用户名: 密码: 验证码:
基于遥感影像的城市景观格局及其热环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,以发展中国家为主体的城市化浪潮不断掀起,城市化所伴生的大规模土地利用/覆盖变化已经成为一种典型的人地系统相互作用过程。从景观角度看,城市化过程伴随着一系列自然景观被人工景观所取代,景观格局的这种时空演变潜在着重要的自然与社会文化方面的生态过程。本文选择中国最大的城市—上海为典型案例,通过遥感定量方法获取城市内部各种景观信息,揭示城市化过程中各种城市景观的时空演变格局特征;在各种景观格局和热环境效应关系分析的基础上,综合研究城市热环境形成机制,为寻求城市内部人地系统的协调与均衡发展、最大限度地减少人类活动对城市生态环境的影响与破坏提供基本思路。利用GIS、RS方法,研究城市尺度上景观时空演变格局及其热环境效应,在理论上提供一种城市景观生态或者城市生态环境研究的基本范式,完善和促进景观生态学方法和理论体系的发展;在实践上对当前上海市的城市规划、城市建设、环境保护和区域可持续发展提供有效的决策支持。
     第一章首先分析了研究背景和意义,通过对国内外相关研究进展的评述,发现景观生态学是目前生态学领域发展最为活跃的学科。城市景观是景观生态学一直关注的重点领域,但由于强烈的人为色彩导致城市景观格局—生态学过程的研究范式具有一定局限性。城市生态环境是目前普遍关注的问题,相关的研究成果具有重要的实践价值。因此,选择城市景观下潜在的能量流(热环境)作为城市景观格局的生态学过程,从而将城市景观生态与环境问题相结合,成功的将景观生态学的研究范式引入城市生态环境研究,具有重要的理论和实践意义。
     第二章,在分析所借鉴的理论和方法的基础上,重点阐述了在方法上的两点改进或者创新:混合像元线性光谱分解技术的改进和基于地图代数的多变量综合分析模式的提出。通过在端元选取上的几点改进,提高了混合像元分解技术在城市生态环境信息获取中的可用性;针对城市生态要素的多维性,建立一种基于栅格的多变量综合分析模式,为城市生态环境研究提供一种一般性的技术框架。还对研究区域和研究内容进行简单概括,最后给出了研究的总体思路。
     第三章通过尺度推绎发现,各种景观随着尺度变化具有明显的格局特点。上海市土地利用景观格局的粒度变化揭示40m的粒度比较接近本征尺度的分辨率;针对具体的研究目的,选择外环线为总体上研究幅度;对景观格局指数的空间异质性对幅度的响应特征分析,1km幅度是一个相对较好的空间样本选择。
     第四章根据VIS模型原理和光谱分解方法,得到了上海市不透面空间分布特征:中心城区几个区明显高于浦东等其它几个区,但相互之间的差异并不明显。各个街镇不透水面的分布规律较明显,高值区主要集中在浦西的内环以内,次高值区总体上在浦西沿内环两侧分布并北延到宝山区的外环附近,更小的值在其外部呈环状扩展。
     第五章,对上海市城市绿色空间进行评价。从植被指数评价结果来看,所有植被指数对于植被和非植被的区分都比较好;但把植被再细分的效果不是太好。综合分析
At present, world urbanization accelerates greatly, especially in developing countries, which has already become one of the major manners for human to change the Earth and the land use/cover. From the viewpoint of landscape, urbanization was followed with series of physical ecology landscapes replaced by human ones, which implies an important physical and social ecology process. This thesis, selecting Shanghai city as an example area, firstly discloses the evolving characters of spatio-temporal pattern of all kinds of urban landscapes with quantificational information obtained by remote sensing methods. Based on the relationship analysis between landscape pattern and thermal environment effect, the paper studies synthetically the mechanism of urban thermal environment developing, which can provide basic ideas for reducing farthest all the destruction to natural environment and seeking balanced development between human and Earth of urban, Studying the landscape spatio-temporal pattern and its thermal environment effect at urban scale by GIS&RS methods firstly provides a new paradigm for the study of urban landscape ecology or urban ecology environment in theory, at the same time can perfect or promote the methods and system info of landscape ecology, can also support the decisions for urban planning, urban constructing, environment protecting and regional sustainable development in Shanghai city.Chapter 1 is "Introduction", puts forward the study value. According to the relative study background at home and abroad, the landscape ecology is the most active subject in Ecology field. Urban landscape is paid more attention in landscape ecology studying. But the pattern-process paradigm of urban landscape has been restricted for strong factitious character of landscapes. Ecology environment is more and more important in urban area, studies on which are of great value. Therefore selecting the latent energy flow (thermal environment) behind urban landscapes as ecology process of landscape pattern, which link the urban landscape ecology with urban environment problems and introduce the study paradigm of landscape ecology into urban ecology environment successfully, has important signification in theory and practice.In chapter 2, based on the analysis of referenced theories and methods, the paper emphasizes two improved or innovated methods: linear spectral unmixing for mixing pixels and multivariable synthesis analysis model based on map algebra. Through changing endmember select methods, the precision of linear spectral unmixing in urban ecology environment is a lot improved. Through using map algebra, converting data format, scaling and combining GIS, RS with multivariable analysis, the paper provides a new multivariable synthesis analysis model based on grid, which provides a general technology frame for urban ecology environment study. The chapter also introduces the research area and content simply, at last gives the research flow map.In chapter 3, through scaling (upscaling and downscaling), all kinds of landscape take on distinct variation pattern to the scale changing. Though the study we can know that 40-meter grain compared with other grains in Shanghai city is more close to intrinsic scale of urban landscape. Aimed to the given study object, outline highway is chosen as a whole. According to analyzing the response characters of spatial heterogeneity of landscape
    indices to extent changing, 1km extent is a perfect choice.In chapter 4, the spatial distribution of impervious surface in Shanghai city was obtained by improved linear spectral unmixing method based on vegetation-impervious surface-soil model principle. The values scattered in the districts in urban center are higher than the ones in Pudong new area, but the discrepancy among them is not distinct. The spatial distribution rule for impervious at the scale of street or town is more distinct. High values are mainly distributed in the interior of inner ring road on the west of Huangpu River. From the inner of downtown center to the outer, the values decrease gra
引文
1. Adams, J. B. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site[J]. Journal of Geophysical Research, 1986, 91: 8089~8122.
    2. Adams, J. B., Smith, M. O., & Gillespie, A. R. Imaging spectroscopy: Interpretation based on spectral mixture analysis. In C. M. Pieters, & P. Englert (Eds.), Remote Geochemical Analysis: Elemental and Mineralogical Composition[M]. New York: Cambridge Univ. Press. 1993: 145~166.
    3. Artis, D. A., Camahan, W. H. Survey of emissive variability in thermography of urban areas[J]. Remote Sensing of Environment, 1982, 12: 313~329.
    4. Bailing R. C., Brazell S. W. High resolution surface temperature patterns in a complex urban terrain[J]. Photogrammetric Engineering and Remote Sensing, 1988, 54: 1289~1293.
    5. Batty M, Longiey P A. The morphology of urban land use[J]. Environment and Planning B: Planning and Design, 1988, 15: 461~488.
    6. Boardman, J.W., Kruse, F. A., and Green, R. O. Mapping target signatures via partial unmixing of AVIRIS data: in Summaries, Fifth JPL Airborne Earth Science Workshop[C]. JPL Publication, 1995, 1: 23~26.
    7. Bruce L, Dickson. Recent advance in aerial gamma-ray surveying[J]. Journal of environmental Radioactivity, 2004, 76: 225~336.
    8. Cappiella and Brown. Land use and impervious cover in the Chesapeake Bay region, Urban Lake Management[M]. 2001, pages835~840.
    9. Carlson, T. N., Dodd, J. K., Benjamin, S. G., & Cooper, J. Satellite estimation of the surface energy balance, moisture availability and thermal inertia[J]. Journal of Applied meteorology, 1981, 20: 67~87.
    10. Camahan W. H., Larson R. C. An analysis of an urban heat sink[J]. Remote Sensing of Environment, 1990, 33: 65~71.
    11. Chrisman, N. Exploring geographic information systems[M]. New York: Wiley & Sons, 1995.
    12. Christopher Small. Estimation of urban vegetation abundance by spectral mixture analysis[J]. International journal of remote sensing, 2001, 22(7): 1305~1334.
    13. Christopher Small. Multitemporal analysis of urban reflectance[J]. Remote Sensing of Environment. 2002, 81: 427~442.
    14. Christopher Small. The Landsat ETM+ spectral mixing space[J]. Remote Sensing of Environment, 2004, 93: 1~17.
    15. Cook, E. A. Landscape structure indices for assessing urban ecological networks[J]. Landscape and urban planning, 2002, (58): 269~280.
    16. David P., Thomas P.V. Ecological scale: Theory and Application[M].Columbia University Press, 1998. 1~4.
    17. Deering, D.W., Rouse, J.W., Haas, R.H., and J.A. Schell. Measuring forage production of grazing units from Landsat MSS data, Proceedings of Tenth International Symposium on Remote Sensing of Environment[J]. Ann Arbor, ERIM, 1975, 2, pp. 1169~1178.
    18. Deguchi, C., & Sugio, S. Estimations for percentage of impervious area by the use of satellite remote sensing imagery[J]. Water science technology, 1994, 29: 135~144.
    19. Dengsheng Lu and Qihao Weng. Spectral Mixture Analysis of Urban Landscape in Indianapolis with Landsat ETM+ Imagery[J]. Photogrammetric Engineering & Remote Sensing, 2004, VOL.70, No.9, PP: 1053~1062.
    20. Emma Underwood, Susan Ustin, Deanne Dipietro. Mapping nonnative plants using hyperspectral imagery[J]. Remote sensing of environment, 2003, 86: 150~161.
    21. Ester, J. E., and Star, J. L. Support for global science: remote sensing's challenge[J]. Geocarto International, 1986, 1: 3~14.
    22. Fan Xinqi, Liu Jihan, Qian Bin, et al. Research On Dynamical Supervision Design Of Heat Land Phenomena Of Main Cities In China [A]. See: Xu Xiru. Corpus of Remote Sensing Research On Environment Supervision Designing and Crop Yield Estimating[C]. Beijng: Beijing University Press, 1991. 171~189.
    23. Forman R T T, Godron M. Landscape Ecology[M]. New York: John Wiley & Sons, 1986.
    24. Francis, Klopatek. Multiscale effects of grain size on landscape pattern annalysis[J]. Geographic Information Sciences, 2000, 6(1): 27~37.
    25. Fu Bojie, Ma Keming, zhou Huafeng, et al. The effect of land use structure on the distribution of soil nutrients in the hilly area of the loess plateau[J]. China: Chinese Science Bulletin, 1999, 43(22): 2444~2448.
    26. Gallo K. P., McNab A. L., Karl T. R., et al. The use of NOAA AVHRR data for assessment of the urban heat island effect[J]. Journal of Applied Meteorology, 1993, 32: 899~908.
    27. Gallo K. P., Owen T. W. Assessment of urban heat island: A multi-sensor perspective for the Dallas-Ft. Worth, USA region[J]. Geocarto International, 1998, 13: 35~41.
    28. Gitelson, A., Y.J. Kaufman, and M.N. Merzlyak. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote sens. Environ, 1996.
    29. Goward, S. N. Thermal behavior of urban landscapes and the urban heat island[J]. Physical Geography, 1981, 2: 19~33.
    30. Green, A. A., Berman, M., & Switzer, P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26 (1): 65~74.
    31. Gupta R.K., Prasad S., Seshasai M.V.R. et al. The estimation of surface temperature over an agricultural area in the state of Haryana and Panjab, India, and its relationship with the Normalized Difference Vegetation Index (NDVI), using NOAA-AVHRR data [J]. Remote Sensing, 1997, 18(18): 3729~3741.
    32. Hobbs, R. Future landscape and the future of landscape ecology[J]. Landscape and Urban Planning, 1997, 37: 1~9.
    33. Hochberg, Y. and Tamhane, A., Multiple comparison procedures [M]. New York: Wiley, 1987.
    34. Huang, J., Akari, H., Taha, H. and Rosenfeld, A. The potential of vegetation in reducing summer cooling loads in residential buildings[J]. Journal of Climate and Applied Meteorology, 1987, 26: 1103~1106.
    35. Jensen, J. R.. Biophysical remote sensing[J]. Annals of the association of American Geographers, 1983, 73: 111~132.
    36. Ji, M., & Jensen, J. R. Fuzzy training in supervised image classification[J]. Geographic information scicences, 1996, 2: 1~12.
    37. Johnson, Smith, Taylor-George and Adams. A semiempirical method for analysis of the reflectance spectral of binary mineral mixtures[J]. Journal of Geophysical Research, 1983, 88: 3557~3561.
    38. Jordan.C.E Derivation of leaf area index from quality of light on the forest floor[J]. Ecology, 1969, 50: 663~666.
    39. Kauth, R. J., & Thomas, G. S. The tasseled cap—a graphic description of the spectral-temporal development of agriculture crops as seen by Landsat[J]. Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, 1976: 4041~4051.
    40. Kim H. H. Urban heat island[J]. International Journal of Remote Sensing, 1992, 13: 2319-2336.
    41. Kohonen T. Organization and associative memory[M]. Berlin: Springer, 1984.
    42. Kohonen T. Self organizing maps (2nd)[M]. Berlin: Springer, 1997.
    43. Kyriakidis P, Joumel A G Geostatistics models: a review[J]. Mathematical Geology, 1999, 31(6): 615-684.
    44. Leduc A, Prairie Y. T. & Bergeron Y. Fractal dimension estimates of a fragmented landscape: Sources of variability [J]. Landscape Ecology, 1994, 9: 279-286.
    45. Li B. Fractal geometry applications in description and analysis of patch patterns and patch dynamics[J]. Ecological Modelling, 2000, 132:33-50.
    46. Li Jiahong. Study Of Relation Between Land Cover Conditions And Temperature Based On Landsat/TM Data[J]. Remote Sensing Technology And Application, 1998, 13 (1): 18-28.
    47. Liu H.Q, Huete .A.R. 1995. A feedback based modification of the NDVI to minimize canopy background and atmosphere noise[J]. IEEE Trans Geosci Remote Sensing, 33:457-465.
    48. Lo, C. P., Quattrochi, D. A. and Luvall, J. C. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect[J], International Journal of Remote Sensing, 1997,18: 287-303.
    49. Ma Ainai. Model Of Remote Sensing Information[M]. Beijing: Beijing University Press,1999.
    50. Mandelbrot B B. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science, 1967,156(3775): 636-638.
    51. Mandelbrot B B. The fractal geometry of nature[M]. New York: W H Freeman. 1982. 45-66.
    52. Markham B. L., Barker J. K. Spectral characteristics of the LANDSAT Thematic Mapper sensors[J]. International Journal of Remote Sensing, 1985,6: 697-716.
    53. McGarigal K, Marks B J. FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure[C]. Report No. PNW-GTR-351, USDA-Forest Service, Pacific Northwest Research Station, Portland, 1995.
    54. Mcpherson. E. G, Nowak, D., Heisler, G, Grimmond, S., South, C, et al. Quantifying urban forest structure, function, and value: The Chicago Urban Forest Climate Project[J]. Urban Ecosystems, 1997, 1: 49-61.
    55. Minghua Zhang, Zhihao Qin, Xue Liu, et al. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing[J]. International Journal of Applied Earth Observation and Geri formation, 2003,4: 295-310.
    56. Mustard J.F., Carney M.A., Sen A.. The Use of Satellite Data to Quantify Thermal Effluent Impacts[J]. Estuarine, Coastal and Shelf Science, 1999,49: 509-524.
    57. Naveh, Z., Lieberman, A. S. Lanscape ecology: theory and application[M], New York: Springer-Verlad, 1984.
    58. Nichol J. E. A GIS-based approach to microclimate monitoring in Singapore's high-rise housing estates[J]. Photo grammetric Engineering and Remote Sensing, 1994, 60(10): 1225-1232.
    59. Owen, T. W., Carlson, T. N. and Gillies, R. R. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization[ J]. International Journal of Remote Sensing, 1998, 19: 1663-1681.
    60. Per Bolund. Sven Hunhammar. Ecosystem services in urban areas [J]. Ecological Economics. 1999, (29): 293-301.
    61. Phinn, S., Stanford, M., & Scarth, P., et al. Monitoring the composition and form of urban environments based on the vegetation-impervious surface-soil (VIS) model by sub-pixel analysis techniques[J]. International journal of remote sensing, 2002, 23(20): 4131~4153.
    62. Picket S T A, Cadenasso M L.1995. Landscpae ecology: spatial heterogeneity in ecological systems[J]. Scicence, 269: 331~334.
    63. Pinty, B. and M. M. Verstraete. GEMI: A Non-Linear Index to Monitor Global Vegetation from Satellites[J]. Vegetation, 1992, 101, 15~20.
    64. Prospects for urbanization[M]. United Nations: 1997,ST/ESA/SER. A/166, Sales No. E. 97. ⅩⅢ. 3.
    65. Qihao Weng, Dengsheng L., Jacquelyn S.. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies[J]. Remote Sensing of Environment, 2004, 89: 467~483.
    66. Qihao Weng. A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China[J]. International Journal of Remote Sensing, 2001, 22: 1999~2014.
    67. Qihao Weng. Fractal analysis of satellite-detected urban heat island effect[J]. Photogrammetric Engineering and Remote Sensing, 2003, 69: 555~566.
    68. Rosenfeld, A. H., Akbari, H., Bretz, S., et al. Mitigation of urban heat island: Materials, utility programs, updates[J]. Energy building, 1995, 22: 255~265.
    69. Roth M., Oke T. R., Emery W. J.. Satellite derived urban heat islands from three coastal cities and the utilisation of such data in urban climatology[J]. International Journal of Remote Sensing, 1989, 10: 1699~1720.
    70. Roujean, J.L., and F.M. Breon. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment, 1995, 51: 375~384.
    71. Rouse, J.W., Haas, R.H., Sehell, J.A., and D.W. Deering. Monitoring vegetation systems in the Great Plains with ERTS, Proceedings of Third Earth Resources Technology Satellite-1 Symposium[C]. Greenbelt, 1974, NASA SP-351: 310~317.
    72. Sen A K. Large sample-size distributions of statistics used in testing for spatial correlation[J]. Geographical Analysis, 1976, 9: 175~184.
    73. Smith, M. O., Johnson, P. E., and Adams, J. B. Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis[J]. Journal of Geophysical Research, 1985, 90: 797~804.
    74. Streutker, D. R.. A remote sensing study of the urban heat island of Houston, Texas[J]. International Journal of Remote Sensing, 2002, 23: 2595~2608.
    75. Tomlin. GIS and cartographic modeling [M]. New Jersey: Prentice Hall, 1990.
    76. Turner M G. 1987. Spatial simulation of landscape changes in Georgia: a comparison of 3 transition models[J]. Landscape Ecology, 1: 29~36.
    77. Van de Griend A A, Owe M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces[J]. International Journal of Remote Sensing, 1993, 14(6): 1119~1131.
    78. Van Der Meer, F., & De Jong, S. M. Improving the results of spectral unmixing of Landsat Thematic Mapper imagery by enhancing the orthogonality of end-members[J]. International journal of remote sensing, 2000, 21: 2781~2797.
    79. Vitousek, P. M., Mooney, H.A., Lubchenco, J. and Melillo, J. M. Human domination of earth's ecosystems [J]. Science, 1997, 277: 494~499.
    80. Ward, D., Phinn, S. R., & Murray, A. T. Monitoring growth in rapidly urbanizing areas using remotely sensed data[J]. Professional Geographer, 2000, 52(3): 371~386.
    81. Weng, Q., Lu, D. and Schubring, J.. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies[J]. Remote sensing of environment, 2004, 89: 467~483.
    82. Wenze Yue, Jianhua Xu, Hongjuan Liao et al. Applications of Spatial interpolation for climate variables based on geostatistics: a case study in Gansu province, China[J]. Geographic Information Science, 2003, 9(1-2): 71~77.
    83. White R, Engelen G. Cellular automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns[J]. Environment and Planning A, 1993, 25: 1175~1199.
    84. Wickham J.D., Riitters K.H. Sensitivity of landscape metrics to pixel size[J]. International Journal of Remote Sensing, 1995, 16(18): 3585~3594.
    85. Wiens, J,A. What is landscape ecology, really?[J]. Landscape Ecol. 1992, 7: 149~150.
    86. Wiens, J.A., Stenseth, N. C., Home, B. V., et al. Ecological mechanisms and landscape ecology[J]. Oikos, 1993, 66: 369~380.
    87. Wu J G, Qi Y. Dealing with scale in landscape analysis: an overview[J]. Geographic Information Sciences, 2000, 6(1): 1~5.
    88. Wu J, Loucks O L. From balance-of-nature to hierarchical patch dynamics: A paradigm shift in ecology[J]. Quarterly Review of Biology, 1995, 70: 439~466.
    89. Wu, C., Murray, A. T. Estimating impervious surface distribution by spectral mixture analysis[J]. Remote sensing of environment, 2003, 84: 493~505.
    90. Wu, J. G. Effects of changing scale on landscape pattern analysis: scaling relations[J]. Landscape Ecology, 2004, 19: 125~138.
    91. Wu, Jelinski, Luck. Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics[J]. Geographic Information Sciences, 2000, 6(1): 6~19.
    92.常学礼,邬建国.科尔沁沙地景观格局特征分析[J].生态学报,1998,18(3):225~232.
    93.常学礼,张安定,杨华等.科尔沁沙地景观研究中的尺度效应[J].生态学报,2003,23(4):635~641.
    94.车生泉,宋永昌.上海城市公园绿地景观格局分析[J].上海交大学报(农业科学版),2002,20(4):322~327.
    95.车生泉.城市绿地景观结构分析与生态规划—以上海市为例[J].南京:东南大学出版社,2003.
    96.陈浮,葛小平,陈刚等.城市边缘区景观变化与人为影响的空间分异研究[J].地理科学,2001,21(3):210~216.
    97.陈蕾,邓孺孺,柯锐鹏等.基于地面耦合的TM影像的大气校正[J].地理与地理信息科学,2004,20(2):34~37.
    98.陈利顶,傅伯杰,张淑荣等.异质景观中非点源污染动态变化比较研究[J].生态学报,2002,22(6):808~816.
    99.陈沈斌,潘莉卿.城市化对北京平均气温的影响[J].地理学报,1997,52:27~36.
    100.陈水华,丁平,范忠勇等.城市鸟类对斑块状园林栖息地的选择性[J].动物学研究,2002,23(1):31~38.
    101.陈云浩 史培军 李晓兵.基于遥感和GIS的上海城市空间热环境研究[J].测绘学报,2002,31(2):139~144.
    102.陈云浩,李京,李晓兵.城市空间热环境遥感分析——格局过程模拟与影响[M].北京:科学出版社,2004.
    103.陈云浩,李晓兵,史培军等.上海城市热环境的空间格局分析[J].地理科学.2002,6,22(3):317~323.
    104.陈云浩,王洁,李晓兵.夏季城市热肠的卫星遥感分析[J].国土资源遥感,2002,4:56~59.
    105.陈云浩.上海城市空间热环境的遥感图像分析与应用研究[J].测绘学报,2001,30(1):282.
    106.丁桂冰.城市热环境及防治措施[J].福建环境,2001,18(2):37~38.
    107.丁圣彦,曹新向.清末以来开封市水域景观格局变化[J].地理学报,2004,59(6):956~963.
    108.董连科.分形理论及其应用[M].沈阳:辽宁科学技术出版社,1991.
    109.范建容,刘淑珍.遥感技术在山区土地荒化评价中的应用[J],山地研究,1999,17(1):40~44.
    110.傅碧宏,史基安,张中宁.Landsat TM热红外遥感数据定量反演地下水富集带的温度信息——以甘肃河西地区石羊河流域为例[J].遥感技术与应用,1999,14(2):34-38.
    111.傅伯杰,陈利顶,马克明等.景观生态学原理及应用[M].北京:科学出版社,2001.
    112.傅伯杰,陈利项,王军等.土地利用结构与生态过程[J].第四纪研究,2003,23(3):247~255.
    113.高峻,宋永昌.基于遥感和GIS的城乡交错带景观演变研究——以上海西南地区为例[J].生态学报,2003,23(4):805~813.
    114.郭铌.植被指数及其研究进展[J].干旱气象,2003,21(4):71~75.
    115.郝俊卿,王雁林.基于自组织映射神经网络模型的区域经济评价[J].地域研究与开发 2005,24(1)58~59.
    116.何东进,洪伟,胡海倩等.武夷山风景名胜区景观空间格局变化及其干扰效应模拟[J].生态学报,2004,24(8):1602~1610.
    117.胡保清,任东明.广西石山区可持续发展的综合评价——指标体系和评价方法[J].山地研究,1998,16(3):136~139.
    118.胡孟春,马荣华,吴焕忠.海南省生态环境综合评价制图方法[J].2000,55(4):467~474.
    119.黄裕婕,张增样,周全斌.西藏中部的生态环境综合评价[J].山地学报,2000,18(4):318~321.
    120.江源,高清竹,何立环等.基于Landsat-TM数据的农牧交错带景观结构研究——以内蒙古自治区兴和县为例[J].应用生态学报,2002,13(4):403~408.
    121.蒋美珍.城市绿地的生态环境效应[J].浙江大学学报,2003,3(1):79~82.
    122.金为民 姚永康 许东新等.城市人工片林小气候研究初报[J].东北林业大学学报,2002,30(3):116~117.
    123.肯.布莱克(KenBlack),戴维L.埃尔德雷奇(David L.Eldvdge)以EXCEL为工具德商务与经济统计[M].北京:机械工业出版社,2003(9).
    124.黎夏,叶嘉安.基于神经网络的单元自动机CA及真实和优化的城市模拟[J].地理学报,2002,57(2):159~166.
    125.黎夏,叶嘉安.约束性单元自动演化CA模型及可持续城市发展形态的模拟[J].地理学报,1999,54(4):289~298.
    126.黎夏,叶嘉安.主成分分析与Cellular Automata在空间决策与城市模拟中的应用[J].中国科学(D辑),2001,31(8):683~690.
    127.李双成.蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11~17.
    128.李团胜,肖笃宁.沈阳市城市景观分区研究[J].应用生态学报,1999,19(3):232~236.
    129.李维敏.广州城市廊道变化对城市景观生态的影响[J].地理学与国土研究,1999,15(4):76~80.
    130.李秀珍,肖笃宁.城市的景观生态学探讨[J].城市环境与城市生态,1995,8(2):26~30.
    131.凌怡莹,徐建华.基于分形理论和Kohonen网络的城镇体系的非线性研究——以长江三角洲地区为例[J].地球科学进展,2003,18(4):521~526.
    132.刘付程,史学正,潘贤章等.太湖流域典型地区土壤磷素含量的空间变异特征[J].地理科学,2003,23(1):77~81.
    133.刘继生,陈彦光.交通网络空间结构的分形维数及其测算方法探讨[J].地理学报,1999,54(5):471~477.
    134.刘立立,刘彬谊.论以绿脉为先导的上海远期城市空间布局[J].城市规划汇刊,1996,(5):27~33.
    135.刘茂松,张明娟.景观生态学—原理与方法[M].北京:化学工业出版社,2004.
    136.刘学录.甘肃临泽荒漠景观的空间结构与生产特性[J].遥感技术与应用,2004,19(5):364~367.
    137.吕长春,王忠武,钱少猛.混合像元分解模型综述[J].遥感信息,2003,(3):55~60.
    138.吕妙儿,蒲英霞,黄杏元.城市绿地监测遥感应用[J].中国园林,2000(5),16卷71期:41~44.
    139.吕一河,傅伯杰.生态学中的尺度及尺度转换方法[J].生态学报,2001,21(12):2096~2105.
    140.罗亚,徐建华,岳文泽.基于全球一体化的中原城市群城市竞争力研究[J].世界地理研究,2004,13(4):17~23.
    141.罗亚,徐建华,岳文泽.基于遥感影像的植被指数研究方法述评[J].生态科学,2005,24(1):50~54.
    142.马建文,赵忠明,布和敖斯尔.遥感数据模型与处理方法[M].北京:中国科学技术出版社.2001.62~70.
    143.马克明,傅伯杰.北京东灵山地区景观格局及破碎化评价[J].植物生态学报,2000,24(3):320~326.
    144.马晓冬,马荣华,徐建刚.基于ESDAS—GIS的城镇群体空间结构[J].地理学报,2005,59(6):1048~1057.
    145.梅安新.彭望琭,秦其明等.遥感概论[M].北京:高等教育出版社,2002.
    146.苗连山.大连市城市生态系统及其协调发展研究[D].东北师范大学博士学位论文,2002.
    147.潘文斌,黎道丰,唐涛等.湖泊岸线分形特征及其生态学意义[J].生态学报,2003,23(12):2729~2735.
    148.彭震伟.路建普.上海城市人口布局优化研究[J].城市规划汇刊.2002,2:21~27.
    149.邱扬 张金屯.地理信息系统(GIS)在景观生态研究中的作用[J].环境与开发,1998,13(1):1~4.
    150.桑建国.热岛环流的动力学分析[J].气象学报,2000,58:321~327.
    151.上海市统计局编.上海市统计年鉴[M].北京:中国统计出版社,2003.
    152.沈建法,王桂新.90年代上海中心城人口分布及其变动趋势的模型研究[J].中国人口科学,2000.5:45~62.
    153.石雪东,李敏,张宏利等.GIS与遥感图像处理技术在广州市绿带系统总体规划中的应用[J].测绘科学,2001,26(4):42~44.
    154.史培军 潘耀忠等.深圳市土地利用/覆盖变化与生态环境安全分析[J].自然资源学报,1999,14(10):293~299.
    155.宋永昌,由文辉,王祥荣.城市生态学[M].上海:华东师范大学出版社,2000.
    156.宋治清等 城市景观及其格局的生态环境效应研究进展[J].地理科学进展,2004,23(2):97~100.
    157.孙丹峰.IKONOS影像景观格局特征尺度的小波与半方差分析[J].生态学报,2003,23(3):405~413.
    158.覃志豪,Zhang M.H.,Amon K.,et al.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456~466.
    159.唐世浩,朱启疆,王锦地.三波段梯度差植被指数的理论基础及其应用[J].中国科学(D辑),2003,33(11):1094~1102.
    160.陶康华,陈云浩,周巧兰等.热力景观在城市生态规划中的应用[J].城市规划,1999,1:20~23.
    161.万军,蔡运龙.应用线性光谱分解技术研究喀斯特地区土地覆被变化—以贵州省关岭县为例[J].地理研究,2003,22(4):439~445.
    162.王军,傅伯杰,邱扬等.黄土丘陵小流域土壤水分的时空变异特征——半变异函数[J].地理学报,2000,55(4):428~438.
    163.王军,傅伯杰,邱扬等.黄土高原小流域土壤养分的空间分布格局—Kriging插值分析[J].地理研究,2003,22(3):373~379.
    164.王茂新,张秀琴,使用Landsat TM热红外数据进行热状况插值研究[J].国土资源遥感,1991,2:38~46.
    165.王晓东 赵鹏军 王仰麟.城市景观规划中若干尺度问题的生态学透视[J].城市规划汇刊,2001,(5):61~64.
    166.王仰麟,赵一斌,韩荡.景观生态系统的空间结构:概念、指标与案例[J].地球科学进展,1999,14(3):235~241.
    167.王铮,吴健平等.城市土地利用演变信息的数据挖掘-以上海为例[J].地理研究,2002,21(6):675~681.
    168.王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    169.闻新,周露,王丹力等.MATLAB神经网络设计[M].北京:科学出版社,2001.274~275.
    170.邬建国.景观生态学—格局、过程、尺度与等级[M].北京:高等教育出版社,2000.
    171.伍理.重视城市化过程中的人口分布变化—以上海市为例[J].人口与经济,2001,5:39~43.
    172.萧笃宁.城市化进程与土地资源的可持续利用[J].云南地理环境研究,1997,9(1):35~39.
    173.肖笃宁,布仁仓,李秀珍.生态空间理论与景观异质性[J].生态学报,1997,17(5):453~461.
    174.肖笃宁,胡远满,李秀珍.环渤海三角洲湿地的景观生态学研究[M].北京:科学出版社,2001.
    175.肖笃宁,钟林生.景观分类与评价的生态原则[J].应用生态学报,1998,9(2):217~221.
    176.徐建华,艾南山,金炯等.西北干旱区景观要素镶嵌结构的分形研究—以黑河流域为例[J].干旱区研究,2001,18(1):35~39.
    177.徐建华,方创琳,岳文泽.基于RS与GIS的区域景观镶嵌结构研究[J].生态学报,2003,23(2):365~375.
    178.徐建华,梅安新,吴健平等.20世纪下半叶上海城市景观镶嵌结构演变的数量特征与分形结构模型研究[J].生态科学,2002,21(2):131~137.
    179.徐建华,岳文泽,谈文琦.城市景观格局尺度效应的空间统计规律—以上海中心城区为例[J].地理学报,2004.59(6):1058~1065.
    180.徐建华.现代地理学中的数学方法(第二版)[M].北京:高等教育出版社,2002.
    181.徐青,谭光国,李翠华等.遥感数据的分形测量[J].遥感学报,1998,2(3):186~192.
    182.许学强,周一星,宁越敏.城市地理学[M].北京:高等教育出版社,1996.
    183.杨士弘.城市生态环境学[M].北京:科学出版社,1996.
    184.杨士弘.城市生态环境研究[M].广州:中山大学出版社,1991.
    185.杨士弘等.城市生态环境学(第二版)[M].北京:科学出版社,2003.
    186.于志熙.城市生态学[M].北京:中国林业出版社,1991.
    187.袁艺,史培军,刘颖慧等.快速城市化过程中土地覆盖格局研究—以深圳市为例[J].生态学报,2003,23(9):1832~1840.
    188.岳天祥,刘纪远.生态地理建模中的多尺度问题[J].第四纪研究,2003,23(3):256~261.
    189.岳文泽,徐建华,谈文琦等.城市景观多样性的空间尺度分析—以上海市外环线以内区域为例[J].生态学报,2005,25(1):122~128.
    190.岳文泽,徐建华、艾南山.山区景观镶嵌体的数量特征分析与分形结构模型—以兰州山区西固区为例[J].山地学报,2002,20(2):150~156.
    191.曾辉.江子瀛.深圳市龙华地区快速城市化过程中的景观结构研究—建设用地结构及异质性特征分析[J].应用生态学报,2000a,11(4):567~572.
    192.曾杉.上海城市空间结构的演进——基于GIS的实证分析[D].中国科学院地理所博士论文,2002.
    193.张浩,王样荣.上海城市土地利用/覆盖演变对空气环境的潜在影响[J].复旦学报(自然科学版),2003,42(6):925~929.
    194.张仁华.对于定量热红外遥感的一些思考[J].国土资源遥感,1999,1:1~6.
    195.张善余.近年上海市人口分布态势的巨大变化[J].人口研究,1999.Vol.23,No.5:16~24.
    196.张秀英,赵传燕.基于GIS的陇中黄土高原潜在生态环境评价研究[J],兰州大学学报(自然科学版),2003,39(3):73~76.
    197.张云霞.李晓兵,陈云浩.草地植被盖度的多尺度遥感与实地测量方法综述[J].地球科学进展,2003,18(1):84~93.
    198.赵晶,徐建华,梅安新等.上海市土地利用结构和形态演变的信息熵与分维分析[J].地理研究,2004,23(2):140~142.
    199.赵晶.上海城市土地利用与景观格局的空间演变研究[D].华东师范大学博士论文,2004.
    200.赵文武,傅伯杰.陈利顶.尺度推绎研究中的几点基本问题[J].地球科学进展,2002,17(6):905~911.
    201.赵文武,傅伯杰,陈利顶.景观指数的粒度变化效应[J].第四纪研究,2003,23(3):326~333.
    202.郑新奇,王爱萍.基于RS与GIS的区域生态环境质量综合评价研究——以山东省为例[J],2000,20(4):469~493.
    203.周刚华.贾生华.城市土地利用要追求最佳效益—论城市化加速阶段土地资源的配置[J].中国土地,2001,12:18~21.
    204.周红妹.NOAA卫星在上海市热力场动态监测中的应用[J].大气科学与应用,1998,(1):23~28.
    205.周华锋,马克明,傅伯杰.人类活动对北京东灵山地区景观格局影响分析[J].自然资源学报,1999,14(2):117~122.
    206.周淑贞,束炯.城市气候学[M].北京:气象出版社,1994.244~345.
    207.周淑贞,张超,郑景春.城市气候与区域气候—着重上海城市气候的研究[M].上海:华东师范大学出版社,1989.
    208.周淑贞,张超.上海城市热岛效应[J].地理学报,1982,37:372~381.
    209.周文佐,潘剑君,刘高焕.南京市城市绿地现状遥感分析[J].遥感技术与应用,2002(2)第17卷第1期:22~26.
    210.朱晓华,查勇.江苏淤泥质海岸海岸线分形机理研究[J].海洋科学,2002,26(9):70~73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700