用户名: 密码: 验证码:
Li_4Ti_5O_(12)基锂离子动力电池的高温胀气行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车与大规模储能等战略新兴产业的大力发展,迫切需要开发高功率、高安全以及长寿命的动力锂离子电池。相比其它负极而言,Li4Ti5O12(LTO)被称为“零应变材料”,具有高安全性、长寿命及快速充放电等特性。因而,以LTO为负极的锂动力电池在电动汽车以及要求高安全性、高稳定性和长寿命周期的应用领域具有独特的优势。目前,阻碍LTO基锂动力电池商业化的最主要障碍就是在高温应用条件下的胀气问题。针对该问题,本论文采用纳米LTO为负极,镍钴锰三元材料(LiNi1/3Co1/3Mn1/3O2, NCM)为正极,制备LTO/NCM软包装电池,对其电化学性能、产气行为、产气的原因进行了分析,最后对LTO电池高温胀气问题的解决方案进行了初步的探讨。主要研究结果如下:
     1、制作了5.5Ah的HEV用高功率LTO/NCM软包电池并对其电化学性能进行评价。结果表明,在室温下电池表现出高功率、长寿命、快充快放等优异的电化学性能以及安全性能,可以给出约2500W kg-1的峰值放电功率,20C高倍率充电和放电容量分别可以达到1C容量的92%和94%;循环寿命超长,在10C/10C的高倍率充放电条件下,循环5000次后容量保持高于89%。但是,在高温下,LTO电池由于存在严重的胀气现象,电池界面被严重破坏,电池在循环过程中容量衰减非常快。研究发现H2是LTO电池高温贮存所产气体中的主要成分。
     2、采用EIS研究了LTO电极在不同电位下首次嵌脱锂过程中的电化学行为。结果表明,电池在首次嵌锂过程中,按频率由高至低阻抗谱呈现三个半圆/圆弧及一条斜线,应分别归因于肖特基接触、材料电子特性、电荷传递及固态扩散过程。电池在首次脱锂过程中,发现一个重要现象,即电化学阻抗谱的低频弧分裂出两个相邻的半圆弧,这可能是由于LTO电池的胀气所造成。另外,通过等效电路模拟EIS详细分析了LTO电极在首次嵌脱锂过程中的动力学参数。在上述研究结果的基础上,提出了一个锂离子在LTO电极中传输的嵌入脱出的新模型,此模型能够更好地解释LTO电极中锂离子的嵌入脱出机理。该结果也一定程度上说明了LTO电池的胀气现象是一种必然的电化学行为。
     3、系统研究了80℃/120小时高温加速试验条件下,LTO/NCM电池产气的可能原因和关键因素。研究表明,未化成的LTO/NCM电池在高温下储存基本不胀气。说明与水分含量相关的化学催化反应对电池胀气贡献较小,在高温贮存试验后水分对胀气的贡献率只有15%;相比之下,经过化成然后重新密封的LTO电池在不同荷电状态下体积膨胀均在97%左右。说明LTO电池胀气与电池的荷电状态关系不大。进一步研究发现LTO电池高温胀气的主要原因是由于在LTO表面不能有效形成SEI膜,致使碳酸酯类溶剂与LTO电极表面直接接触,从而发生还原分解反应所致。分析得知碳酸酯溶剂结构不同,其经历的分解路径也有所不同。最后给出了两类典型的碳酸酯溶剂环状碳酸酯和链状碳酸酯的分解机理。
     4、在对LTO电池的高温胀气行为,胀气原因分析研究的基础上,从电解液配方、导电剂选择、LTO颗粒尺寸控制以及化成工艺等方面着手对LTO电池胀气问题的解决方案进行了初步的探讨。在电解液方面,添加一定量的四甘醇-二甲醚(TEGDME)之后,电池胀气得到明显改善,电池的体积膨胀从未加入TEGDME的53%下降到17%~32%之间。在导电剂选择方面,发现用石墨化的导电碳KS-6替换无定形的Super-P能够明显降低LTO/NCM电池的胀气。在LTO材料方面,发现材料的比表面积对LTO电池产气有比较大的影响,降低比表面积有利于减小电池高温存储时的膨胀量。在化成制度方面,发现在85℃条件下,2.8V恒压化成8小时是最佳条件。
The strategic emerging industries of electric vehicles (EVs) andlarge-scale energy storage etc. are vigorously developing, which needhigh-power, high-safety and long-life lithium-ion battery urgently.Compared with other anode materials, Li4Ti5O12(LTO) is called “zerostrain” material and possesses high safety, long cycle life and fastcharging-dischargeing characteristics. Thus, the LTO based lithium batteryis a promising candidate for application in EVs and other heavy-loadapplications which require high safety, high stability and long-cycle life.Currently, the main obstacle to commercialization of LTO-based lithiumbattery is the swelling problem under elevated temperatures. Aim to thisproblem, the LTO/NCM pouch cells were preparaed using nano LTO asanode and nickel-cobalt-manganese ternary materials (LiNi1/3Co1/3Mn1/3O2,NCM) as cathode in this work, and its electrochemical properties, swellingbehaviors, and swelling reasons were systematically investigated. Finally,the solutions on suppressing gas generation of LTO based battery under elevated temperatures were proposed preliminarily. The main findings andconclusions are as follows:
     1) The5.5Ah LTO/NCM pouch cells were prepared and evaluated forpotential hybrid electric vehicle (HEV) application. The as-prepared LTObatteries showed excellent safety and electrochemical performance (such ashigh power, long-cycle life and fast charging-dischargeing characteristics) atroom temperature. They delivered a peak discharge power density of ca.2500W kg-1, and featured a high C-rate charge-discharge performance (94and92%of discharge and charge capacity at20C, respectively) and a prolongedcycle life (89%capacity retention after5,000cycles at10C/10Ccharge/discharge rate). However, the severe capacity decay was observed atelevated temperatures because of loose (worse) interfaces caused by gasgeneration. It was found that H2was the dominant gas component.
     2) Electrochemical impedance spectroscopy (EIS) was used toinvestigate the initial Li-ion insertion and extraction in LTO anode at differentpotentials. In the first Li-ion insertion process, as the frequency decreased, theEIS spectra exhibited three semicircles and a slightly inclined line, whichcorrespond to the Schottky contact, the electronic properties of the material,the charge transfer step and solid state diffusion process respectively. In thefirst Li-ion extraction process, a significant phenomenon was observed that the low-frequency semicircle of the EIS spectrum split into two jointsemicircles, which may be attributed to gas generation in LTO cells. Inaddition, the kinetic parameters obtained from EIS fitting data of LTOelectrode in the first charge-discharge cycle have been analyzed in detail.Based on these results, a new model was proposed to interpret the mechanismof Li-ion insertion/extraction reaction. These results could confirm that thegas generation in LTO cells is an inevitable electrochemical behavior.
     3, The possible reasons and key factors on gas generation of LTO cellswere investigated by the accelerating measurement baking at80°C for120h.It is found that the LTO cell before formation didn’t generate gas duringbaking at elevated temperatures, which means that the chemically catalyticreaction related to moisture makes a minor contribution to cell swelling (only15%). By contrast, the swelling ratio of the charged LTO cells(re-sealed afterformation) is kept at~97%regardless of states of charge, which indicates thatthe LTO swelling has little relationship with the battery’s state of charge.Further investigation shows that the main reason causing the LTO batteryswelling at high temperature is the reductive decomposition reactions ofcarbonates solvents on the LTO electrode surface due to no SEI film formedeffectively. The carbonate solvents undergo different decomposing pathwaysaccording to their structures. Finally, the decomposition mechanisms of the two types of carbonate solvents are proposed based on the experiment results.
     4) Based on the investigation on LTO cell swelling behavior andmechanisms, the solutions of LTO cell swelling problem are preliminary putforward from the aspects of electrolyte formula, electron conductor selection,LTO particle size control and formation process. In respect of electrolyte,thecell swelling has been significantly improved after adding TEGDME as acosolvent to the electrolyte and the volume expansion is reduced to17~32%from53%before adding TEGDME. In respect of carbon conductor, it isfound that replacement Super-P (amorphous carbon black) byKS-6(graphitized carbon) can reduce the swelling of LTO/NCM batterysignificantly. In respect of LTO anode, it is found that the specific surface areaof the LTO has relatively strong impact on cell swelling and reducing thespecific surface area is benefit to suppressing gas production of LTO cell atelevated temperature. As for the formation process, it was found that85oC,2.8V and8hours are the optimized conditions.
引文
[1].陈清泉,孙逢春,祝嘉光等.现代电动汽车技术[M].北京理工大学出版社,2002.
    [2]. Tarascon J. M., Armand M. Issues and challenges facing rechargeable lithiumbatteries[J]. Nature,2001,414(6861):359-367.
    [3].胡信国.动力电池技术与应用[M].机械工业出版社,2009.
    [4]. Valle R. G., Lopes J. A. P. Electric vehicle integration into modern powernetworks[M]. Springer,2012: Vol.2.
    [5].黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].化学工业出版社,2008.
    [6]. Padhi A. K., Nanjundaswamy K., Goodenough J. B. d. Phospho‐olivines asPositive‐Electrode Materials for Rechargeable Lithium Batteries[J]. Journal of TheElectrochemical Society,1997,144(4):1188-1194.
    [7]. Jiang J., Dahn J. ARC studies of the reaction between LiFePO4and LiPF6or LiBOBEC/DEC electrolytes[J]. Electrochemistry Communications,2004,6(7):724-728.
    [8]. Hunter J. C. Preparation of a new crystal form of manganese dioxide: λ-MnO2[J].Journal of Solid State Chemistry,1981,39(2):142-147.
    [9].林晓静,李淑华,何泽珍等.锂离子电池正极材料层状氧化锰锂的研究进展[J].化工科技,2003,11(6):43-48.
    [10]. Tarascon J. M., Wang E., Shokoohi F. K., et al. The Spinel Phase of LiMn2O4asa Cathode in Secondary Lithium Cells[J]. Journal of The Electrochemical Society,1991,138(10):2859-2864.
    [11].李建刚锂离子电池用锂锰氧正极材料的应用基础研究[D][博士论文].天津:天津大学,2001.
    [12].冯季军尖晶石锰酸锂正极材料的离子掺杂改性研究[D][博士论文].天津:天津大学,2004.
    [13]. Ogihara T., Takahashi H., Ohmori M., et al., Process for producing lithiatedmanganese oxides by a quenching method. In Google Patents:2000.
    [14]. Morcrette M., Barboux P., Perriere J., et al. LiMn2O4thin films for lithium ionsensors[J]. Solid State Ionics,1998,112(3):249-254.
    [15]. Qiu X. P., Sun X. G., Shen W. C., et al. Spinel LiMn2O4synthesized bycoprecipitation as cathodes for lithium-ion batteries[J]. Solid State Ionics,1997,93(3):335-339.
    [16]. Shiniehi K., Myung S. T., Nacaki K. Hydrothermal synthesis of high cryatallineorthorhombie LiMnO2as a cathode material for Li-ion batteries[J]. J.Solid State Ionics,2002,152-153:311-318.
    [17].王敬欣锂离子电池正极材料LiMn2O4的研究进展[J].稀有金属,2002,26(6):493-496.
    [18]. Liu W., Farrington G., Chaput F., et al. Synthesis and Electrochemical Studies ofSpinel Phase LiMn2O4Cathode Materials Prepared by the Pechini Process[J]. Journalof The Electrochemical Society,1996,143(3):879-884.
    [19]. Sun Y. K. Synthesis and electrochemical studies of spine LiMn2O4cathodematerials prepared by a sol-gel method for lithium secondary batteries[J]. Solid StateIonics,1997,100:115-125.
    [20]. Yan H., Huang X., Chen L. Microwave synthesis of LiMn2O4cathodematerial[J]. Journal of Power Sources,1999,81:647-650.
    [21]. Paulsen J., Thomas C., Dahn J. Layered Li‐Mn‐Oxide with the O2Structure:A Cathode Material for Li‐Ion Cells Which Does Not Convert to Spinel[J]. Journal ofThe Electrochemical Society,1999,146(10):3560-3565.
    [22]. Shen B. J., Ma J. S., Wu H. C., et al. Microwave-mediated hydrothermalsynthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2powders[J]. Materials
    [23]. Liu J. J., Qiu W. H., Yu L. Y., et al. Studies on the low-heating solid-statereaction method to synthesize LiNi1/3Co1/3Mn1/3O2cathode materials[J]. Journal ofPower Sources,2007,174(2):701-704.
    [24]. Liu Z. L., Yu A. S., Lee J. Y. Synthesis and characterization of LiNi1xyCoxMnyO2as the cathode materials of secondary lithium batteries[J]. Journal of PowerSources,1999,81:416-419.
    [25]. Cho T. H., Park S. M., Yoshio M. Effect of synthesis condition on the structuraland electrochemical properties of Li[Ni1-x-yCoxMnyO2prepared by carbonateco-precipitation method[J]. Journal of Power Sources,2005,142(1-2):306-312.
    [26]. Tian C. X., Hou J., Li X. H., et al. Synthesis and Characterization of SpinelLiCo0.05Ni0.05Mn1.9O3.9F0.1as a Cathode for Rechargeable Lithium-Ion Battery[J]. RareMetal Materials and Engineering,2005,34(11):1758-1762.
    [27]. Tang A. D., Huang K. L. Electrochemical properties and structuralcharacterization of layered LixNi0.35Co0.3Mn0.35O2detal cathode materials[J]. MaterialsScience and Engineering B-Solid State Materials for Advanced Technology,2005,122(2):115-120.
    [28]. Tang A. D., Huang K. L. effect of synthesizing temperature on the structure andproperty of hexagonal Li-Ni-Co-Mn-O solid solution[J]. Acta Metall Sin,2005,41:1280-1284.
    [29]. Zhang W., Liu H. X., Hu C., et al. Preparation of layered oxide Li(Co1/3Ni1/3Mn1/3) O2via the sol-gel process[J]. Rare Metals,2008,27(2):158-164.
    [30]. Tong D. G., Lai Q. Y., Wei N. N., et al. Synthesis of LiCo1/3Ni1/3Mn1/3O2as acathode material for lithium ion battery by water-in-oil emulsion method[J]. MaterialsChemistry and Physics,2005,94(2):423-428.
    [31]. Wang X., Yang X. H., Zheng H. G., et al. Layered O2-Li2/3(Ni1/3-xMn2/3xM2x)O2(M=Cr, Co, x=0.05) cathode materials for Li-ion rechargeable batteries[J]. Solid StateIonics,2005,176(11):1043-1049.
    [32]. Park S. H., Yoon C. S., Kang S. G., et al. Synthesis and structuralcharacterization of layered Li[Ni1/3Co1/3Mn1/3]O2cathode materials by ultrasonic spraypyrolysis method[J]. Electrochimica Acta,2004,49(4):557-563.
    [33]. Li D. C., Muta T., Zhang L. Q., et al. Effect of synthesis method on theelectrochemical performance of Li[Ni1/3Co1/3Mn1/3]O2[J]. Journal of Power Sources,2004,132(1):150-155.
    [34].高飞锂离子电池正极材料LiFePO4的合成与电化学性能研究[D][博士论文].天津:天津大学,2007.
    [35]. Whitfield P. S., Davidson I. J., Cranswick L., et al. Investigation of possiblesuperstructure and cation disorder in the lithium battery cathode materialLiMn1/3Ni1/3Co1/3O2using neutron and anomalous dispersion powder diffraction[J]. SolidState Ionics,2005,176(5):463-471.
    [36]. Nam K., Yoon W., Yang X. Structural changes and thermal stability of chargedLiNi1/3Co1/3Mn1/3O2cathode material for Li-ion batteries studied by time-resolvedXRD[J]. Journal of Power Sources,2009,189(1):515-518.
    [37]. Belharouak I., Lu W. Q., Liu J., et al. Thermal behavior of delithiated Li(Ni0.8Co0.15Al0.05) O2and Li1.1(Ni1/3Co1/3Mn1/3)0.9O2powders[J]. Journal of PowerSources,2007,174(2):905-909.
    [38].郑洪河锂离子电池电解质[M].北京:化学工业出版社,2006:12-14.
    [39]. Auborn J. J., French K. W., Lieberman S. I., et al. Lithium anode cells operatingat room temperature in inorganic electrolytic solutions[J]. Journal of TheElectrochemical Society,1973,120(12):1613-1619.
    [40].吴宇平,戴晓兵,马军旗等.锂离子电池:应用与实践[M].化学工业出版社,2004.
    [41]. Kepler K. D., Vaughey J. T., Thackeray M. M. LixCu6Sn5(0    [42]. Winter M., Besenhard J. O. Electrochemical lithiation of tin and tin-basedintermetallics and composites[J]. Electrochimica Acta,1999,45(1):31-50.
    [43]. Wolfenstine J., Campos S., Foster D., et al. Nano-scale Cu6Sn5anodes[J].Journal of Power Sources,2002,109(1):230-233.
    [44]. Kepler K. D., Vaughey J. T., Thackeray M. M. Copper–tin anodes forrechargeable lithium batteries: an example of the matrix effect in an intermetallicsystem[J]. Journal of Power Sources,1999,81:383-387.
    [45]. Kim D., Kim H., Sohn H.-J., et al. Nanosized Sn–Cu–B alloy anode prepared bychemical reduction for secondary lithium batteries[J]. Journal of Power Sources,2002,104(2):221-225.
    [46].何见超,赵海雷,贾喜娣等.锂离子电池Sn-Co合金负极材料的研究进展[J].化工学报,2009,60(5):1073-1079.
    [47]. Wachtler M., Winter M., Besenhard J. O. Anodic materials for rechargeableLi-batteries[J]. Journal of Power Sources,2002,105(2):151-160.
    [48]. Wang K., He X., Ren J., et al. Preparation of Sn/C Microsphere CompositeAnode for Lithium-Ion Batteries via Carbothermal Reduction[J]. Electrochemical andSolid-State Letters,2006,9(7): A320-A323.
    [49].刘宇,解晶莹,杨军等,锂离子电池中SnCux/CMS复合材料的制备[J].电化学,2003,9(1):87-92.
    [50]. Wang Y., Lee J. Y., One-Step, Confined growth of bimetallic tin-antimonynanorods in carbon nanotubes grown In situ for reversible Li+ion storage, AngewandteChemie International Edition,2006,45:7039-7042
    [51]. Hu Y. S., Demir‐Cakan R., Titirici M. M., et al. Superior Storage Performanceof a Si@SiOx/C Nanocomposite as Anode Material for Lithium‐Ion Batteries[J].Angewandte Chemie International Edition,2008,47(9):1645-1649.
    [52]. Ma H., Cheng F., Chen J. Y., et al. Nest‐like Silicon Nanospheres for High‐Capacity Lithium Storage[J]. Advanced Materials,2007,19(22):4067-4070.
    [53].王洪波,周艳红,陶占良等.锂离子电池硅基负极材料研究进展[J].电源技术,2009,33(11):1029-1032.
    [54]. Wang G., Sun L., Bradhurst D., et al. Innovative nanosize lithium storage alloyswith silica as active centre[J]. Journal of Power Sources,2000,88(2):278-281.
    [55]. Li H., Huang X., Chen L., et al. A High Capacity Nano-Si Composite AnodeMaterial for Lithium Rechargeable Batteries [J]. Journal of The Electrochemical Society,1999,2(11):547-549.
    [56]. Kim J. H., Sohn H. J., Kim H., et al. Enhanced cycle performance of SiO-Ccomposite anode for lithium-ion batteries [J]. Journal of Power Sources,2007,170(2):456-459.
    [57].任宁,尹鸽平,左朋建等.锂离子电池硅-锰复合材料的电化学性能[J].无机化学学报,2005,21(11):1677-1681.
    [58]. Wang C., Wu G., Zhang X., et al. Lithium insertion in carbon‐siliconcomposite materials produced by mechanical milling[J]. Journal of The ElectrochemicalSociety,1998,145(8):2751-2758.
    [59]. Wilson A., Way B., Dahn J., et al. Nanodispersed silicon in pregraphiticcarbons[J]. Journal of Applied Physics,1995,77(6):2363-2369.
    [60].陈立宝,谢晓华,王可等.碳包覆硅/碳复合材料的制备与性能研究[J].电源技术,2007,31(1):34-37.
    [61]. Gao P. F., Fu J. W., Yang J., et al. Microporous carbon coated silicon core/shellnanocomposite via in situ polymerization for advanced Li-ion battery anode material[J],Phys. Chem. Chem. Phys.2009,11:11101-11105.
    [62]. Magasinski A., Dixon P., Hertzberg B. et al. High-performance lithium-ionanodes using a hierarchical bottom-up approach, Nature Materials,2010,9:353-358.
    [63]. Jia H. P., Gao P. F. Yang J., et al., Novel three-dimensional mesoporous siliconfor high power lithium-ion battery anode material, Advanced. Energy Materials.2011,1:1036-1039.
    [64]. Xue J., Dahn. J. Anode performance of vapor-grown fibers in secondary lithiumion batteries[J]. Journal of The Electrochemical Society.1995,142:1090-1096.
    [65]. Kikuch M., Ikezawa. Y., Takamuru T., et al Surface modification of pitch-basedcarbon fiber for the improvement of electrochemical intercalation[J]. Journal of TheElectrochemical Society,1995,396:451-455.
    [66]. Zheng T., McKinnon W., Dahn J. Hysteresis during Lithium Insertion inHydrogen‐Containing Carbons[J]. Journal of The Electrochemical Society,1996,143(7):2137-2145.
    [67]. Xing W., Dahn J. Study of irreversible capacities for Li insertion in hard andgraphitic carbons[J]. Journal of The Electrochemical Society,1997,144(4):1195-1201.
    [68]. Xing W., Xue J., Dahn J. Optimizing Pyrolysis of Sugar Carbons for Use asAnode Materials in Lithium‐Ion Batteries[J]. Journal of The Electrochemical Society,1996,143(10):3046-3052.
    [69]. Dahn J., Xing W., Gao Y. The “falling cards model” for the structure ofmicroporous carbons[J]. Carbon,1997,35(6):825-830.
    [70]. Mabuchi A., Tokumitsu K., Fujimoto H., et al. Charge-Discharge Characteristicsof the Mesocarbon Miocrobeads Heat‐Treated at Different Temperatures[J]. Journal ofThe Electrochemical Society,1995,142(4):1041-1046.
    [71].成会明纳米碳管-制备、结构、物性及应用[M].北京:化学工业出版社,2002.
    [72]. Endo M., Kim Y., Hayashi T., et al. Vapor-grown carbon fibers (VGCFs): basicproperties and their battery applications[J]. Carbon,2001,39(9):1287-1297.
    [73]. Nishimura K., Kim Y., Matushita T., et al. Structural characterization ofboron-doped submicron vapor-grown carbon fibers and their anode performance[J].Journal of Materials Research,2000,15(6):1303-1313.
    [74]. Iijima S. Helical microtubules of graphitic carbon[J]. nature,1991,354(6348):56-58.
    [75]. Che G., Lakshmi B. B., Fisher E. R., et al. Carbon nanotubule membranes forelectrochemical energy storage and production[J]. Nature,1998,393(6683):346-349.
    [76].吴国涛,王春生,齐仲甫等.巴基管嵌锂电极性能的研究[J].电化学,1998,4(3):313-317
    [77]. Brooks J. D., Taylor G.. H. Chemistry and physics of carbon. Dekker[M]. NewYok: Marcel Dek Kerinc,1968:243-250
    [78]. Lewis I. Thermotropic mesophase pitch[J]. Carbon,1978,16(6):503-507.
    [79].宋怀河,沈曾民添加炭黑对催化裂化渣油中间相沥青炭微球制备的影响[J].石油学报(石油加工),1999,15(6):63-68.
    [80]. Korai Y., Wang Y.G., Yoon S.H., et al. Effects of carbon black addition onpreparation of meso-carbon microbeads[J]. Carbon,1997,35(7):875-884.
    [81]. Takami N., Satoh A., Hara M., et al. Structural and kinetic characterization oflithium intercalation into carbon anodes for secondary lithium batteries[J]. Journal of TheElectrochemical Society,1995,142(2):371-379.
    [82].王红强,李新海,郭华军等.中间相炭微球的结构对其电化学性能的影响[J].中南工业大学学报(自然科学版),2003,34(2):140-143.
    [83]. Peled E., Menachem C., Bar T. D., et al. Improved Graphite Anode for Lithium‐Ion Batteries Chemically Bonded Solid Electrolyte Interface and NanochannelFormation[J]. Journal of The Electrochemical Society,1996,143(1): L4-L7.
    [84]. Takami N., Satoh A., Hara M., et al. Rechargeable Lithium‐Ion Cells UsingGraphitized Mesophase‐Pitch‐Based Carbon Fiber Anodes[J]. Journal of TheElectrochemical Society,1995,142(8):2564-2571.
    [85].黄承焕锂离子电芯性能衰减与电极界面的研究[D][博士论文].长沙:中南大学,2011.
    [86].王子君液态软包装LiFeO4锂离子电池气胀问题的研究[D][硕士论文].天津:天津大学,2009.
    [87].葛昊尖晶石型钛酸锂的制备及电化学行为[D][博士论文].哈尔滨:哈尔滨工业大学,2009.
    [88]. Singhal A., Skandan G., Amatucci G., et al. Nanostructured electrodes for nextgeneration rechargeable electrochemical devices[J]. Journal of Power Sources,2004,129(1):38-44.
    [89]. Li X., Qu M., Huai Y., et al. Preparation and electrochemical performance ofLi4Ti5O12carbon/carbon nano-tubes for lithium ion battery[J]. Electrochimica Acta,2010,55(8):2978-2982.
    [90]. Jung H. G., Kim J. H., Bruno S. Micron-sized, carbon-coated Li4Ti5O12as highpower anode material for advanced lithium batteries[J]. Journal of Power Sources,2011,196:7763-7766.
    [91]. Cheng L., Liu H. J., Zhang J. J., et al. Nanosized Li4Ti5O12prepared by moltensalt method as an electrode material for hybrid electrochemical supercapacitors[J].Journal of The Electrochemical Society,2006,153(8): A1472-A1477.
    [92]. Liu Z., Zhang N., Sun K. A novel grain restraint strategy to synthesize highlycrystallized Li4Ti5O12([similar]20nm) for lithium ion batteries with superior high-rateperformance[J]. Journal of Materials Chemistry,2012,22(23):11688-11693.
    [93]. Zhang N. Q., Liu Z. M., Yang T. Y. Facile preparation of nanocrystallineLi4Ti5O12and its high electrochemical performance as anode material for lithium-ionbatteries[J]. Electrochemistry Communications,2011,13:654-656.
    [94]. Li X., Lai C., Xiao C., et al. Enhanced high rate capability of dual-phaseLi4Ti5O12–TiO2induced by pseudocapacitive effect[J]. Electrochimica Acta,2011,56(25):9152-9158.
    [95]. Lai C., Dou Y., Li X., et al. Improvement of the high rate capability ofhierarchical structured Li4Ti5O12induced by the pseudocapacitive effect[J]. Journal ofPower Sources,2010,195(11):3676-3679.
    [96]. Kim H. K., Bak S. M., Kim K. B. Li4Ti5O12/reduced graphite oxide nano-hybridmaterial for high rate lithium-ion batteries[J]. Electrochemistry Communications,2010,12:1768-1771.
    [97]. Tang Y. F., Yang L., Qiu Z., et al. Preparation and electrochemical lithiumstorage of flower-like spinel Li4Ti5O12consisting of nanosheets[J]. ElectrochemistryCommunications,2008,10(10):1513-1516.
    [98]. Chen J., Yang L., Fang S., et al. Synthesis of hierarchical mesoporous nest-likeLi4Ti5O12for high-rate lithium ion batteries[J]. Journal of Power Sources,2012,200:59-66.
    [99]. Tang Y. F., Yang L., Fang S. H., et al. Li4Ti5O12hollow microspheres assembledby nanosheets as an anode material for high-rate lithium ion batteries[J]. ElectrochimicaActa,2009,54(26):6244-6249.
    [100]. Yuan T., Yu X., Cai R., et al. Synthesis of pristine and carbon-coated Li4Ti5O12and their low-temperature electrochemical performance[J]. Journal of Power Sources,2010,195(15):4997-5004.
    [101]. Allen J. L., Jow T. R., Wolfenstine J. Low temperature performance ofnanophase Li4Ti5O12[J]. Journal of Power Sources,2006,159(2):1340-1345.
    [102]. Yuan T., Cai R., Ran R., et al. A mechanism study of synthesis of Li4Ti5O12fromTiO2anatase[J]. Journal of Alloys and Compounds,2010,505(1):367-373.
    [103]. Qiao Y., Hu X., Liu Y., et al. Li4Ti5O12nanocrystallites for high-rate lithium-ionbatteries synthesized by a rapid microwave-assisted solid-state process[J].Electrochimica Acta,2012,63:118-123.
    [104]. Amatucci G. G., Badway F., Du Pasquier A., et al. An asymmetric hybridnonaqueous energy storage cell[J]. Journal of The Electrochemical Society,2001,148(8):A930-A939.
    [105]. Zhu G. N., Liu H. J., Zhuang J. H., et al. Carbon-coated nano-sized Li4Ti5O12nanoporous micro-sphere as anode material for high-rate lithium-ion batteries[J]. Energy&Environmental Science,2011,4(10):4016-4022.
    [106]. Xiang H. F., Zhang X., Jin Q. Y., et al. Effect of capacity matchup in theLiNi0.5Mn1.5O4/Li4Ti5O12cells[J]. Journal of Power Sources,2008,183(1):355-360.
    [107]. Cheng L., Yan J., Zhu G.-N., et al. General synthesis of carbon-coatednanostructure Li4Ti5O12as a high rate electrode material for Li-ion intercalation[J].Journal of Materials Chemistry,2010,20(3):595-602.
    [108]. Aurelien D. P., Huang C., Spitler T. Nano Li4Ti5O12–LiMn2O4batteries withhigh power capability and improved cycle-life[J]. Journal of Power Sources,2009,186(2):508-514.
    [109]. Li B., Ning F., He Y. B., et al. Synthesis and Characterization of Long LifeLi4Ti5O12/C Composite Using Amorphous TiO2Nanoparticles[J]. Int. J. Electrochem. Sci,2011,6:3210-3223.
    [110]. Zhu N., Liu W., Xue M., et al. Graphene as a conductive additive to enhance thehigh-rate capabilities of electrospun Li4Ti5O12for lithium-ion batteries[J]. ElectrochimicaActa,2010,55(20):5813-5818.
    [111]. Bresser D., Paillard E., Copley M., et al. The importance of “going nano” forhigh power battery materials[J]. Journal of Power Sources,2012.219:217-222.
    [112]. Belharouak I., Koenig G. M., Amine K. Electrochemistry and safety of Li4Ti5O12and graphite anodes paired with LiMn2O4for hybrid electric vehicle Li-ion batteryapplications[J]. Journal of Power Sources,2011,196(23):10344-10350.
    [113]. Jansen A., Kahaian A., Kepler K., et al. Development of a high-powerlithium-ion battery[J]. Journal of Power Sources,1999,81:902-905.
    [114]. Wang R. Y., Wang. J., Qiu T., et al Effects of different carbon sources on theelectrochemical properties of Li4Ti5O12/C composites[J]. Electrochimica Acta,2012,70:84-90.
    [115]. Wu H. M., Belharouak I., Deng H., et al. Development ofLiNi0.5Mn1.5O4/Li4Ti5O12system with long cycle life[J]. Journal of The ElectrochemicalSociety,2009,156(12): A1047-A1050.
    [116]. Lim J S, Choi E., Mathew V., et al. Enhanced high-rate performance ofLi4Ti5O12nanoparticles for rechargeable Li-ion batteries[J]. Journal of TheElectrochemical Society,2011,158(3): A275-A280.
    [117]. Hu X. B., Deng Z. H., Suo J. S., et al. A high rate, high capacity and long life(LiMn2O4+AC)/Li4Ti5O12hybrid battery–supercapacitor[J]. Journal of Power Sources,2009,187(2):635-639.
    [118]. Belharouak I., Sun Y. K., Lu W., et al. On the Safety of the Li4Ti5O12∕LiMn2O4Lithium-Ion Battery System[J]. Journal of The Electrochemical Society,2007,154(12): A1083-A1087.
    [119]. Cui W., Fowlis D. J., Bryson S., et al. TGFβ1inhibits the formation of benignskin tumors, but enhances progression to invasive spindle carcinomas in transgenicmice[J]. Cell,1996,86(4):531-542.
    [120]. Matsumura Y., Wang S., Mondori J. Mechanism leading to irreversible capacityloss in Li ion rechargeable batteries[J]. Journal of The Electrochemical Society,1995,142(9):2914-2918.
    [121]. Yamauchi Y., Hino T.,.Ohzeki K., et al. Gas desorption behavior of graphiteanodes used for lithium ion secondary batteries[J]. Carbon,2005,43(3):1334-1336.
    [122]. Yang C., Song J., Wang Y., et al. Impedance spectroscopic study for theinitiation of passive film on carbon electrodes in lithium ion batteries[J]. Journal ofApplied Electrochemistry,2000,30(1):29-34.
    [123].陈伟峰软包装锂离子电池产气机理研究和预测[D][硕士论文].北京:清华大学,2012
    [124]. Choi Y. K., Chung K.I., Kim W. S., et al. Suppressive effect of Li2CO3on initialirreversibility at carbon anode in Li-ion batteries[J]. Journal of Power Sources,2002,104(1):132-139.
    [125]. Shu J. Study of the interface between Li4Ti5O12electrodes and standardelectrolyte solutions in0.0–5.0V[J]. Electrochemical and Solid-State Letters,2008,11(12): A238-A240.
    [126]. Belharouak I., Koenig G. M., Tan T., et al. Performance Degradation andGassing of Li4Ti5O12/LiMn2O4Lithium-Ion Cells[J]. Journal of The ElectrochemicalSociety,2012,159(8): A1165-A1170.
    [127]. He Y. B., Li B., Liu M., et al. Gassing in Li4Ti5O12based batteries and itsremedy[J]. Scientific Reports,2012,2.1-6
    [128]. He Y. B., Ning F., Li B., et al. Carbon coating to suppress the reductiondecomposition of electrolyte on the Li4Ti5O12electrode[J]. Journal of Power Sources,2012,202:253-261.
    [129]. Kavan L., Gr tzel M. Facile Synthesis of Nanocrystalline Li4Ti5O12(Spinel)Exhibiting Fast Li Insertion[J]. Electrochemical and Solid-State Letters,2002,5(2):A39-A42.
    [130]. Xu K., Arthur V. C. Interfacing electrolytes with electrodes in Li ion batteries[J].Journal of Materials Chemistry,2011,21(27):9849-9864.
    [131]. Ohzuku T., Ueda A., Kouguchi M. Synthesis and Characterization ofLiAl1/4Ni3/4O2(R3m) for Lithium‐Ion (Shuttlecock) Batteries[J]. Journal of TheElectrochemical Society,1995,142(12):4033-4039.
    [132]. Ohzuku T., Ueda A., Yamamoto N. Zero‐Strain Insertion Material of Li
    [Li1/3Ti5/3] O4for Rechargeable Lithium Cells[J]. Journal of The Electrochemical Society,1995,142(5):1431-1435.
    [133]. Li Y., Jizhang C., Yufeng T., et al. Li4Ti5O12Anode Materials Applied inLithium Ion Batteries[J]. Progress in Chemistry,2011,23(203):310-317.
    [134]. Mathew V., Lim J., Gim J., et al. Optimized Li4Ti5O12Nanoparticles bySolvothermal Route for Li-Ion Batteries[J]. Journal of Nanoscience and Nanotechnology,2011,11(8):7294-7298.
    [135]. Wang D., Ding N., Song X., et al. A simple gel route to synthesizenano-Li4Ti5O12as a high-performance anode material for Li-ion batteries[J]. Journal ofMaterials Science,2009,44(1):198-203.
    [136]. Cai R., Jiang S., Yu X., et al. A novel method to enhance rate performance of anAl-doped Li4Ti5O12electrode by post-synthesis treatment in liquid formaldehyde at roomtemperature[J]. Journal of Materials Chemistry,2012,22(16):8013-8021.
    [137]. Yi T., Jiang L., Shu J., et al. Recent development and application of Li4Ti5O12asanode material of lithium ion battery[J]. Journal of Physics and Chemistry of Solids,2010,71(9):1236-1242.
    [138]. Yoshikawa D., Kadoma Y., Kim J. M., et al. Spray-drying synthesizedlithium-excess Li4Ti5O12and its electrochemical property as negative electrode materialfor Li-ion batteries[J]. Electrochimica Acta,2010,55(6):1872-1879.
    [139]. Wu F. X., Wang Z. X., Li X. H, et al. Preparation and characterization of spinelLi4Ti5O12anode material from industrial titanyl sulfate solution[J]. Journal of Alloys andCompounds,2011.50(11):2307-2313.
    [140]. Gao J., Jiang C., Wan C. Synthesis and Characterization of Spherical La-DopedNanocrystalline Li4Ti5O12/C Compound for Lithium-Ion Batteries[J]. Journal of TheElectrochemical Society,2010,157(2): K39-K42.
    [141]. Jung H. G., Jang M. W., Hassoun J., et al. A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45] O4lithium-ion battery[J]. Nature Communications,2011,2:516-520.
    [142]. Amine K., Belharouak I., Chen Z., et al. Nanostructured Anode Material forHigh‐Power Battery System in Electric Vehicles[J]. Advanced Materials,2010,22(28):3052-3057.
    [143]. Aldon L., Kubiak P., Womes M., et al. Chemical and electrochemicalLi-insertion into the Li4Ti5O12spinel[J]. Chemistry of Materials,2004,16(26):5721-5725.
    [144]. Peled E., Menachem C., Bar T. D., et al. Improved Graphite Anode for Lithium‐Ion Batteries Chemically Bonded Solid Electrolyte Interface and NanochannelFormation[J]. Journal of The Electrochemical Society,1996,143(1): L4-L7.
    [145]. Yair. E. E. A New Perspective on the Formation and Structure of the SolidElectrolyte Interface at the Graphite Anode of Li‐Ion Cells[J]. Electrochemical andSolid-State Letters,1999,2(5):212-214.
    [146]. Leonidov I., Leonidova O., Perelyaeva L., et al. Structure, ionic conduction, andphase transformations in lithium titanate Li4Ti5O12[J]. Physics of the Solid State,2003,45(11):2183-2188.
    [147]. Wu K., Yang J., Zhang Y., et al. Investigation on Li4Ti5O12batteries developedfor hybrid electric vehicle[J]. Journal of Applied Electrochemistry,2012,42(12):989-995.
    [148]. Nobili F., Dsoke S., Croce F., et al. An ac impedance spectroscopic study ofMg-doped LiCoO2at different temperatures: electronic and ionic transport properties[J].Electrochimica Acta,2005,50(11):2307-2313.
    [149]. Sun X. G., Dai S. Electrochemical and impedance investigation of the effect oflithium malonate on the performance of natural graphite electrodes in lithium-ionbatteries[J]. Journal of Power Sources,2010,195(13):4266-4271.
    [150]. Levi M., Wang C., Aurbach D. Self-discharge of graphite electrodes at elevatedtemperatures studied by CV and electrochemical impedance spectroscopy[J]. Journal ofThe Electrochemical Society,2004,151(5): A781-A790.
    [151].史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001.
    [152].曹楚南,张鉴清,冶金工业.电化学阻抗谱导论[M].科学出版社,2002.
    [153]. Barsoukov E., Macdonald J. R. Impedance spectroscopy: theory, experiment,and applications[M]. Wiley-Interscience,2005.
    [154]. Rho Y. H., Kanamura K. Li+ion diffusion in Li4Ti5O12thin film electrodeprepared by PVP sol–gel method[J]. Journal of Solid State Chemistry,2004,177(6):2094-2100.
    [155]. Bach S., Pereira R. J., Baffier N. Electrochemical properties of sol–gelLi4/3Ti5/3O4[J]. Journal of Power Sources,1999,81:273-276.
    [156]. Zhuang Q. C., Wei T., Du L. L., et al. An Electrochemical ImpedanceSpectroscopic Study of the Electronic and Ionic Transport Properties of SpinelLiMn2O4[J]. The Journal of Physical Chemistry C,2010,114(18):8614-8621.
    [157]. Qiu X. Y., Zhuang Q. C., Zhang Q. Q., et al. Electrochemical and electronicproperties of LiCoO2cathode investigated by galvanostatic cycling and EIS[J]. PhysicalChemistry Chemical Physics,2012,14(8):2617-2630.
    [158]. Kavan L., Procházka J., Spitler T. M., et al. Li Insertion into Li4Ti5O12(Spinel)Charge Capability vs. Particle Size in Thin-Film Electrodes[J]. Journal of TheElectrochemical Society,2003,150(7): A1000-A1007.
    [159]. Majima M., Ujiie S., Yagasaki E., et al. Development of long life lithium ionbattery for power storage[J]. Journal of Power Sources,2001,101(1):53-59.
    [160]. Takami N., Inagaki H., Kishi T., et al. Electrochemical kinetics and safety of2-volt class Li-ion battery system using lithium titanium oxide anode[J]. Journal of TheElectrochemical Society,2009,156(2): A128-A132.
    [161]. Shi Y. L., Shen M. F., Xu S. D., et al. Electrochemical Impedance SpectroscopicStudy of the Electronic and Ionic Transport Properties of NiF2/C Composites[J]. Int. J.Electrochem. Sci,2011,6:3399-3415.
    [162]. Hu S. K., Cheng G. H., Cheng M. Y., et al. Cycle life improvement ofZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2cathode material for lithium ion batteries[J].Journal of Power Sources,2009,188(2):564-569.
    [163]. Zeng Y. W., He J. H. Surface structure investigation of LiNi0.8Co0.2O2by AlPO4coating and using functional electrolyte[J]. Journal of Power Sources,2009,189(1):519-521.
    [164]. Shi S. J., Tu J. P., Mai Y. J., et al. Effect of carbon coating on electrochemicalperformance of Li1.048Mn0.381Ni0.286Co0.286O2cathode material for lithium-ion batteries[J].Electrochimica Acta,2012,63:112-117.
    [165]. Sun Y. K., Cho S. W., Lee S. W., et al. AlF3-Coating to Improve High VoltageCycling Performance of Li [Ni1/3Co1/3Mn1/3] O2Cathode Materials for LithiumSecondary Batteries[J]. Journal of The Electrochemical Society,2007,154(3):A168-A172.
    [166]. Sze S. M., Ng K. K. Physics of semiconductor devices[M]. Wiley-interscience,2006.
    [167]. Rhoderick E. Metal-semiconductor contacts[J]. IEE Proceedings I (Solid-Stateand Electron Devices),1982,129(1):1-14.
    [168]. Shi Y. L., Shen M. F., Xu S. D., et al. Electrochemical impedance spectroscopyinvestigation of the FeF3/C cathode for lithium-ion batteries[J]. Solid State Ionics,2012,222–223(0):23-30.
    [169]. Scharner S., Weppner W., Schmid Beurmann P. Evidence of Two-PhaseFormation upon Lithium Insertion into the Li1.33Ti1.67O4Spinel[J]. Journal of TheElectrochemical Society,1999,146(3):857-861.
    [170]. Ma J., Wang C., Wroblewski S. Kinetic characteristics of mixed conductiveelectrodes for lithium ion batteries[J]. Journal of Power Sources,2007,164(2):849-856.
    [171]. Lu X., Zhao L., He X. Q., et al. Lithium Storage in Li4Ti5O12Spinel: The FullStatic Picture from Electron Microscopy[J]. Advanced Materials,2012,24(24):3233-3238.
    [172]. Kim C. J., Norberg N. S., Alexander C. T., et al. Mechanism of PhasePropagation During Lithiation in Carbon‐Free Li4Ti5O12Battery Electrodes[J].Advanced Functional Materials,2012.
    [173]. Doi T., Iriyama Y., Abe T., et al. Pulse Voltammetric and ac ImpedanceSpectroscopic Studies on Lithium Ion Transfer at an Electrolyte/Li4/3Ti5/3O4ElectrodeInterface[J]. Analytical Chemistry,2005,77(6):1696-1700.
    [174]. Gachot G. G., Ribie re P., Mathiron D., et al. Gas Chromatography/MassSpectrometry As a Suitable Tool for the Li-Ion Battery Electrolyte DegradationMechanisms Study[J]. Analytical Chemistry,2010,83(2):478-485.
    [175]. Verma P., Maire P., Novák P. A review of the features and analyses of the solidelectrolyte interphase in Li-ion batteries[J]. Electrochimica Acta,2010,55(22):6332-6341.
    [176]. Aurbach D., Markovsky B., Shechter A., et al. A Comparative Study ofSynthetic Graphite and Li Electrodes in Electrolyte Solutions Based on EthyleneCarbonate‐Dimethyl Carbonate Mixtures[J]. Journal of The Electrochemical Society,1996,143(12):3809-3820.
    [177]. Yair. E. E.., Markovsky B., Aurbach D., et al. The dependence of theperformance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolytesolution composition[J]. Electrochimica Acta,1994,39(17):2559-2569.
    [178]. Ken T. Solvent Decompositions and Physical Properties of Decomposition
    Compounds in Li-Ion Battery Electrolytes Studied by DFT Calculations and Molecular
    Dynamics Simulations[J]. The Journal of Physical Chemistry B,2005,109(7):
    2920–2933.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700