用户名: 密码: 验证码:
金属氧化物微纳米晶体晶面可控生长与其特性研究以及纳米晶体在生物分子检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晶体的各向异性决定了晶体中不同的晶面或取向将会表现出不同的物理和化学性质。因此,具有特定形状和表面结构的的纳米晶体将表现出特定的物理和化学性质,在实际应用中发挥重要的作用。所以,如何实现对纳米晶体不同形状和裸露表面的的可控制备,是本论文的宗旨。
     本论文通过对研究体系(主要是金属氧化物)的晶体结构和晶体生长习性进行详细研究的前提下,利用晶体生长的各向异性,设计了一条在类似室温离子液体的溶液中通过对晶体表面能的调控实现纳米晶体形状和晶面可控生长的通用方法体系。即在由有机酸(如油酸)和有机碱(如已二胺)混合得到的类似于室温离子液体的特殊溶液中(R-COOH+R-NH_2(?)R-COO~-+R-NH_3~+),通过其中大量的阴阳离子(酸根阴离子和铵根阳离子)与金属氧化物纳米晶体的极性晶面之间较强的静电吸附作用,有效地降低极性晶面表面的表面能,改变晶体各晶面间表面能高低的相对顺序,从而使通常难以裸露的极性晶面得以稳定并裸露出来,改变晶体的最终形状。利用该方法我们实现了各种不同类型金属氧化物纳米材料的形状控制合成:
     (1)通过在油酸和有机胺的混合溶液中,即存在大量酸根负离子和胺正离子的环境中,热分解醋酸锌,首次成功得到了全部以极性晶面(0001)和{10-11}作为裸露晶面的发光材料ZnO微/纳米六棱锥结构。ZnO六棱锥结构的合成,不仅进一步丰富了ZnO纳米家族,同时{10-11}极性晶面这一非常规晶面的裸露,为我们进一步开发与该晶面相关的新的性质和应用提供了基础。
     (2)进一步我们采用室温阴极荧光(CL)技术,直接研究了ZnO六棱锥不同晶面{10-11}、(000-1)和{10-10}的荧光性质,得到了与晶面相关的绿带荧光发射。通过对不同晶面表面原子结构的研究,我们认为ZnO微-纳米晶体的绿带发射主要来源于ZnO微-纳米晶体表面及表面附近的缺陷。
     (3)进一步我们将体系拓展到ZnO基稀磁半导体的晶面可控合成,首次合成了由极性晶面{10-11}和(000-1)裸露的Zn_(1-x)Co_xO和Zn_(1-x)Mn_xO六棱锥状纳米晶体;并表征了稀磁半导体Zn_(1-x)Co_xO和Zn_(1-x)Mn_xO的磁性。磁性分析表明这两种稀磁半导体在高温时表现为反铁磁性,而低温时表现为铁磁性。
     (4)此外,我们还将该方法拓展到熔盐型金属氧化物CoO、MnO体系,首次成功合成了完全由极性晶面{111}裸露的CoO、MnO八面体纳米晶体。值得注意的是,尺寸和形貌均一的MnO八面体纳米晶体自组装形成了三维超晶格结构。我们对其可能的形成机理也进行了探讨。
     此外,我们还与美国的科研团队合作,开展了将纳米材料应用到生物医学体系的探索,研究了表面增强拉曼(SERS)纳米生物传感器的设计合成及应用:主要基于长程等离子共振耦合效应和生物共轭的金纳米粒子,设计了表面增强拉曼纳米生物传感器,用于进行DNA等生物分子的检测。该传感器具有比传统的生物传感器更高的灵敏度和更好的选择性。
Anisotropy is a basic property of single crystals,and the various facets ordirections in a crystal may exhibit different physical and chemical properties.Thus,surface architecture-controlled nanostructures are desirable for many applications.Forthis purpose,the controllable preparation of micro/nanocrystals with different shapesand exposed surfaces is very important and challenging.
     In this dissertation,using a mixture of fatty acid(such as oleic acid(OA))andorganic amine(such as ethylenediamine)as the solvent,which can be thought as onekind of ionic liquid(R-COOH + R-NH_2(?)R-COO~-+ R-NH_3~+)as the growthenvironment,we designed a general route for the controllable preparation ofnanocrystals with different shapes and exposed surfaces.The key strategy is to varythe surface energy of the polar surfaces by strong electrostatic interactions betweenthe ions of the ionic liquid and the polar surfaces.With this concept,we successfullyachieved the controlling of exposed surfaces and morphologies of a wide range ofmetal oxide nanomaterials:
     (1)Using the mixture of fatty acid(such as oleic acid(OA))and organic amine(such as ethylenediamine)as the solvent,we have demonstrated a thermaldecomposition synthesis of ZnO hexagonal micro-pyramids,whosesurfaces are enclosed by polarized(000-1)and {101-1} planes.The newmorphology of ZnO hexagonal micro-pyramids not only enriches the ZnOnano-family,the abnormal {10-11 } facets may also provide new opticalproperties and applications.
     (2)We studied green emission of ZnO micro-pyramids by directly investigatingthe luminescence from the different crystal surfaces of ZnOmicrocrystallites by means of room temperature cathodoluminescence(CL).The relative strength of the green emission was found to be stronglydependent on the crystal surfaces.By discussing the atom structures of different crystal surfaces,it is concluded that the green emission mostlycomes from the defects on/near the surfaces.
     (3)We further extend this method to the morphology-controlled synthesis ofdiluted magnetic semiconductors and achieved Zn_(1-x)Co_xO and Zn_(1-x)Mn_xO hexagonal micro-pyramids,whose surfaces are enclosed bypolarized(000-1)and {101-1} planes.The magnetic characterizationshows they are antiferromagnetic at high temperature but ferromagnetic atlow temperature.
     (4)Moreover,we successfully synthesized surface-controlled rock-type metaloxide nanocrystals with the same stratege:CoO and MnO octahedralnanocrystal with all exposed surfaces being polar {111} planes.It is notedthat the MnO octahedral nanocrystal assembled to three-dimensionalsuper-lattice structure.We also discussed the formation mechanism.
     At last,we studied the biomedical application of nanomaterials.Specifically,wehave developed a class of surface-enhanced Raman molecular beacons(SERSbeacons)with novel mechanisms for molecular recognition and signal amplification.The key strategy is based on the long-range plasmonic coupling and bioconjugatedgold nanoparticles.The long-range nature of plasmonic interactions should allow thedevelopment of SERS beacons to detect proteins,clustered receptors on cellmembranes,and intact viruses,based on the coupling of adjacent metallic NPs in ano-wash/single-step format.In comparison with fluorescence emission,SERS spectracontain narrow molecular signatures that are well suited for multiplexing andbackground subtraction.
引文
[1]Adam M.Schwartzberg,Tammy Y.Olson,Chad E.Talley,Jin Z.Zhang.Synthesis,Characterization,and Tunable Optical Properties of Hollow Gold Nanospheres[J].The Journal of Physical Chemistry B,2006,110(40):19935-19944.
    [2]Susan E.Habas Sasha Kweskin Derek Butcher Gabor A.Somorjai Peidong Yang Hyunjoo Lee.Morphological Control of Catalytically Active Platinum Nanocrystalsl3[J].Angewandte Chemie International Edition,2006,45(46):7824-7828.
    [3]Min Hu,Jingyi Chen,Zhi-Yuan Li,Leslie Au,Gregory V.Hartland,Xingde Li,Manuel Marquez,Younan Xia.Gold nanostructures:engineering their plasmonic properties for biomedical applications[J].Chemical Society Reviews,2006,35(11):1084-1094.
    [4]A.Muller C.N.R.Rao,A.K.Cheetham,,editor.The Chemistry of Nanomaterials:Synthesis,Properties and Applications.Wiley-VCH,Weinheim,,2004.
    [5]Mark S.Gudiksen,Lincoln J.Lauhon,Jianfang Wang,David C.Smith,Charles M.Lieber.Growth of nanowire superlattice structures for nanoscale photonics and electronics[J].Nature, 2002,415(6872):617-620.
    [6]Charles M.Lieber.One-dimensional nanostructures:Chemistry,physics & applications[J].Solid State Commun,1998,107(11):607-616.
    [7]Christophe Galliot,Christophe Larre,Anne-Mane Caminade,Jean-Pierre Majoral.Regioselective Stepwise Growth of Dendrimer Units in the Internal Voids of a Main Dendrimer[J].Science,1997,277(5334):1981-1984.
    [8]C.L.Kane,Matthew P.A.Fisher.Transport in a one-channel Luttinger liquid[J].Phys Rev Lett,1992,68(8):1220.
    [9]林梦海,林银钟.结构化学[M].厦门:科学出版社,2004.
    [10]T.Sekiguchi,S.Miyashita,K.Obara,T.Shishido,N.Sakagami.Hydrothermal growth of ZnO single crystals and their optical characterization[J].J Cryst Growth,2000,214-215:72-76.
    [11]Ryuhei Nakamura,Naomichi Ohashi,Akihito Imanishi,Takeo Osawa,Yuji Matsumoto,Hideomi Koinuma,Yoshihiro Nakato.Crystal-Face Dependences of Surface Band Edges and Hole Reactivity,Revealed by Preparation of Essentially Atomically Smooth and Stable (110) and (100) n-TiO2 (Rutile) Surfaces[J].The Journal of Physical Chemistry B,2005,109(5):1648-1651.
    [12]Liang-Shi Li,Jiangtao Hu,Weidong Yang,A.Paul Alivisatos.Band Gap Variation of Size-and Shape-Controlled Colloidal CdSe Quantum Rods[J].Nano Lett,2001,1(7):349-351.
    [13]Jiangtao Hu,Liang-Shi Li,Weidong Yang,Liberato Manna,Lin-Wang Wang,A.Paul Alivisatos.Linearly polarized emission from colloidal semiconductor quantum rods[J].Science,2001,292(5524):2060-2063.
    [14]P Fem(?)Andez a Urbieta,J Piqueras,T Sekiguchi.Scanning tunnelling spectroscopy characterization of ZnO single crystals[J].SemicondSci Technol,2001,16:589-593.
    [15]A.Urbieta,P.Fern(?)ndez,Ch Hardalov,J.Piqueras,T.Sekiguchi.Cathodoluminescence and scanning tunnelling spectroscopy of ZnO single crystals[J].Materials Science and Engineering B,2002,91-92:345-348.
    [16]Z.Y.;Tian Zhou,N.;Huang,Z.Z.;Chen,D.J.;Sun,S.G..Faraday Dicuss 2008,in press.
    [17]Na Tian,Zhi-You Zhou,Shi-Gang Sun.Platinum Metal Catalysts of High-Index Surfaces:From Single-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles[J].The Journal of Physical Chemistry C,2008,112(50):19801-19817.
    [18]Alexander A.Proussevitch,Dork L.Sahagian.Recognition and separation of discrete objects within complex 3D voxelized structures[J].Computers & Geosciences,2001,27(4):441-454.
    [19]A.F.Am.Mineral.Rogers.Tabulation of crystal forms and discussion of form names[J].Am Mineral,1935,20:838-851.
    [20]J.F.Nicholas,editor.An Atlas of Models of Crystal Surfaces.New York:Gordon & Breach:,1965.
    [21]Jin-Sil Choi Jinwoo Cheon Young-Wook Jun.Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes[J].Angewandte Chemie International Edition,2006,45(21):3414-3439.
    [22]J.T.Hu,T.W.Odom,C.M.Lieber.Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes[J].Accounts Chem Res,1999,32(5):435-445.
    [23]Younan Xia,Peidong Yang,Yugang Sun,Yiying Wu,Brian Mayers,Byron Gates,Yadong Yin,Franklin Kim,Haoquan Yan.One-dimensional nanostructures:Synthesis,characterization,and applications[J].Adv Mater,2003,15(5):353-389.
    [24]Erik P.A.M.Bakkers,Marcel A.Verheijen.Synthesis of InP Nanotubes[J].Journal of the American Chemical Society,2003,125(12):3440-3441.
    [25]Zheng Wei Pan,Zu Rong Dai,Zhong Lin Wang.Nanobelts of semiconducting oxides[J].Science,2001,291(5510):1947-1949.
    [26]Yahachi Saito,Takehisa Matsumoto.Carbon nano-cages created as cubes[J].Nature,1998,392(6673):237.
    [27]Joshua Goldberger,Rongrui He,Yanfeng Zhang,Sangkwon Lee,Haoquan Yan,Heon-Jin Choi,Peidong Yang.Single-crystal gallium nitride nanotubes[J].Nature,2003,422(6932): 599-602.
    [28]Xiang Yang Kong,Yong Ding,Rusen Yang,Zhong Lin Wang.Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts[J].Science,2004,303(5662):1348-1351.
    [29]Z.W.Pan,Z.R.Dai,L.Xu,S.T.Lee,Z.L.Wang.Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders[J].Journal of Physical Chemistry B,2001,105(13):2507-2514.
    [30]Christopher Ma,Yong Ding,Daniel Moore,Xudong Wang,Zhong Lin Wang.Single-Crystal CdSe Nanosaws[J].Journal of the American Chemical Society,2004,126(3):708-709.
    [31]Yousheng Zhang,Lisheng Wang,Xiaohua Liu,Yunjie Yan,Changqiang Chen,Jing Zhu.Synthesis of Nano/Micro Zinc Oxide Rods and Arrays by Thermal Evaporation Approach on Cylindrical Shape Substrate[J].Journal of Physical Chemistry B,2005,109(27):13091-13093.
    [32]M.P.Pileni.Ⅱ-Ⅵ semiconductors made by soft chemistry.Syntheses and optical properties[J].Catal Today,2000,58(2-3):151-166.
    [33]M.L.Steigerwald,A.P.Alivisatos,J.M.Gibson,T.D.Harris,R.Kortan,A.J.Muller,A.M.Thayer,T.M.Duncan,D.C.Douglass,L.E.Brus.Surface derivatization and isolation of semiconductor cluster molecules[J].Journal of the American Chemical Society,1988,110(10):3046-3050.
    [34]Blake A.Simmons,Sichu Li,Vijay T.John,Gary L.Mcpherson,Arijit Bose,Weilie Zhou,Jibao He.Morphology of CdS nanocrystals synthesized in a mixed surfactant system[J].Nano Lett,2002,2(4):263-268.
    [35]D.Kim,M.Miyamoto,M.Nakayama.Surface-modification effects on luminescence properties of CdS and CdMnS quantum dots prepared by a reverse-micelle method[J].Phys Status Solidi C,2003,0(4):1233-1236.
    [36]B.S.Zou,R.B.Little,J.P.Wang,M.A.El-Sayed.Effect of different capping environments on the optical properties of CdS nanoparticles in reverse micelles[J].Int J Quantum Chem,1999,72(4):439-450.
    [37]Dong-Feng Zhang,Ling-Dong Sun,Jia-Lu Yin,Chun-Hua Yan.Low-temperature fabrication of highly crystalline SnO2 nanorods[J].Adv Mater,2003,15(12):1022-1025.
    [38]Chao Liu,Bingsuo Zou,Adam J.Rondinone,Z.John Zhang.Reverse Micelle Synthesis and Characterization of Superparamagnetic MnFe2O4 Spinel Ferrite Nanocrystallites[J].Journal of Physical Chemistry B,2000,104(6):1141-1145.
    [39]Youjin Lee,Jinwoo Lee,Che Jin Bae,Je-Geun Park,Han-Jin Noh,Jae-Hoon Park,Taeghwan Hyeon.Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions[J].Adv Funct Mater,2005,15(3):503-509.
    [40]N.Moumen,P.Bonville,M.P.Pileni.Control of the Size of Cobalt Ferrite Magnetic Fluids:Moessbauer Spectroscopy[J].JPhys Chem,1996,100(34):14410-14416.
    [41]Carl E.Sjogren,Christer Johansson,Anne Naevestad,Per C.Sontum,Karen Briley-Saeboe,Anne K.Fahlvik.Crystal size and properties of superparamagnetic iron oxide (SPIO) particles[J].Magn Reson Imaging,1997,15(1):55-67.
    [42]A.T.Ngo,P.Bonville,M.P.Pileni.Nanoparticles of CoxFey.box.zO4:synthesis and superparamagnetic properties[J].Eur Phys JB,1999,9(4):583-592.
    [43]Young Soo Kang,Subhash Risbud,John F.Rabolt,Pieter Stroeve.Synthesis and Characterization of Nanometer-Size Fe3O4 and gamma-Fe2O3 Particles[J].Chem Mater,1996,8(9):2209-2211.
    [44]Jing Tang,Matt Myers,Ken A.Bosnick,Louis E.Brus.Magnetite Fe3O4 Nanocrystals:Spectroscopic Observation of Aqueous Oxidation Kinetics[J].Journal of Physical Chemistry B,2003,107(30):7501-7506.
    [45]Z.John Zhang,Zhong L.Wang,Bryan C.Chakoumakos,Jin S.Yin.Temperature Dependence of Cation Distribution and Oxidation State in Magnetic Mn-Fe Ferrite Nanocrystals[J].Journal of the American Chemical Society,1998,120(8):1800-1804.
    [46]C.B.Murray,D.J.Norris,M.G.Bawendi.Synthesis and characterization of nearly monodisperse CdE (E=sulfur,selenium,tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society,1993,115(19):8706-8715.
    [47]Victor F.Puntes,Kannan M.Krishnan,A.Paul Alivisatos.Colloidal nanocrystal shape and size control:The case of cobalt[J].Science,2001,291(5511):2115-2117.
    [48]L.E.Brus.Electron--electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state[J].The Journal of Chemical Physics,1984,80(9):4403-4409.
    [49]Justin D.Holmes,Keith P.Johnston,R.Christopher Doty,Brian A.Korgel.Control of thickness and orientation of solution-grown silicon nanowires[J].Science,2000,287(5457):1471-1473.
    [50]Tobias Hanrath,Brian A.Korgel.Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals[J].Journal of the American Chemical Society,2002,124(7):1424-1429.
    [51]Timothy J.Trentler,Kathleen M.Hickman,Subhash C.Goel,Ann M.Viano,Patrick C.Gibbons,William E.Buhro.Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductors:an analogy to vapor-liquid-solid growth[J].Science,1995,270(5243):1791-1794.
    [52]Timothy J.Trentler,Subhash C.Goel,Kathleen M.Hickman,Ann M.Viano,Michael Y.Chiang,Alicia M.Beatty,Patrick C.Gibbons,William E.Buhro.Solution-Liquid-Solid Growth of Indium Phosphide Fibers from Organometallic Precursors:Elucidation of Molecular and Nonmolecular Components of the Pathway[J].Journal of the American Chemical Society,1997,119(9):2172-2181.
    [53]Sean D.Dingman,Nigam P.Rath,Paul D.Markowitz,Patrick C.Gibbons,William E.Buhro.Low-temperature,catalyzed growth of indium nitride fibers from azido-indium precursors[J].Angew Chem,Int Ed,2000,39(8):1470-1472.
    [54]S.P.Ahrenkiel,O.I.Micic,A.Miedaner,C.J.Curtis,J.M.Nedeljkovic,A.J.Nozik.Synthesis and Characterization of Colloidal InP Quantum Rods[J].Nano Lett,2003,3(6):833-837.
    [55]Xianmao Lu,Tobias Hanrath,Keith P.Johnston,Brian A.Korgel.Growth of single-crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate[J].Nano Lett,2003,3(1):93-99.
    [56]Heng Yu,William E.Buhro.Solution-liquid-solid growth of soluble GaAs nanowires[J].Adv Mater,2003,15(5):416-419.
    [57]Forrest M.Davidson,Iii,April D.Schricker,Robert J.Wiacek,Brian A.Korgel.Supercritical fluid-liquid-solid synthesis of gallium arsenide nanowires seeded by alkanethiol-stabilized gold nanocrystals[J].Adv Mater,2004,16(7):646-649.
    [58]Forrest M.Davidson,Iii,Robert Wiacek,Brian A.Korgel.Supercritical fluid-liquid-solid synthesis of gallium phosphide nanowires[J].Chem Mater,2005,17(2):230-233.
    [59]Hsing-Yu Tuan,Doh C.Lee,Tobias Hanrath,Brian A.Korgel.Catalytic Solid-Phase Seeding of Silicon Nanowires by Nickel Nanocrystals in Organic Solvents[J].Nano Lett,2005,5(4):681-684.
    [60]R.Elghanian,J.J.Storhoff,R.C.Mucic,R.L.Letsinger,C.A.Mirkin.Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J].Science,1997,277(5329):1078-1081.
    [61]Toshihiko Sato,Haroon Ahmed,David Brown,Brian F.G.Johnson.Single-electron transistor using a molecularly linked gold colloidal particle chain[J].JAppl Phys,1997,82(2):696-701.
    [62]Ulrich Simon.Charge transport in nanoparticle arrangements[J].Adv Mater,1998,10(17):1487-1492.
    [63]Sung-Wook Chung,David S.Ginger,Mark W.Morales,Zhengfan Zhang,Venkat Chandrasekhar,Mark A.Ratner,Chad A.Mirkin.Top-down meets bottom-up:Dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits[J].Small,2005,1(1):64-69.
    [64]Guenter Schmid,Yun-Ping Liu,Matthias Schumann,Thomas Raschke,Christian Radehaus.Quasi One-Dimensional Arrangements of Au55(PPh3)12C16 Clusters and Their Electrical Properties at Room Temperature[J].Nano Lett,2001,1(8):405-407.
    [65]Wei Lu,Zhongqing Ji,Loren Pfeiffer,K.W.West,A.J.Rimberg.Real-time detection of electron tunnelling in a quantum dot[J].Nature,2003,423(6938):422-425.
    [66]Oded Millo,David Katz,Yunwei Cao,Uri Banin.Scanning tunneling spectroscopy of InAs nanocrystal quantum dots[J].Phys Rev B:Condens Matter,2000,61(24):16773-16777.
    [67]C.T.Black,C.B.Murray,R.L.Sandstrom,Shouheng Sun.Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices[J].Science,2000,290(5494):1131-1134.
    [68]Shouheng Sun,C.B.Murray,Dieter Weller,Liesl Folks,Andreas Moser.Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J].Science,2000,287(5460):1989-1992.
    [69]黄俊华郝保红.晶体生长机理的研究综述.[J].北京石油工学院学报,2006,14(2):58.
    [70]Sung-Nam Cho Sang-Min Lee,Jinwoo Cheon.Anisotropic Shape Control of Colloidal Inorganic Nanocrystals[J].Adv Mat,,2003,15:441.
    [71]R.Lee Penn,Jillian F.Banfield.Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:insights from titania[J].Geochim CosmochimActa,1999,63(10):1549-1557.
    [72]Kyung-Sang Cho,Dmitri V.Talapin,Wolfgang Gaschler,Christopher B.Murray.Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles[J].Journal of the American Chemical Society,2005,127(19):7140-7147.
    [73]Zhiyong Tang,Nicholas A.Kotov,Michael Giersig.Spontaneous organization of single CdTe nanoparticles into luminescent nanowires[J].Science,2002,297(5579):237-240.
    [74]Claudia Pacholski,Andreas Kornowski,Horst Weller.Self-assembly of ZnO:from nanodots to nanorods[J].Angew Chem,Int Ed,2002,41(7):1188-1191.
    [75]Jung Ho Yu,Jin Joo,Hyun Min Park,Sung-Il Baik,Young Woon Kim,Sung Chul Kim,Taeghwan Hyeon.Synthesis of Quantum-Sized Cubic ZnS Nanorods by the Oriented Attachment Mechanism[J].Journal of the American Chemical Society,2005,127(15):5662-5670.
    [76]Young-Wook Jun,Yoon-Young Jung,Jinwoo Cheon.Architectural Control of Magnetic Semiconductor Nanocrystals[J].Journal of the American Chemical Society,2002,124(4):615-619.
    [77]Young-Wook Jun,Sang-Min Lee,Nam-Jung Kang,Jinwoo Cheon.Controlled Synthesis of Multi-armed CdS Nanorod Architectures Using Monosurfactant System[J].Journal of the American Chemical Society,2001,123(21):5150-5151.
    [78]Liberato Manna,Erik C.Scher,A.Paul Alivisatos.Synthesis of Soluble and Processable Rod-,Arrow-,Teardrop-,and Tetrapod-Shaped CdSe Nanocrystals[J].Journal of the American Chemical Society,2000,122(51):12700-12706.
    [79]Sang-Min Lee,Young-Wook Jun,Sung-Nam Cho,Jinwoo Cheon.Single-crystalline star-shaped nanocrystals and their evolution:programming the geometry of nano-building blocks[J].Journal of the American Chemical Society,2002,124(38):11244-11245.
    [80]Hengzhong Zhang,Feng Huang,Benjamin Gilbert,Jillian F.Banfield.Molecular Dynamics Simulations,Thermodynamic Analysis,and Experimental Study of Phase Stability of Zinc Sulfide Nanoparticles[J].Journal of Physical Chemistry B,2003,107(47):13051-13060.
    [81]Z.L.Wang.Zinc oxide nanostructures:growth,properties and applications[J].J Phys:Condens Matter,2004,16:R829-R858..
    [82]X.Y.Kong Z.L.Wang,Y.Ding,P.X.Gao,W.L.Hughes,R.S.Yang and Y.Zhang,.Semiconducting and Piezoelectric Oxide Nanostructures induced by Polar Surfaces[J].Adv Funct Mater,2004.14:943-956.
    [83]P.Davide Cozzoli,Liberato Manna,M.Lucia Curri,Stefan Kudera,Cinzia Giannini,Marinella Striccoli,Angela Agostiano.Shape and Phase Control of Colloidal ZnSe Nanocrystals[J].Chem Mater,2005,17(6):1296-1306.
    [84]Jin Joo,Hyon Bin Na,Taekyung Yu,Jung Ho Yu,Young Woon Kim,Fanxin Wu,Jin Z.Zhang,Taeghwan Hyeon.Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals[J].Journal of the American Chemical Society,2003,125(36):11100-11105.
    [85]Xiaogang Peng,Liberato Manna,Weidong Yang,Juanita Wickham,Erik Scher,Andreas Kadavanich,A.P.Alivisatos.Shape control of CdSe nanocrystals[J].Nature,2000,404(6773):59-61.
    [86]Z.Adam Peng,Xiaogang Peng.Formation of High-Quality CdTe,CdSe,and CdS Nanocrystals Using CdO as Precursor[J].Journal of the American Chemical Society,2001,123(1):183-184.
    [87]Shane W.Krska,David L.Hughes,Robert A.Reamer,David J.Mathre,Yongkui Sun,Barry M.Trost.The Unusual Role of CO Transfer in Molybdenum-Catalyzed Asymmetric Alkylations[J].Journal of the American Chemical Society,2002,124(43):12656-12657.
    [88]E.Budevski,G.Staikov,W.J.Lorenz.Elecrtochemical Phase Fomration And Growht[M].NewYork:VCH,1996.
    [89]张克从,陈万春.晶体生长科学与技术[M].北京:科学出版社,1997.
    [1]匡勤.金属氧化物(ZnO、 SnO2 )半导体纳米材料的制备、表征及其应用[D].厦门:厦门大学,2007.
    [2]Z.L.Wang.Nanowires and Nanobelts:Materials,Properties and Devices,[M].Beijing:Tsinghua University Press,2004.
    [3]Zhong Lin Wang.Zinc oxide nanostructures:Growth,properties and applications[J].J Phys:Condens Matter,2004,16(25):R829-R858.
    [4]Zhong Lin Wang.Nanostructures of zinc oxide[J].Mater Today,2004,7(6):26-33.
    [5]Z.L.Wang.Functional oxide nanobelts:Materials,properties and potential applications in nanosystems and biotechnology[J].Annu Rev Phys Chem,2004,55:159-196.
    [6]Michael H.Huang,Samuel Mao,Henning Feick,Haoquan Yan,Yiying Wu,Hannes Kind,Eicke Weber,Richard Russo,Peidong Yang.Room-temperature ultraviolet nanowire nanolasers[J].Science,2001,292(5523):1897-1899.
    [7]Wang Z.L.Zinc oxide nanostructures:growth,properties and applications[J].J Phys:Condens Matter,2004,(16):R829-R858.
    [8]Wang Z.L.Nanostrures of zinc oxide[J].MaterToday,2004:26-33.
    [9]Hiroyuki Kato,Kazuhiro Miyamoto,Michihiro Sano,Takafumi Yao.Polarity control of ZnO on sapphire by varying the MgO buffer layer thickness[J].Appl Phys Lett,2004,84(22):4562-4564.
    [10]Jason B.Baxter,Feng Wu,Eray S.Aydil.Growth mechanism and characterization of zinc oxide hexagonal columns[J].Appl Phys Lett,2003,83(18):3797-3799.
    [11]T.Mitate,Y.Sonoda,N.Kuwano.Polarity determination of wurtzite and zincblende structures byTEM[J].Phys Status Solidi A,2002,192(2):383-388.
    [12]F.Vigue,P.Vennegues,S.Vezian,M.Laugt,J.P.Faurie.Defect characterization in ZnO layers grown by plasma-enhanced molecular-beam epitaxy on (0001) sapphire substrates[J].Appl Phys Lett,2001,79(2):194-196.
    [13]B.Daudin,J.L.Rouviere,M.Arley.Polarity determination of GaN films by ion channeling and convergent beam electron diffraction[J].Appl Phys Lett,1996,69(17):2480-2482.
    [1]Aleksandra B.Djurisic,Yu Hang Leung.Optical properties of ZnO nanostructures[J].Small,2006,2(8-9):944-961.
    [2]X.Q.Meng,D.Z.Shen,J.Y.Zhang,D.X.Zhao,Y.M.Lu,L.Dong,Z.Z.Zhang,Y.C.Liu,X.W.Fan.The structural and optical properties of ZnO nanorod arrays[J].Solid State Commun,2005,135(3):179-182.
    [3]Y.Q.Chen,J.Jiang,Z.Y.He,Y.Su,D.Cai,L.Chen.Growth mechanism and characterization of ZnO microbelts and self-assembled microcombs[J].Mater Lett,2005,59(26):3280-3283.
    [4]Hou Tee Ng,Bin Chen,Jun Li,Jie Han,M.Meyyappan,J.Wu,S.X.Li,E.E.Haller.Optical properties of single-crystalline ZnO nanowires on m-sapphire[J].Appl Phys Lett,2003,82(13):2023-2025.
    [5]Wang Ruey-Chi,Liu Chuan-Pu,Huang Jow-Lay,Chen Shu-Jen.ZnO symmetric nanosheets integrated with nanowalls[J].Appl Phys Lett,2005,87(5):053103.
    [6]Zheng Chen,Nianqiang Wu,Zhiwei Shan,Minhua Zhao,Shouxin Li,C.B.Jiang,Minking K.Chyu,Scott X.Mao.Effect of N2 flow rate on morphology and structure of ZnO nanocrystals synthesized via vapor deposition[J].Scr Mater,2005,52(1):63-67.
    [7]Q.Yang,K.Tang,J.Zuo,Y.Qian.Synthesis and luminescent property of single-crystal ZnO nanobelts by a simple low temperature evaporation route[J].Appl Phys A:Mater Sci Process,2004,79(8):1847-1851.
    [8]Xiang Liu,Xiaohua Wu,Hui Cao,R.P.H.Chang.Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition[J].J Appl Phys,2004,95(6):3141-3147.
    [9]N.Y.Garces,L.Wang,L.Bai,N.C.Giles,L.E.Halliburton,G.Cantwell.Role of copper in the green luminescence from ZnO crystals[J].Appl Phys Lett,2002,81(4):622-624.
    [10]T.Sekiguchi,S.Miyashita,K.Obara,T.Shishido,N.Sakagami.Hydrothermal growth of ZnO single crystals and their optical characterization[J].J Cryst Growth,2000,214-215: 72-76.
    [11]Aleksandra B.Djurisic,Wallace C.H.Choy,Vellaisamy Arul Lenus Roy,Yu Hang Leung,Chung Yin Kwong,Kok Wai Cheah,Tumkur Krishnaswamy Gundu Rao,Wai Kin Chan,Hsian Fei Lui,Charles Surya.Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures[J].Adv Funct Mater,2004,14(9):856-864.
    [12]H.Zhou,H.Alves,D.M.Hofmann,W.Kriegseis,B.K.Meyer,G.Kaczmarczyk,A.Hoffmann.Behind the weak excitonic emission of ZnO quantum dots:ZnO/Zn(OH)2 core-shell structure[J].Appl Phys Lett,2002,80(2):210-212.
    [13]Qin Kuang,Zhi-Yuan Jiang,Zhao-Xiong Xie,Shui-Chao Lin,Zhi-Wei Lin,Su-Yuan Xie,Rong-Bin Huang,Lan-Sun Zheng.Tailoring the Optical Property by a Three-Dimensional Epitaxial Heterostructure:A Case of ZnO/SnO2[J].Journal of the American Chemical Society,2005,127(33):11777-11784.
    [14]Xi Zhou,Zhao-Xiong Xie,Zhi-Yuan Jiang,Qin Kuang,Shu-Hong Zhang,Tao Xu,Rong-Bin Huang,Lan-Sun Zheng.Formation of ZnO hexagonal micro-pyramids:a successful control of the exposed polar surfaces with the assistance of an ionic liquid[J].Chem Commun,2005,(44):5572-5574.
    [15]Y.Gu,Igor L.Kuskovsky,M.Yin,S.O'brien,G.F.Neumark.Quantum confinement in ZnO nanorods[J].Appl Phys Lett,2004,85(17):3833-3835.
    [1]赵建华,邓加军,郑厚植.稀磁半导体的研究进展[J].物理学进展,2007,27(2):109-150.
    [2]常凯,夏建白.稀磁半导体-自旋和电荷的桥梁[J].物理,2004,33(6):414-418.
    [3]S.R.Shinde,S.B.Ogale,J.S.Higgins,H.Zheng,A.J.Millis,V.N.Kulkarni,R.Ramesh,R.L.Greene,T.Venkatesan.Co-occurrence of superparamagnetism and anomalous Hall effect in highly reduced cobalt-doped rutile TiO2-delta films[J].Phys Rev Lett,2004,92(16):166601/166601-166601/166604.
    [4]S.B.Ogale,R.J.Choudhary,J.P.Buban,S.E.Lofland,S.R.Shinde,S.N.Kale,V.N.Kulkarni,J.Higgins,C.Lanci,J.R.Simpson,N.D.Browning,S.Das Sarma,H.D.Drew,R.L.Greene,T.Venkatesan.High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2-delta[J].Phys Rev Lett,2003,91(7):077205/077201-077205/077204.
    [5]T.Fukumura,Z.W.Jin,A.Ohtomo,H.Koinuma,M.Kawasaki.An oxide-diluted magnetic semiconductor:Mn-doped ZnO[J].Appl Phys Lett,1999,75(21):3366-3368.
    [6]K.Ando,H.Saito,Z.W.Jin,T.Fukumura,M.Kawasaki,Y.Matsumoto,H.Koinuma.Large magneto-optical effect in an oxide diluted magnetic semiconductor Znl-xCoxO[J].Appl Phys Lett,2001,78(18):2700-2702.
    [7]Z.J.Wang,W.D.Wang,J.K.Tang,L.D.Tung,L.Spinu,W.L.Zhou.Extraordinary Hall effect and ferromagnetism in Fe-doped reduced rutile[J].Appl Phys Lett,2003,83(3):518-520.
    [8]Y.G.Zhao,S.R.Shinde,S.B.Ogale,J.Higgins,R.J.Choudhary,V.N.Kulkarni,R.L.Greene,T.Venkatesan,S.E.Lofland,C.Lanci,J.P.Buban,N.D.Browning,S.Das Sarma,A.J.Millis.Co-doped La0.5Sr0.5TiO3-delta:Diluted magnetic oxide system with high Curie temperature[J].Appl Phys Lett,2003,83(11):2199-2201.
    [9]N.Y.H.Hong,J.Sakai,A.Hassini.Ferromagnetism at room temperature with a large magnetic moment in anatase V-doped TiO2 thin films[J].Appl Phys Lett,2004,84(14): 2602-2604.
    [10]J.J.Wu,S.C.Liu,M.H.Yang.Room-temperature ferromagnetism in well-aligned Znl-xCoxO nanorods[J].Appl Phys Lett,2004,85(6):1027-1029.
    [11]Y.Q.Chang,D.B.Wang,X.H.Luo,X.Y.Xu,X.H.Chen,L.Li,C.P.Chen,R.M.Wang,J.Xu,D.P.Yu.Synthesis,optical,and magnetic properties of diluted magnetic semiconductor Znl-xMnxO nanowires via vapor phase growth[J].Appl Phys Lett,2003,83(19):4020-4022.
    [12]颜世申,梅良模,陈延学.ZnCoO磁性半导体的研究[J].第四届全国磁性薄膜与纳米磁学会议论文集[C],2004,72.
    [13]H.J.Lee,S.Y.Jeong,C.R.Cho,C.H.Park.Study of diluted magnetic semiconductor:Co-doped ZnO[J].Appl Phys Lett,2002,81(21):4020-4022.
    [14]J.H.Park,M.G.Kim,H.M.Jang,S.Ryu,Y.M.Kim.Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films[J].Appl Phys Lett,2004,84(8):1338-1340.
    [15]修向前,张荣,徐晓峰.溶胶凝胶法制备ZnO基稀释磁性半导体薄膜[J].高技术通讯,2003,13(3):64-66.
    [16]S.Ramachandran,Ashutosh Tiwari,J.Narayan.Zn0.9Co0.1 O-based diluted magnetic semiconducting thin films[J].Appl Phys Lett,2004,84(25):5255-5257.
    [17]Darshan C.Kundaliya,S.B.Ogale,S.E.Lofland,S.Dhar,C.J.Metting,S.R.Shinde,Z.Ma,B.Varughese,K.V.Ramanujachary,L.Salamanca-Riba,T.Venkatesan.On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn-Zn-O system[J].Nat Mater,2004,3(10):709-714.
    [18]Jae Hyun Kim,Hyojin Kim,Dojin Kim,Young Eon Ihm,Woong Kil Choo.The origin of room temperature ferromagnetism in cobalt-doped zinc oxide thin films fabricated by PLD[J].J Eur Ceram Soc,2004,24(6):1847-1851.
    [19]Parmanand Sharma,Amita Gupta,K.V.Rao,Frank J.Owens,Renu Sharma,Rajeev Ahuja,J.M.Osorio Guillen,Boerje Johansson,G.A.Gehring.Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO[J].Nat Mater,2003,2(10):673-677.
    [20]Kenji Ueda,Hitoshi Tabata,Tomoji Kawai.Magnetic and electric properties of transition-metal-doped ZnO films[J].Appl Phys Lett,2001,79(7):988-990.
    [21]Dana A.Schwartz,Nick S.Norberg,Quyen P.Nguyen,Jason M.Parker,Daniel R.Gamelin.Magnetic Quantum Dots:Synthesis,Spectroscopy,and Magnetism of Co2+-and Ni2+-Doped ZnO Nanocrystals[J].Journal of the American Chemical Society,2003,125(43):13205-13218.
    [22]A.Schwartz Dana,R.Kittilstved Kevin,R.Gamelin Daniel.Above-room-temperature ferromagnetic Ni[sup 2+]-doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots[J].Appl Phys Lett,2004,85(8):1395-1397.
    [23]Benjamin D.Yuhas,David O.Zitoun,Peter J.Pauzauskie,Rongrui He,Peidong Yang.Transition-metal doped zinc oxide nanowires[J].Angew Chem,Int Ed,2006,45(3):420-423.
    [24]S.Kolesnik,B.Dabrowski.Absence of room temperature ferromagnetism in bulk Mn-doped ZnO[J].JAppl Phys,2004,96(9):5379-5381.
    [25]S.J.Han,T.H.Jang,Y.B.Kim,B.G.Park,J.H.Park,Y.H.Jeong.Magnetism in Mn-doped ZnO bulk samples prepared by solid state reaction[J].Appl Phys Lett,2003,83(5):920-922.
    [26]Ueda Kenji,Tabata Hitoshi,Kawai Tomoji.Magnetic and electric properties of transition-metal-doped ZnO films[J].Appl Phys Lett,2001,79(7):988-990.
    [1]Vassil Skumryev,Stoyan Stoyanov,Yong Zhang,George Hadjipanayis,Dominique Givord,Josep Nogues.Beating the superparamagnetic limit with exchange bias[J].Nature,2003, 423(6942):850-853.
    [2]K.Nakaoka,M.Nakayama,K.Ogura.Electrochemical Deposition of Spinel-Type Cobalt Oxide from Alkaline Solution of Co[sup 2+]with Glycine[J].Journal of The Electrochemical Society,2002,149(3):C 159-C 163.
    [3]Yasumto K Koshizaki N,Sasaki T.Gas-sensing CoO/SiO2 Nanocomposite[J].Nanostruct Mater,1999,12(5):971-974.
    [4]Tetsuhiko Kobayashi Masanori Ando,Sumio Iijima and Masatake Haruta.Optical recognition of CO and H2 by use of gas-sensitive Au-Co3O4 composite films[J].J Mater Chem,1997,7:1779-1783.
    [5]Naoto Koshizaki,Katsuya Yasumoto,Takeshi Sasaki.Mechanism of optical transmittance change by NOx in CoO/SiO2 nanocomposites films[J].Sensors and Actuators B:Chemical,2000,66(1-3):122-124.
    [6]Lee S Y Choi H C,Kim S B.Local Structural Characterization for Electrochemical Insertion-Extraction of Lithium into CoO with X-ray Absorption Spectroscopy[J].J Phys Chem B.2002,106:9252-9260.
    [7]Weng C H.Do J S.Preparation and Characterization of CoO Used as Anodic Material of Lithium Battery[J].JPower Sources,2005,146(1/2):482-486.
    [8]Chen Y Wang G X,Konstatinov K,Et Al.Investigation of Cobalt Oxides as Anode Materials for Li-ion Batteries[J].JPower Sources,,2002,109:142-147.
    [9]M.Verelst,T.O.Ely,C.Amiens,E.Snoeck,P.Lecante,A.Mosset,M.Respaud,J.M.Broto,B.Chaudret.Synthesis and characterization of CoO,Co3O4,and mixed Co/CoO nanoparticules[J].Chem Mater,1999,11(10):2702-2708.
    [10]W.S.Seo,J.H.Shim,S.J.Oh,E.K.Lee,N.H.Hur,J.T.Park.Phase-and size-controlled synthesis of hexagonal and cubic CoO nanocrystals[J].Journal of the American Chemical Society,2005,127(17):6188-6189.
    [11]J.Park,K.J.An,Y.S.Hwang,J.G.Park,H.J.Noh,J.Y.Kim,J.H.Park,N.M.Hwang,T.Hyeon.Ultra-large-scale syntheses of monodisperse nanocrystals[J].Nat Mater,2004,3(12):891-895.
    [12]K.An,N.Lee,J.Park,S.C.Kim,Y.Hwang,J.Gz Park,J.Y.Kim,J.H.Park,M.J.Han,J J.Yu,T.Hyeon.Synthesis,characterization,and self-assembly of pencil-shaped CoO nanorods[J].Journal of the American Chemical Society,2006,128(30):9753-9760.
    [13]Y.L.Zhang,X.H.Zhong,J.Zhu,X.Song.Alcoholysis route to monodisperse CoO nanotetrapods with tunable size[J].Nanotechnology,2007,18(19):195605.
    [14]Y.L.Zhang,J.Zhu,X.Song,X.H.Zhong.Controlling the synthesis of CoO nanocrystals with various morphologies[J].JPhys Chem C,2008,112(14):5322-5327.
    [1]A.Robert Armstrong,Peter Gz Bruce.Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries[J].Nature,1996,381(6582):499-500.
    [2]John C.Nardi.Characterization of the lithium/manganese dioxide multistep discharge[J].Journal of The Electrochemical Society,1985,132(8):1787-1791.
    [3]Marco Baldi,Elisabetta Finocchio,Fabio Milella,Guido Busca.Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4[J].Appl Catal,B,1998,16(1):43-51.
    [4]Louis Hegedus,Jean Willem Beeckman,We Hin Pan,Jeffrey Paul Solar.Catalysts for selective catalytic reduction DeNOx technology.Application:EPEP:(W.R.Grace and Co.,USA).1989,p.15 pp.
    [5]Irene Rusakova,Teyeb Ould-Ely,Cristina Hofmann,Dario Prieto-Centurion,Carly S.Levin,Naomi J.Halas,Andreas Luettge,Kenton H.Whitmire.Nanoparticle Shape Conservation in the Conversion of MnO Nanocrosses into Mn3O4[J].Chem Mater,2007,19(6):1369-1375.
    [6]Won Seok Seo,Hyong Hoon Jo,Kwangyeol Lee,Bongsoo Kim,Sang Jun Oh,Joon T.Park.Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles[J]. Angew Chem,Int Ed,2004,43(9):1115-1117.
    [7]Jorg Rockenberger,Erik C.Scher,A.Paul Alivisatos.A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides[J].Journal of the American Chemical Society,1999,121(49):11595-11596.
    [8]Stephanie L.Brock,Niangao Duan,Zheng Rong Tian,Oscar Giraldo,Hua Zhou,Steven L.Suib.A Review of Porous Manganese Oxide Materials[J].Chem Mater,1998,10(10):2619-2628.
    [9]Ming Yin,Stephen Obrien.Synthesis of Monodisperse Nanocrystals of Manganese Oxides[J].Journal of the American Chemical Society,2003,125(34):10180-10181.
    [10]Jongnam Park,Eunae Kang,Che Jin Bae,Je-Geun Park,Han-Jin Noh,Jae-Young Kim,Jae-Hoon Park,Hyun Min Park,Taeghwan Hyeon.Synthesis,Characterization,and Magnetic Properties of Uniform-sized MnO Nanospheres and Nanorods[J].Journal of Physical Chemistry B,2004,108(36):13594-13598.
    [11]Teyeb Ould-Ely,Dario Prieto-Centurion,A.Kumar,W.Guo,William V.Knowles,Subashini Asokan,Michael S.Wong,I.Rusakova,Andreas Luettge,Kenton H.Whitmire.Manganese(Ⅱ) Oxide Nanohexapods:Insight into Controlling the Form of Nanocrystals[J].Chem Mater,2006,18(7):1821-1829.
    [12]David Zitoun,Nicola Pinna,Nathalie Frolet,Claude Belin.Single Crystal Manganese Oxide Multipods by Oriented Attachment[J].Journal of the American Chemical Society,2005,127(43):15034-15035.
    [13]Xinhua Zhong,Renguo Xie,Litao Sun,Ingo Lieberwirth,Wolfgang Knoll.Synthesis of Dumbbell-Shaped Manganese Oxide Nanocrystals[J].The Journal of Physical Chemistry B,2006,110(1):2-4.
    [1]Jeffrey N.Anker,W.Paige Hall,Olga Lyandres,Nilam C.Shah,Jing Zhao,Richard P.Van Duyne.Biosensing with plasmonic nanosensors[J].Nat Mater,2008,7(6):442-453.
    [2]X.M.Qian,S.M.Nie.Single-molecule and single-nanoparticle SERS:from fundamental mechanisms to biomedical applications[J].Chem Soc Rev,2008,37(5):912-920.
    [3]Alan Campion,Patanjali Kambhampati.Surface-enhanced Raman scattering[J].Chem Soc Rev,1998,27(4):241-250.
    [4]Nicholas Fang,Hyesog Lee,Cheng Sun,Xiang Zhang.Sub-Diffraction-Limited Optical Imaging with a Silver Superlens[J].Science,2005,308(5721):534-537.
    [5]T.W.Ebbesen,H.J.Lezec,H.F.Ghaemi,T.Thio,P.A.Wolff.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature,1998,391(6668):667-669.
    [6]Encai Hao,George C.Schatz.Electromagnetic fields around silver nanoparticles and dimers[J].J Chem Phys,2004,120(1):357-366.
    [7]R.Elghanian,J.J.Storhoff,R.C.Mucic,R.L.Letsinger,C.A.Mirkin.Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J].Science,1997,277(5329):1078-1081.
    [8]Gang L.Liu,Yadong Yin,Siri Kunchakarra,Bipasha Mukherjee,Daniele Gerion,Stephen D.Jett,David G.Bear,Joe W.Gray,A.Paul Alivisatos,Luke P.Lee,Fanqing Frank Chen.A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting[J].Nat Nanotechnol,2006,1(1):47-52.
    [9]Andrea Tao,Prasert Sinsermsuksakul,Peidong Yang.Tunable plasmonic lattices of silver nanocrystals[J].Nat Nanotechnol,2007,2(7):435-440.
    [10]Shuming Nie,Steven R.Emory.Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J].Science,1997,275(5303):1102-1106.
    [11]Amy M.Michaels,M.Nirmal,L.E.Brus.Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals[J].Journal of the American Chemical Society,1999,121(43):9932-9939.
    [12]Katrin Kneipp,Yang Wang,Harald Kneipp,Lev T.Perelman,Irving Itzkan,Ramachandra R.Dasari,Michael S.Feld.Single molecule detection using surface-enhanced Raman scattering (SERS)[J].Phys Rev Lett,1997,78(9):1667-1670.
    [13]G.C.Schatz S.Zou.Isr J Chem,2006,(46).
    [14]Yunwei Charles Cao,Rongchao Jin,Chad A.Mirkin.Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J].Science,2002,297(5586):1536-1540.
    [15]Gary Braun,Seung Joon Lee,Mark Dante,Thuc-Quyen Nguyen,Martin Moskovits,Norbert Reich.Surface-Enhanced Raman Spectroscopy for DNA Detection by Nanoparticle Assembly onto Smooth Metal Films[J].Journal of the American Chemical Society,2007,129(20):6378-6379.
    [16]Andrew J.Bonham,Gary Braun,loana Pavel,Martin Moskovits,Norbert O.Reich.Detection of Sequence-Specific Protein-DNA Interactions via Surface Enhanced Resonance Raman Scattering[J].Journal of the American Chemical Society,2007,129(47):14572-14573.
    [17]Laura Fabris,Mark Dante,Gary Braun,Seung Joon Lee,Norbert O.Reich,Martin Moskovits,Thuc-Quyen Nguyen,Guillermo C.Bazan.A Heterogeneous PNA-Based SERS Method for DNA Detection[J].Journal of the American Chemical Society,2007,129(19):6086-6087.
    [18]Duncan Graham,David G.Thompson,W.Ewen Smith,Karen Faulds.Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles[J].NatNanotechnol,2008,3(9):548-551.
    [19]K.H.Su,Q.H.Wei,X.Zhang,J.J.Mock,D.R.Smith,S.Schultz.Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles[J].Nano Lett,2003,3(8):1087-1090.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700