to provide reasonable advices for the building of the three-gorge engineering and the protection from its water and soil loss, furthermore the comprehensive usage to the soil and water. Decision supporting system (DSS) can provide the officials with supports and help when making decisions, through analyzing model flexibly and rapidly. Such system highlights on the comprehensive utilization of various new techniques, such as GDSS, IDSS, DDSS and SDSS, in order to continuously meet different needs, and needs from different gradations of the government, which means the tendency of development
    of the decision-making supporting system.This paper focuses on the classification of small watershed investigation in the mountain area, the research of the optimum model for utilization, and the research of the supporting system for decision by adapting GIS techniques. It's aimed at grasping the number of small watershed, the inducing factors and the level of the soil erosion in this area, in order to build supporting systems fitting to decisions that are related to the administration of the small watershed, and propose the optimum model to administration this kind of land in the three-gorge area. The main achievements was listed as follow:(1) The analyzing of the characteristics of the small watershed in the three-gorge areaUtilization GIS techniques and its mathematical model to predict the amount of the loss of water, soil and nutrient of the three-gorge area based on analyzing the characteristics forming the local landscape of the small watershed. Then, combining with the distribution of the natural resources and the structure of society economy of a typical small watershed, the administrating model for every part of the small watershed and their developing strategies are proposed further. ? The landscape of the small watershed was making by coordination of the inner driving stress and the outer driving one. The inner stress, such as the geological structure, formed its basic skeleton; and the outer ones, such as weather and hydrology, continuously modified the landscape, and even played a main role in the later evolution of the landscape of this kind region. There were four stages in the evolution of the small watershed, when took the time as the dimension: Stage of controlling the structure formed the basic skeleton of the landscape, Stage of free development reformed the landscape by the driver of the inner stress and in the stage of controlling the base of soil erosion, the outer driving stress (hydrogen erosion) apparently modified the outlook; 4. The fourth stage is of artificial controlling by human being. (2)Took the Shi-Wan-Xi small watershed as an example. The predicted amount of the soil erosion was 3893.38t/km2a, showing the medium degree which was far more than the allowed amount, granted by the hydraulic department of the nation for the mountain area made of soil and stone in south-west of China, which is 500t/km2-a. Whereas, the amount of the soil loss from the lope land had reached to 10826.54t/km2-a, which already got to the most degree and could be regarded as the source for the course of the soil erosion for the region. (3)The altitude height of the small watershed rose up from the infall field to the source field, appearing with plain land, hills and small mountains in turn, which led to apparent vertical distribution of weather, plantation and soil resources. So, mode of the dooryard economy, mode of sight-seeing agriculture and mode of coordinating forestry, bush with grass were proposed and built according to the altitude. (4)While, on the opposite of the stable economical development of the small watershed, the lack of advanced industrial chain, the shortage of agricultural input, the incomplete agricultural market, along with the low level of agricultural technology, would limit the developing speed of social
    economy. So, measures aiming at improving the level of the agricultural industrialization, agricultural intensivism, the level of comprehensive and scientific agriculture, and lifting the income of the farmers should be recommended to accelerate the development of the small watershed.(2) The assessment of the sustainable utilization for the land resources in the three-gorge areaThe results from the research about the distribution of the soil resource, which based on the GIS technique, and took Shi-Wan-Xi small watershed as an example, showed that the area of land enlarged apparently with the raise of the slope. For example, the ideal agricultural area owned 18.54% when slope was lower than 15° , while 27.30% at 15° -25° , and the region mixing forest with stockbreeding region, where the utilization was very difficult, owned more than 50% when the slope was larger than 25 ° .Comparing the soil degradation index of the forestry, that index of the immature forest, uncultivated field, internal-tilling field, orange garden, infield on slope and paddy field were -10.09%, -18.37%, -5.73%, -6.52%, -8.46% and 2.79% respectively, which showed the change of degree of the soil degradation when the natural forest changed into agricultural use. The situation was the most serious in the uncultivated field, while the lightest in paddy field. The planting profession made up of the basic income of the economy of the small watershed, with the industry and other avocations followed behind, and the contribution of the forest and fruit industry to its economy was the smallest, based on data by analyzing the output with input. This was determined by the natural economic condition of the small watershed. The calculation with 23 items, according to the method of analyzing the main element and method of comprehensive assessment, showed that the field-utilizing index from 1996-2002 was -3.43, -1.96, -0.95, -0.2, 1.12, 2.22 and 2.79 respectively. The comprehensive administration, the increasing of the farmer income and the change of the land-utilized pattern has attributed to the increase of the field-utilizing index and the extent of the sustainable quality. The whole courses explained that the sustainable utilization could be strengthened if the economical development of the small watershed had been correctly conducted, and the potential resources of the watershed had been advanced enough, as well as the agricultural market had been regulated to transport the labors in many ways.(3 ) The supporting system for the decisions to administrate the small watershedThe building of the supporting system for administrating decisions to the mountain small watershed must adapt the methods of systematic analyze to design the structure and to show the system with the related parts in the model. The sequence of researching and developing this system should follow the listed arrangement: the first, build the factors base; the second, analyzing and assessing; the third, design the small watershed; the forth and last, decide the thinking for administrating the area in strategic, designing and operating ways. The software of GIS, ARC/INFO, Arcview, Mapinfo and Visual Foxpro6.0 were helpful to build the local factors' base of
引文
[1] Arnordus HMJ, 1980. An approximation of rainfall factor in universal soil loess eguation. In: de Boodt, Gabriels eds.
    [2] A. L. Birkhead, G. L. Heritage, 1996. Ground-Penetrating Radar as a Tool for Mapping the Phreatic Surface, Bedrock Profile and Aluvial Stratigraphy in the Subie River, Kruper National Park. Journal of Soil and Water Conservation, 51(3):349~356.
    [3] Ammentorp-HC, Jorgensen-GH &Kaleen-T-van. Flood Watch-a GIS based decision support system. Hyduo informatics'98. Proceedings of the Third International Conference on Hydro informaties, Copenhangen, Denmark,24-26 August 1998. Volume 1.1998,489~494.
    [4] Arattano,Massimo,1999.Monitoring the propagation of a debris flow along a torrent.Hydrologic Science-Journal-des Science Hydrologique, 44(5):811~823.
    [5] Arattano,M.Deganutti,A.M.&marehi,I,1997.Debris flow monitoring activities in an instrumented watershed of the Italian Alps.Debris-flow hazard Mitigation,506~515.
    [6] Aronne Armani,Miehele Larcher,2001.Rational Criterion For Designing Opening of Slit-Check Dam.Journal of hydraulic engineering, February,94~104.
    [7] Bouma,J,1998. New tools and approachs for land evaluation. Invited keynote paper for the 16th world Congress of soil science.Montpellier, France.
    [8] Bundesm interim four Land-und Forts airshaft (1996): 100 Jared Wildbachverbauung in Oesterreich,1884~1984,Wine.
    [9] C.C.Truman and R.G. Williams.,2001. Effects of peanut cropping practices and canopy cover conditions on runoff and sediment yield. Journal of Soil and Water Conservation, 56(2):152~159.
    [10] Cox-C, Chandra-Madramootoo. Application of geographic information systems in watershed managementplanning in St. Lucia. Computers-and-Eectronics-in-Agriculture.1998,20(3): 229~250.
    [11] David p. Shelton,Elbert C. Dickey, 1995.Corn Residue Cover on the Soil Surface after Planting for Various Tillage and Planting System. Journal of Soil and Water Conservation,50 (4):399~404.
    [12] De Roo A, Wesseling C G, Ritsma C G. LISEM,1996. A single-event, physical based hydrological and soils erosion model for drainage basin. Theory, input and output[J]. Hydrological Processes, 10:1107~1117.
    [13] D.V.St.Geron,C.Kosmas,B.Detsis,M.Marahianou,T.Zafirious,&M.Tsara,2001.The effect of moldboard plow on tillage erosion along a hill slope. Journal of Soil and Water Conservation,56(2):147~159.
    [14] Edward C, 1999.A soil Quality Index and Its Relationship to Efficiency and Productivity Growth [J].American Journal of Agricultural Economics, 81(4):881~893.
    [15] Efrem. G.Mallach,2000. Decision Support and Data Warehouse System.
    [16] El-Swaify S A,E W Dangler.C L,1982.Armstrong.Soil Erosion by Water in the Tropics.HITAHR-College of Tropical Agriculture and Human Resources,University of Hawaii,Research Extension Series 024:92~94.
    [17] ESRI Inc,1993.Understanding GIS—The ARC/INFO Method.Redlancls.CA.
    [18] FAO.FESLM, 1993.An International Framework Evaluating Sustainable Land Management[R].World Soil Resources Report 73.
    [19] F,Ghideyt and E.E. Alberts., 1998.Runoff and soil losses as affected by corn and soybean tillage systems. Journal of Soil and Water Conservation,(1):65~70.
    [20] Forman R T. T. ,1995. Land Mosaics: the Ecology of Landscape and Region[M]. New York:Cambridge University Press, 56~59.
    [21] G.Liu,M,J.Lindstrom, X.Zhang.Y.Li, and J.Zhang.,2001. Conservation management effects on soil erosion reduction in the Sichuan Basin, China. Journal of Soil and Water Conservation, 56(2):144~147.
    [22] Hajabbasi M A, Ahmad Jalalian, Hamid R K.,1997. Deforestation effects on soil physical and chemical properties, Lordegan, Iran [J]. Plant and Soil,190:301~308.
    [23] Halvorson A D, Rculc C A, Anderson R L. 2000.Evaluation of management practices for converting grassland back to cropland [J]. J Soil Water Conservation, 55:57~62.
    [24] Islam K R, Weil R R.,2000.Land use effects on soil quality in a tropical forest ecosystem of Bangladesh [J]. Agriculture, Ecosystem and Environment, 79:9~16.
    [25] ISSS/ITC, 1997. Sustainable Land Management &Geo information (abstract)[Z].ITC.Enschede,Netherlands
    [26] Koeser H et al.1998.Management of material and energy flows form an environment perspective with methods of ecobalance.Chemische Technik,50(4):1~2.
    [27] Kovar-p,Sassa-K.,1998.Water'balance modeling on small-forested catchments. Environment forest science:405~410
    [28] L K Hatch, A.Mallawatantri, D. Wheeler & A.Gleason,etc,2001.Land management at the Major Watershed-Agroecoregion Intersection.Journal of Soil and Water Conservation, 56(1):44~51.
    [29] Mcharg I. L., 1969.Design with Nature [M]. New York: the Natural Histiry Press, 25~28.
    [30] McHarg, 1995. Human planning at Pennsylvania. Landscape Planning,8(2):109~120.
    [31] M. J. Lindstrom,J. A.Schumacher.,2001.Tep: A Tillage Erosion Prediction Model to Calculate Soil Translocation Rates from Tillage. Journal of Soil and Water Conservation,55(1):105~108.
    [32] Morgan R,1994. The European Soil Erosion Model:an updata on its structure and research base[A].In: Rickson, R.(ed), Conserving Soil Resources: European perspectibes [M]. CABInternational, Cambridge, 286~299.
    [33] M.Praise, M. Sorriso-Valvo & C.Tansi.,1997. Mass movement related to tectonics in the Aspromonte Massif. Engineering Geology, (47):89~106.
    [34] Nearing M A,Lane L J, Alberts E and Laflen J M.,1990.Prediction technology for soil erosion by water:Status and research needs.Soil Sci. Soc. Am.J.,54(6):1702~1711.
    [35] O. Hungr and G.C Morgan.,1984.Quantitative analysis of debris torrent hazards for design of remedial measures.CAN.GEOTECH.J.Vol.21.
    [36] Paulw.Unger, Merle F,1998.Vigil.Cover Corp Effects on Soil Water Relationships. Journal of Soil and Water Conservation,53(3):200~206.
    [37] Peter Ergenzinger& Carmen de Jong.,1997. River Bed Dynamics and Bed Sediment Transport in Mountain Torrents.International Journal of sediment Research, 12(3):80~93.
    [38] Praise M.,Sorriso-Valvo M. and Tansi C.,1997.Mass movement related to tectonics in the Aspromonte Massif[J]. Engineering Geology, (47):89~106.
    [39] Rattan Lal,2000. Physical management of soils of the tropics: priorities for the 21st century[J].Soil Science, (165):191~207.
    [40] Regard KG, Foster GR, Weenie GA.,1997.Predicting soil erosion by water. A. guide to conservation planning with the Revised Unibersal Soil Loss Equation(RUSLE)[M].USDA Handbook,No.537.
    [41] Rose CW, Williams JR, Sander GC, Barry DA, 1983. A mathematical model of soil erosion and deposition processes :I.Theroy for a plane land element[J]. Soil Sci. Soc. of Am.J, 47(5):991~995.
    [42] Shaxson.T.F.,1998.Concepts and indicators for assessment of sustainable land use.Advances in Geoecology No.31,11~19.
    [43] S.O.Russell,Member &ASDE.Debris, 1990. Torrent and Pressional Responsibilities. Journal of professional Issues in Engineering,116(1):49~55.
    [44] Stockle, c.o.,1994.American Journal of Alternastive Agriculture Vol9,No.18.2, 45~49.
    [45] T.A.Cocbrane and D.C. Flanagan.,1999.Assessing water erosion in small watersheds using WEPP with GIS and digital elevation models.Journal of Soil and Water Conservation,51(4):678~685.
    [46] T.C.Kaspar,J.K.Radke,and J.M. Laflen.,2001.Small grain cover crops and wheel traffic effects on infiltration,runoff,and erosion.Journal of Soil and Water Conservation,50(2):160~164.
    [47] T.Prato and S.Hajkowicz.,2001.Coparison of Profit Maximization and Multiple Criteria Models for Systems electing.Journal of Soil and Water Conservation, 56(1):52~55.
    [48] University of Lethbridge.,1993.Proceedings of the international Workshop on Sustainable Land Management for 21st Century[C].val.2 Plenary Papers, Lethbridge, Canada.
    [49] W. J. Busscher.,1996. Conservation Farming in Scuthern Brazil:using Crops to Decrease Erosion and Increase Infiltration.Journal of Soil and Water Conservation,51(3):188~192.
    [50] Wichmeier W H. Smith. DD.,1965. Predicting Rainfall erosion losses from cropland east of the Rocky Mountains[M].USDA.Agricultural Handbook,No.282.
    [51] ker, H. und M.Jungwirth.,1988.Oekonomie und Oekologie im Schutzwasserbau,Interpraevent Graz,Bd.,4,339~376.
    [52] Wu J.,1999. Hierarchy and scaling:Extrapolating information along a scaling ladder. Canadian Journal of Remote Sensing,25:367~380.
    [53] Wu J.,2000. Landscape Ecology--Pattern, Process, Scale and Hierarchy.
    [54] Yasushi Mori, Kenji Lwama, Toshisuke maruyama and Toru Mitsuno.,1999.Discriminating the influence of soil texture and management induced changes in macropore flow using soft X-rays [J].Soil science, 164:467~482.
    [55] 白清俊,刘亚相.流域坡面综合产流数学模型的研究.土壤侵蚀与水土保持学报,1999,5(3):87~92.
    [56] 鲍海君,吴宇哲,胡昱东.环境伦理型农地整理规划设计与运作模式探讨[J].经济地理,2003,23(3):346~350.
    [57] 包维楷,陈庆恒.退化山地生态系统恢复和重建问题的探讨.山地学报,1999,17(1):22~27.
    [58] 毕宝德.土地经济学[M].北京:中国人民大学出版社,1990.
    [59] 卜兆宏,孙金庄等.水土流失定量遥感方法及应用研究.土壤学报,1997,34(3):235~245.
    [60] 蔡崇法,丁树文等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究.水土保持学报,2000,14(2):19~25.
    [61] 蔡强国,黎四龙.植物篱减少侵蚀的原因分析.土壤侵蚀与水土保持学报,1999,4(2):54~60.
    [62] 曹利军,王华东.可持续发展评价指标体系建立原理与方法研究[J].环境科学学报,1998,18(5):526~530.
    [63] 曹利军,王华东.区域PRED系统可持续发展判别原理和方法[J].中国环境科学,1998,18(增刊):50~53.
    [64] 陈浮,濮励杰,曹慧.近20年太湖流域典型区土壤养分时空变化及驱动机理[J].土壤学报,2002,39(2):236~245.
    [65] 陈加兵,曾从盛.主成分分析、聚类分析在土地评价中的应用—以福建沙县夏茂镇水稻土为主要评价对象[J].土壤,2001,(5):243~247.
    [66] 陈建卓,田素萍,葛茂杭等.河北省太行山区小流域综合治理模式研究.水土保持通报, 1999,19(4):41~44.
    [67] 陈玉萍,李江风,高燕.土地可持续利用评价研究综述[J].湖北农业科学,2002,(5):20~22.
    [68] 陈治谏,刘邵权,廖晓勇等.三峡库区山地生态系统优化调控[J].山地学报,2003,21(1):85~89.
    [69] 程克坚,彭补拙,濮励杰.干旱绿洲地区土地资源可持续利用初探[J].资源科学,1998,20(4):14~18.
    [70] 邓白罗,谭振辉.紫色土经济林栽培技术[J].山地学报,2003,21(2):201~209.
    [71] 邓宁.改善三峡库区生活环境的关键——发展生态农业[J].科技导报,1997,(4):7~10.
    [72] 董广辉,武志杰,陈利军等.生态农业对土壤质量变化的响应.农业系统科学与综合研究,2001,17(3):190~192.
    [73] 段巧甫.小流域综合治理开发是加快生态环境建设的有效途径[J].中国水土保持学报,2000,(6):13~15.
    [74] 段学军.流域可持续发展决策支持系统的建设与应用.经济地理,1999,19(6):12~17.
    [75] 方红远,严克玉,徐雪良.小流域产业结构投入产出分析[J].中国水土保持,1999,(1):35~37.
    [76] 冯玉广,王华东.区域人口—资源—经济系统可持续发展定量研究[J].中国环境科学,1997,17(5):402~405.
    [77] 傅伯杰,陈利顶.景观多样性的类型及其生态意义.地理学报,1996,51(5):454~462.
    [78] 傅伯杰,陈利顶.土地可持续利用评价的指标体系与方法[J].自然资源学报[J].1997,12(2):112~118.
    [79] 傅伯杰,马克明,周华峰等.黄土丘陵区土地利用结构对土壤养分分布的影响[J].科学通报,1998,43(22):2444~2448.
    [80] 傅伯杰,陈利项等.黄土丘陵区小流域土地利用变化对生态环境的影响.地理学报,1999,54(3):241~246.
    [81] 高洪深.决策支持系统(DSS).清华大学出版社,2000.
    [82] 高甲荣.阿尔卑斯山区危险区区划.山地研究,1998,16(3):252~256.
    [83] 高甲荣.近自然治理——以景观生态学为基础的荒溪治理工程.北京林业大学学报,1999,21(3):80~85.
    [84] 高甲荣.奥地利的荒溪及雪崩防治.世界林业研究,1999,12(5):66~71.
    [85] 郭建中,胡和平,翁文斌等.中小流域防洪规划决策支持系统——系统有研究.水科学进展,2001,12(2):222~226.
    [86] 郭秀锐,毛显强.中国土地承载力计算方法研究综述.地球科学进展,2000,(15):705~711.
    [87] 郭旭东,傅伯杰,陈利顶等.低山丘陵区土地利用方式对土壤质量的影响——以河北省遵化市为例[J].地理学报,2001,56(4):447~455.
    [88] 郭亚芬,任玉东.小流域生态经济系统的评价研究.水土保持通报,2000,20(1):24~27.
    [89] 郭延辅.21世纪水土保持展望.中国水土保持,2000,2:3~7.
    [90] 郭正模.退耕还林工程对山区土地利用影响分析[J].国土经济,2002,(10):7~9.
    [91] 韩玉玲.小流域综合治理效益分析.浙江水利科技,2001,(4):13~16.
    [92] 胡和平,郭建中,翁文斌等.中小流域防洪决策支持系统.水科学进展,2001,12(2):227~231.
    [93] 胡金明,刘兴土.三江平原土壤质量变化评价与分析[J].地理科学,1999,19(5):417~421.
    [94] 胡冉.可持续性生态内涵及其发展意义[J].生态学杂志,1996,15(2):31~36.
    [95] 胡玉法.长江流域水土保持试点小流域治理特色[J].人民长江,2000,31(1):45~47.
    [96] 黄闰泉,袁传武,潘磊等.三峡移民生态系统概念模型及生态环境建设对策[J].水土保持通报,2000,20(4):6~10.
    [97] 黄晓霞,江源,刘全儒等.小五台山亚高山草甸生物多样性的空间格局[J].地理学报,2003,58(2):186~192.
    [98] 梁会民,赵军.小流域综合治理的生态经济效益评估研究.生态经济,2001,(8):12~14.
    [99] 李金昌.试论资源可持续利用的评价指标[J].中国人口、资源与环境,1997,7(3):39~41.
    [100] 李珊.决策支持系统(DSS)的研究与发展.2001,建筑材料研究与应用.
    [101] 李双喜,刘绍之.长江流域试点小流域治理模式及成效.中国水土保持,1999,9:42~43.
    [102] 李文华.1999,长江洪水与生态建设.自然资源学报,14(1):1~8.
    [103] 李新平,黄进勇,马琨等.生态农业模式研究及模式建设建议.中国生态农业学报,2001,9(3):83~85.
    [104] 李新虎,李瑞雪,魏朝富.山区小流域自然资源垂直分异特征及其治理模式研究[J].水土保持学报,2003,17(1):96~99.
    [105] 李玉林,毛春芳,王得刚等.应用模糊数学原理对小流域生态经济系统评价[J].水土保持科技情报,2002,(1):43~45.
    [106] 李阳兵,高明,魏朝富等.土地利用对岩溶山地土壤质量性状的影响[J].山地学报,2003,21(1):41~49.
    [107] 李植斌.区域农用地可持续利用评价[J].南京大学学报,1999,35(3):262~267.
    [108] 李智广.刘务农.秦巴山区中山地小流域土地持续利用模式[J].山地学报,2000,18(2):145~150.
    [109] 林福永,左小德.决策支持系统的研究与发展.暨南大学学报,1997,18(5):34~39.
    [110] 林培.土地资源学[M].北京:中国农业大学出版社,1994.
    [111] 林志垒.主成分分析、聚类分析在耕地适宜性评价中的应用—以将乐县万安镇为例[J].甘肃教育学院学报(自然科学版),2001,15(2):40~46.
    [112] 刘海滨,窦贻俭,朱继业.江苏丘陵区土地利用及农业可持续发展对策[J].水土保持通报,2002,22(2):58~61.
    [113] 刘涣高,朱会义,蔡强国等.小流域综合管理信息系统集成研究.地理研究,2002,21(10):25~32.
    [114] 刘惠.区域农业可持续发展指标体系及评估方法[J].地理科学进展,1997,16(2):21~25.
    [115] 刘吉平,张丽勤,李江峰.我国土地持续利用亟待研究的几个问题[J].地理学与国土研究,1999,15(3):30~34.
    [116] 刘文兆.小流域水分行为、生态效应以及优化调控研究方面的若干问题.地球科学进展,2000,15(5):541~544.
    [117] 刘彦随,冯德显.三峡库区土地持续利用潜力与途径模式[J].地理研究,2001,20(2):139~145.
    [118] 刘求实,沈红.区域可持续发展指标体系与评价方法研究[J].中国人口、资源与环境,1997,7(4):60~64.
    [119] 刘耀.论决策支持系统的应用现状和发展前景.计算机与现代化,2000,66(2):29~35.
    [120] 刘忠伟,程忠晓.景观生态学与生态旅游管理.地理研究,2001,20(2):206~212.
    [121] 卢剑波,王兆骞.GIS支持下的青石山区小流域农业生态经济系统(QWAEIS)及其应用研究[J].应用生态学报,2000,11(5):703~706.
    [122] 卢武强,石崧,卫东.武汉市洪山区土地利用探讨[J].华中师范大学学报(自然科学版),2000,34(2):229~232.
    [123] 罗其友,姜文来,旱农区域资源可持续利用模式评价指标[J].干早区资源与环境,1998,12(3):22~24.
    [124] 毛汉英,高群,冯仁国.三峡库区生态环境约束下的支柱产业选择[J].地理学报,2002,57(5):553~560.
    [125] 苗泽伟,王兆骞.红壤小流域动态信息数据库的建立与管理优化.浙江大学学报,1999,25(2):121~124.
    [126] 倪九派,傅涛,何丙辉等.三峡库区小流域土地利用优化模式的研究[J].农业工程学报,2002,18(6):182~185.
    [127] 倪绍祥.土地类型与土地评价概论[M](第二版).北京:高等教育出版社,1999.
    [128] 欧阳志云.可持续发展的生态学思考[J].农村生态环境,1998,14(2):40~44.
    [129] 潘家华.持续发展途径的经济学分析[M].北京:中国人民大学出版社,1996.
    [130] 蒲艳萍.三峡库区特色农业发展的方向与建议[J].渝州大学学报(社会科学版,双月刊),2001,(1892):41~43.
    [131] 钱海滨,薛永森.土地资源合理利用评价研究综述[J].中国土地科学[J].2001,15(2):14~19.
    [132] 秦明周.红壤丘陵区农业土地利用对土壤肥力的影响及评价[J].山地学报,1999,17(1):71~75.
    [133] 丘国峰.山区土地资源合理利用与区域可持续发研究—以梅州市为例[J].经济地理,2002,22(3):363~367.
    [134] 邱扬,傅伯杰.土地持续利用评价的景观生态学基础[J].资源科学,2000,22(6):1~8.
    [135] 邱扬,傅伯杰,王军等.黄土丘陵小流域土壤物理性质的空间变异[J].地理学报 2002,57(5):587~594.
    [136] 丘扬,傅伯杰,王军等.黄土丘陵小流域土地利用的时空分布及其与地形因子的关系[J].自然资源学报,2003,18(1):20~25.
    [137] 曲福田.可持续发展的理论与政策选择[M].北京:中国经济出版社,2000.
    [138] 沙丽清,邱学忠,甘建民等.云南保山西庄山地流域土地利用方式与土壤肥力关系研究[J].生态学杂志,2003,22(2):9~11.
    [139] 石培礼,唐亚等.山地农业生态系统持续发展的有效途径—坡地农业技术(SALT).生态农业研究,1996,4(2):44~49.
    [140] 师守祥,张智全,李旺泽.小流域可持续发展论[M].北京:科学出版社,2002.
    [141] 施迅.坡地改良利用中活篱笆的种类选择和水平空间结构的初步研究.生态农业研究,1995,3(2):49~53.
    [142] 宋桂琴,李领涛.王东沟农业生态系统能流分析.水土保持学报,1995,9(2):58~63.
    [143] 宋松柏,冯国章,王双银等.综合利用水库优化调度决策支持系统.水科学进展,2002,13(3):358~362.
    [144] 孙凡,冯沈萍.论恢复生态学原理及其在三峡库区退耕还林(草)中的指导作用[J].中国农业科技导报,2001,3(1):17~20.
    [145] 唐华俊,陈启佑.中国土地资源可持续利用的理论与实践[M].北京:中国农业科技社,2000.
    [146] 唐亚,孙辉,谢嘉穗等.中国西部山地可持续发展的一些思考[J].山地学报,2003,21(1):1~8.
    [147] 汤万金,吴刚.矿区生态规划的思考[J].应用生态学报,2000,11(8):637~440.
    [148] 王贵成.土地资源永续开发利用评价指标体系研究[J].经济地理,2000,20(5):80~83.
    [149] 王国胜.北京山区荒溪灾害危险区制图信息系统的研究与开发(博士学位论文):北京林业大学,1995,5:23~25,47~55.
    [150] 王洪杰,李宪文,史学正等.不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系[J].水土保持学报,2003,17(2):44~47.
    [151] 王静嵩,孟炬.谈决策支持系统.信息技术,2000,(14):32~33.
    [152] 王军,傅伯杰,陈利项.景观生态规划的原理和方法[J].资源科学,1999,21(2):71~76.
    [153] 王礼先.关于荒溪分类.北京林学院学报,1982,(3).
    [154] 王礼先,张忠,陆守一等著.流域管理信息系统,中国林业出版社,1994.
    [155] 王礼先,于志民主编.山洪及泥石流灾害预报,2001
    [156] 王克强.我国可持续发展农业土地利用评价指标体系研究[J].生态农业研究,1998,6(2):25~29.
    [157] 王顺克.三峡库区生态经济复合产业带的构建研究.长江流域资源与环境[J],2001,10(3):205~210.
    [158] 王万茂,李俊梅.关于土地资源可持续利用问题的探讨[J].中国土地科学,1999,1:15~23.
    [159] 王效举,龚子同.红壤丘陵小区域不同利用方式下土壤变化的评价和预测[J].土壤学报,1998,35(1):134~139.
    [160] 王秀英,曹文洪.坡面土壤侵蚀产沙机理及数学模拟研究综述.土壤侵蚀与水土保持学报,1999,5(3):87~92.
    [161] 王仰麟,韩荡.矿区废弃地复垦的景观生态规划与设计[J].生态学报,1998,15(5):455~462.
    [162] 王印传,张凤荣,孙丹峰.小流域土地利用规划的理论与方法探讨[J].水土保持学报,2002,16(2):118~121.
    [163] 王云才,郭焕成.沟谷生态经济区的创意与景观规划设计.山地学报,2002,20(2):141~149.
    [164] 王震洪,段昌群,张世彪.从生态经济观论小流域及小流域综合治理[J].生态经济[J],1997,6:23~26.
    [165] 王铮,郑一萍.全球变化对中国粮食安全的影响分析.地理研究,2001,20(3):282~289.
    [166] 王治国,肖娟等.黄土残塬区人工降雨条件下坡耕地水蚀研究.土壤侵蚀与水土保持学报,1999,5(2):13~17.
    [167] 魏思兵,地理信息系统的技术与发展.现代计算机,1997,55:8~10.
    [168] 文科军,巴力图,王礼先等.荒溪分类技术.新疆农业大学学报,2000,23(1):49~53.
    [169] 吴刚,高林.三峡库区边际土地的合理开发及其可持续发展[J],环境科学,1998,19(1):89~93.
    [170] 邬建国.景观生态学—概念与理论[J].生态学杂志,2000,19(1):42~52.
    [171] 肖人彬,罗云峰,费奇.决策支持系统发展的新阶段.系统工程理论与实践,1999,(1):47~52.
    [172] 谢俊奇.可持续土地利用的社会、资源环境和经济影响评价的初步研究[J].中国土地科学,1998,12(3):1~5.
    [173] 谢俊奇.中国土地利用系统研究.中国土地科学,1999,13(4):35~38.
    [174] 谢晓华.土地利用经济评价方法探讨与应用[J].华东地质学院学报,2000,(1):55~58.
    [175] 许峰,蔡强国等.坡地等高植物篱带间距对表土养分流失的影响.土壤侵蚀与水土保持学报,1999,5(2):23~29.
    [176] 许峰,蔡强国等.等高植物篱在南方湿润山区坡地的应用—以三峡库区紫色土坡地为例.山地学报,1999,17(3):193~199.
    [177] 徐梦洁.区域农业可持续发展评价指标体系初探[J].农业系统科学与综合研究,1998,14(4):313~316.
    [178] 徐天蜀,彭世揆,杨树华.林业及生态系统管理决策支持系统研究综述.西南林学院学报,2001,21(1);50~57.
    [179] 许有鹏,王腊春,李立国等.中小流域防洪决策支持系统设计研究——以我国东南沿海为例.南京大学学报,2000,36(3):280~285.
    [180] 许兆新,周双娥,郝燕玲.决策支持系统相关技术综述.计算机应用研究,2001,(2):35~39.
    [181] 闫慧敏,李壁成.4D技术在流域管理中的应用.水土保持通报,1999,19(3):40~43.
    [182] 杨爱民,孟丽,孙彦坤等.关于评价小流域生态经济系统的研究[J].水土保持科技情报,1998,(4):17~20.
    [183] 杨联安,史舟等.红壤资源信息系统的研制及其初步应用.土壤学报,1999,36(1):137~145.
    [184] 杨武德,王兆骞等.红壤坡地不同利用方式土壤侵蚀模型研究.土壤侵蚀与水土保持学报,1999,5(1):52~58.
    [185] 杨子生.长江上游滇东北山区坡耕地水土流失与可持续利用研究简介.山地学报,1999,17(增刊):1~5.
    [186] 杨子生,滇东北山区坡耕地土壤可蚀性因子。山地学报,1999,17(增刊):10~15.
    [187] 姚华荣,吴绍洪,曹明明等.区域水土资源的空间优化配置[J].资源科学,2004,26(1):99~106.
    [188] 叶文虎,唐剑武.可持续发展的衡量方法及衡量指标初探,可持续发展之路[M].北京:北京大学出版社,1995.
    [189] 尹君.土地资源可持续利用评价指标体系研究[J].中国土地科学,2001,15(2):6~9.
    [190] 游松财,李文卿,1999,GIS支持下的土壤侵蚀量估算.自然资源学报,14(1):76~82.
    [191] 岳天祥,叶庆华.景观连通性模型及其应用[J].地理学报,2002,57(1):67~75.
    [192] 臧淑英,万鲁河,周道玮.黑龙江二龙山水库流域景观生态评价与规划研究[J].应用生态学报,2003,14(4):540~544.
    [193] 张本强,刘窖头.小流域综合治理模式初探.水土保持通报,2002,22(3):76~78.
    [194] 张殿发,黄弈龙.土地资源可持续利用的生态经济系统分析[J].农村生态环境,2000,16(2):45~48.
    [195] 张凤荣.持续土地管理的理论与实践[M].北京:北京大学出版社,1996.
    [196] 张光宇,刘永清.土地可持续利用的系统学思考[J].中国人口、资源与环境,1998,3:11~14.
    [197] 张洪江.通用土壤流失方程式综述.北京林学院学报,1985,(3):73~87.
    [198] 章国明,朱元贵.山区小单元综合治理模式初探[J].中国水土保持 2001,(9):22~23.
    [199] 张宏培,杨大成.西部大开发中的各省区区位优势的多层次的主成分分析[J].数理统计与管理,2001,20(5):31~38.
    [200] 张洁,胡运权.决策支持系统研究技术及发展趋势.哈尔滨工业大学学报,1999,31(3):38~41.
    [201] 章家恩,徐琪.三峡库区秭归县土壤退化综合评价[J].生态农业研究,1999,7(1):32~35.
    [202] 张壬午,许文瑛,徐静.论生态农业模式设计.生态农业研究,1997,5(3):1~5.
    [203] 张晓萍.基于GIS实现的中国土壤侵蚀背景数据库若干技术问题.水土保持通报.2000,20(1):48~50.
    [204] 张展羽.美国的水土保持及小流域治理.水利水电科技进展[J],1998,18(5):6~10.
    [205] 赵耀龙,张玲娟.脆弱生态环境定量评价方法的研究[J].地理科学,1998.6(2):25~29.
    [206] 赵颖南,黄文星.安徽省县域生态农业建设实践.中国生态农业学报,2001,9(2):109~111.
    [207] 郑度.长江上中游山地生态系统综合管理也整治.长江流域洪水环境成灾因素综合治理[M],2001,141~149.
    [208] 郑昭佩,刘作新,向晓明.低山丘陵半干旱区小流域综合治理初报.地域研究与开发,2001,20(2):68~71.
    [209] 中国农业科学院农业自然资源和农业区划研究所.中国耕地[R].北京:中国农业出版社,1995.
    [210] 钟契夫.投入产出分析[M].中国时政经济出版社.1993,11.
    [211] 周国富.山区农业持续发展影响及对策[J].贵州师范大学学报(自然科学版)2002,20(2):61~65.
    [212] 周麟.重庆市黔江县小流域综合治理效益评估.山地学报,1999,17(1):76~80.
    [213] 周万村.三峡库区土地自然坡度和高程对经济发展的影响[J].长江流域资源与环境,2001,10(1):15~21.
    [214] 朱波,陈实等.陡坡耕地的开发利用和保护—一种农林复合模式.山地学报,2000,18(1):37~41.
    [215] 朱启贵.可持续发展评估[M].上海:上海财经大学出版社,1999.
    [216] 朱亚明,罗征荣,吕永成.GIS支持下的红壤小流域自然资源优化配置DSS研究.广西农业生物科学,1999,18(1):666~669.
    [217] 王宗军,蒋元涛.基于SWOT的智能型动态战略决策支持系统的分析和实[J].系统工程,2004,22(4):73
    [218] 查伟雄,熊桂林,万国栋.旅客列车开行方案决策支持系统研究[J].系统工程,2004,22(6):78,82
    [219] 江浩.面向火电厂厂级监控信息系统应用和基于组件对象模型实现的决策支持系统[J].中国电力,2004,37(1):62,63
    [220] 赵其国,孙波,张桃林.土壤质量与持续环境[J].土壤,1997,(3):113-120.
    [221] 郭胜利,周印东,张文菊,荣丽嫒,刘振赏,高长青.长期施用化肥对粮食生产和土壤质量性状的影响[J].水土保持研究,2003,10(1):16-22.
    [222] 龙健,黄昌勇,李娟.喀斯特山区土地利用方式对土壤质量演变的影响[J].水土保持学报,2002,(1):76-79.
    [223] 章明奎,徐建民.利用方式和土壤类型对土壤肥力质量指标的影响[J].浙江大学学报(农业与生命科学版2002,28(3):277-282.
    [224] 巩杰,陈利顶,傅伯杰,李延梅,黄志霖,黄奕龙,彭鸿嘉。黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响 应用生态学报 2004,15(12):2292~229
    [225] 王洪杰,史学正,李宪文,于东升,孙维侠,曹志洪,小流域尺度土壤养分的空间分布特征及其与土地利用的关,水土保持学报 2004 18(1):15-19
    [226] 傅伯杰 陈利顶 马克明,黄土丘陵区小流域土地利用变化对生态环境的影响——以延

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700