用户名: 密码: 验证码:
聚L-谷氨酸基软骨基质模拟支架的构建及其软骨组织工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创伤、关节炎等导致的软骨缺损是临床亟待解决的问题,软骨组织工程为自愈能力极为有限的软骨损伤提供了有效的修复策略。软骨组织工程中作为临时基质的支架,应协调诱导因子,促进干细胞的软骨向分化,维持软骨细胞表型,或通过对细胞所处环境的模拟,刺激软骨组织的再生。本论文从模拟软骨基质组分和生理环境出发,构建组织工程支架,旨在促进干细胞软骨向分化以及软骨组织再生。
     通过聚L-谷氨酸(PLGA)和壳聚糖(CS)间静电作用,结合相分离技术构建细胞粘附型静电复合多孔支架,PLGA和CS分别模拟软骨基质中的蛋白质和多糖。研究冷冻温度和固含量对支架孔结构影响,发现冷冻温度越低支架孔径越小;固含量越高,孔径越小,且内部贯通性变差。考察固含量对支架溶胀性能,力学性能和降解性能影响,发现固含量增加,支架溶胀度降低,压缩模量和储能模量升高,降解速率变慢。控制冷冻温度为-20oC和固含量为2%时,可获得孔径为150-200μm,内部贯通,孔隙率90%以上,综合性能优异的类海绵支架,支架溶胀率达760±45%(mass%),含溶菌酶的PBS中12w可降解50%,压缩测试和动态力学测试显示支架具有良好弹性。
     体外扩增兔脂肪干细胞(ASCs)并接种到PLGA/CS静电复合支架,通过扫描电镜观察发现,ASCs可粘附至支架孔壁并伸展成长梭形,同时分泌大量细胞外基质。激光共聚焦和DNA定量检测显示,细胞在支架中具有良好的增殖性能。以TGF-β1和IGF-1对细胞-支架复合物进行体外软骨向诱导,通过免疫酶联吸附测定法在蛋白水平定量检测软骨特异性基质糖胺多糖(GAG)和二型胶原(COLⅡ)含量,并进一步以实时定量PCR技术在基因水平定量分析软骨特异性基因Sox9,aggrecan和COL Ⅱ的表达,结果表明ASCs在支架内可以合成软骨特异性基质并表达相应基因,证实PLGA/CS静电复合支架支持ASCs软骨向分化。
     体外诱导2w后,将细胞-支架复合物作为实验组,植入自体兔膝关节非负重区全层软骨缺损处(缺损直径4mm,深至软骨下骨),进行体内软骨组织重建。对照组植入空白支架。对体内样品进行大体观察和组织学检测发现,6w后,实验组缺损处填充新生组织,其色泽、质地与正常软骨相近,但厚度不均一,且存在明显连接界限。12w后,新生组织与周围正常软骨组织和软骨下骨整合性良好,组织结构更加成熟。对新生组织基质中的GAG和COL Ⅱ进行定量检测显示,随体内修复时间延长,软骨特异性基质沉积增多,12w后样品中GAG和COL Ⅱ含量均接近正常软骨,分别为正常软骨的84%和70%;通过宏观压缩测试和纳米压痕测试检测新生组织的力学性能,发现12w后新生组织压缩模量为正常软骨的78%,弹性模量为正常软骨的83%。对照组软骨缺损未修复。实验组和对照组缺损处均未发现材料残留和炎症反应。
     为进一步模拟软骨细胞生理环境,以EDC和NHS活化PLGA羧基,与CS氨基共价交联形成酰胺键,构建可模拟蛋白聚糖精细结构的水凝胶,通过冷冻相分离技术得到多孔支架。研究冷冻温度对支架孔径的影响,发现冷冻温度越低,支架孔径越小。对比研究固含量为2%和3%支架的孔结构、溶胀度、力学性能和降解性能,与2%的支架相比,固含量3%的支架压缩模量和储能模量较高,但内部贯通性差,溶胀度和降解速率较低。控制冷冻温度为-80oC,固含量为2%,得到孔径为200-300μm,内部贯通,孔隙率90%以上,平衡溶胀度高达1652±70%(mass%)的非细胞粘附型化学交联支架,高溶胀度支架为细胞提供近似天然的生理环境。同时,该支架具有良好的弹性和可降解性,含溶菌酶的PBS中12w可降解67%。
     通过扫描电镜观测发现,ASCs接种于化学交联支架4h后未在孔壁表面粘附,而随培养时间延长,细胞迁移聚集成直径约50-100μm细胞微团,并分泌大量细胞外基质,包裹微团细胞。以Dio标记ASCs,通过激光共聚焦显微镜监测细胞在支架孔内成团过程,结果显示接种24h后细胞聚集成微团。Hoechst332558DNA定量和活-死细胞染色分析显示,微团中细胞具有良好活性。细胞在支架孔内聚集成大量细胞微团,构建出细胞微团-支架复合物,以TGF-β1、IGF-1对复合物进行软骨向诱导,通过免疫酶联吸附测定法在蛋白水平检测GAG和COL Ⅱ含量,并以实时定量PCR技术在基因水平监测ASCs微团的软骨向分化,结果证实,细胞微团-支架复合物在成软骨诱导因子作用下具有更强的软骨向分化能力。
     体外诱导2w后,将细胞微团-支架复合物作为实验组,进行体内的软骨组织重建,对照组植入空白支架。组织学检测显示6w后新生组织内细胞已具有明显的软骨陷窝结构,形态上更接近于透明软骨。12w和18w后,新生组织结构更加完整,组织内细胞数量、排列均与正常软骨组织相似。对体内样品进行生化成分检测,发现随修复时间延长,软骨特异性基质沉积增多,18w后GAG和COL Ⅱ含量更加接近正常软骨,分别达到正常软骨的94%和91%。宏观压缩测试结果显示,12w后新生软骨组织的压缩模量达到正常软骨的87%,18w后达到正常软骨的92%。对照组缺损处6w时填充纤维状软骨组织,但12w和18w后塌陷,缺损未修复。实验组和对照组缺损处均未发现材料残留和炎症反应。体内12w结果证实,与静电复合支架实验组相比,PLGA/CS化学交联支架修复的软骨组织中GAG和COL Ⅱ含量分别高7%和18%;新生组织的压缩模量高9%。因此PLGA/CS化学交联支架较静电复合支架更利于ASCs的软骨向分化和软骨组织再生。
     为解释PLGA/CS化学交联支架内ASCs成团现象,本文考察了PLGA/CS化学交联二维膜表面电荷与亲水性对ASCs粘附行为影响。通过设定羧基与氨基比例为3:1、1:1、1:3和1:5,改变膜的表面电荷;通过冷冻干燥和热干燥方法改变膜的亲水性。分别检测膜表面的zeta电势、接触角和细胞粘附性。结果显示,冷冻干燥膜和热干燥膜的表面电荷量相近,但亲水性差别显著。冷冻干燥膜的亲水性明显高于热干燥膜,且均不支持ASCs粘附(1:5膜除外)。动态接触角测试显示不支持ASCs粘附的冷冻干燥膜与水相接触后极易被润湿,接触角迅速降低,推测超亲水表面与水分子结合后迅速形成水化壳层,阻止细胞粘附,使细胞相互吸引聚集成微团。1:5冷冻干燥膜因其适宜的亲水性支持ASCs粘附。热干燥均支持ASCs粘附,且随PLGA组分增多,膜亲水性增加,导致粘附细胞数目增多。因此亲水性主导PLGA/CS化学交联体系细胞粘附性,表面电荷未对细胞粘附产生规律性影响。
Cartilage tissue engineering was designed to achieve the regeneration ofcartilage tissue with limited self-repairing capability. Chondrocytes and stem cellswere employed in cartilage tissue engineering. Chondrogenic differentiation of thesecells should be explored. Scaffolds should be able to coordinate the inductive factorsto promote the chondrogenic differentiation of stem cells, and maintain thephenotype of chondrocytes. Therefore, in this paper, simulation components ofscaffold were selected to construct matrix mimic scaffold in order to promote celldifferentiation and cartilage tissue formation.
     As a synthetic polypeptide, water soluble poly(L-glutamic acid)(PLGA)/wasdesigned to fabricate scaffold for cartilage tissue engineering. Chitosan (CS) wasemployed as the physical cross-linking composition to realize the construction ofscaffold. The pore structure, swelling ratio, degradation and mechanical performanceof PLGA/CS electrostatic complex were affected by freezing temperature and solidcontent. The PLGA/CS scaffold with2%solid content, freezed at-20oC was sign asan excellent water imbibition material, swelling ratio of which reached760±45%(mass%), showing certain biomechanics and proper biodegradation.
     Autologous ASCs were expanded and seeded on the PLGA/CS scaffold. SEMimages showed the adherence of ASCs on scaffold with deposition of ECM. CLSMimages and Hoechst333258DNA quantitative analysis showed proliferation of ASCsin scaffold. ASCs/scaffold constructs were then subjected to chondrogenic inductionin vitro for2weeks. The results of GAG and COL Ⅱ quantitative analysis showed thatPLGA/CS scaffold could support chondrogenic differentiation of ASCs.
     After that, the ASCs/scaffold constructs were transplanted to repair full thicknessarticular cartilage defects (4mm in diameter, deep to subchondral bone) created inrabbit femur trochlea. It was found that articular defect was covered with newly formed cartilage at6weeks post-implantation. After12weeks, the regeneratedcartilage integrated well with surrounding native cartilage and subchondral bone.Similar accumulation of GAG and type Ⅱ collagen was achieved in engineeredcartilage at12weeks post-implantation as in the native one through the toluidine blueand immunohistochemical staining, respectively, and was further confirmed by thequantitative analysis of ECM deposition. Biomechanical test showed analogousbiomechanical behavior of engineered cartilage as the native one. Results thusdemonstrated the potentiality of using this polyelectrolyte PLGA/CS as scaffold forcartilage tissue engineering.
     While in cartilage, the GAGs exist mostly as hydrodynamically largeaggregating proteoglycans, which show the combination of GAG and peptide chainsthrough covalent bond. Thus, PLGA linked with chitosan through amide bonds wasdesigned to mimic the component of proteoglycan. After lyophilization, a3-Dporous scaffold with pore size of200-300μm was obtained. The pore structure,swelling ratio, degradation and mechanical performance of PLGA/CS electrostaticcomplex were controlled by freezing temperature and solid content. The swellingratio of scaffold with2%solid content and-80oC freezing temperature was1652±70%(mass%), which also showed elasticity.
     High swelling ratio leads to non-adhesion of ASCs at4h post-seeding. Whilethe cell-cell interaction inducing the formation of cell spheroids with diameter of50-100μm after24h post-seeding. Live-dead assay showed favorable survival abilityin spheroid. Compared to the traditional two dimensional monolayer culture, SEMimages showed that cells in three-dimensional spheroids could depose moreextracellular matrix. Detection of cartilage expression on protein level and gene levelshowed that ASCs in spheroids displayed better differentiation capacities uponinduction, and could be immediately differentiate into chondroblasts.
     The ASCs spheroids/scaffold constructs were transplanted to repair full thickness articular cartilage defects (4mm in diameter, deep to subchondral bone)created in rabbit femur trochlea.6w,12w and18w samples showed that ASCs inspheroids had sufficient chondrogenic differentiation in vivo, leading to regeneratethe hyaline-like cartilage tissue with lacuna structure. The in vitro and in vivo resultsdemonstrated that PLGA/CS chemical cross-linked scaffold which mimics theproteoglycan structure can induce the formation of ASCs spheroids, leading to betterchondrogenic differentiation and cartilage regeneration. The results in vitro and invivo confirmed that PLGA/CS chemical crosslinked scaffold was more efficient thanPLGA/CS polyelectrolyte complex scaffold in chondrogenic differentiation of ASCs.The expression of GAG and COL Ⅱ in vivo at12w post-implantation were7%and18%higher than those in polyelectrolyte complex scaffold group, respectively.Compression modulus of new born was9%higher than that in polyelectrolytecomplex scaffold group.
     The reason of cell adhesion and non-adhesion in different PLGA/CS chemicalcross-linked scaffold was explored by investigating the influence of hydrophilicityand surface charge on ASCs adhesion. At first, the surface charge was adjusted bychanging the content of carboxyl group and amino group. The hydrophilicity wasadjusted by freeze-drying method and thermal-drying method. The result showedfilms made by freeze-drying owned higher hydrophilicity than films made bythermal-drying method (except1:5films) could not support ASCs adhesion. Thesefilms could be wetted quickly after contact with water, with a rapidly decreasedcontact angle. The water interacted with film to form a hydration shell on the film,preventing cell adhesion. Besides, with the increase of contact angle, the films withthe contact angle greater than80o, the number of adhered cells was decreased.Surface charge is not the regular effect on cell adhesion.
引文
[1] Chiang H, Jiang CC. Repair of Articular Cartilage Defects: Review andPerspectives [J]. J Formos Med Assoc,2009,108:87-101.
    [2] Waterton JC, et a1. Diurnal vailation in the femoral articular cartilage of the kneein young adult humans [J]. Magn Reson Med,2000,43:126-32.
    [3] Eekstein F, et a1. In vivo morphometry and functional analysis of human articularcartilage with quantitative magnetic resonance imaging-from image to date, from dateto theory [J]. Anat Embryol,2001,203:147-73.
    [4] O’Driscon SW. The healing and regeneration of alticular canilage [J]. J BoneJoint Surg Am,1998,80:1795-1812.
    [5] Poole CA. Articular cartilage chondrons: form, function and failure [J]. J Anat,1997,191:1-13.
    [6]刘清宇,王富友,杨柳.关节软骨组织工程支架的研究进展[J].中国修复重建外科杂志,2012,26:1247-50.
    [7] Service RF. Coming soon to a knee near you: cartilage like your very own [J].Science,2008,322:1460-61.
    [8] Johnson LL. Arthroscopic abrasion arthroplasty. Historical and pathologicalperspective: present status [J]. Arthroscopy,1986,2:54–9.
    [9] Johnstone B, Yoo JU. Autologous mesenehymal progenitor cells in articularcartilage repair [J]. Clin Orthop Relat Res,1999,367:156-62.
    [10] Luyten FP, et al. Articular cartilage repair: potential role of growth anddifferentiation factors. In: Adolphe M, ed. Biological regulation of the chondrocytes.Boca Raton: CRC Press,1992.
    [11] Ochi M, et al. Current concepts in tissue engineering technique for repair ofcartilage defect [J]. J Artif Organs,2001,25:172-9.
    [12] Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique andrehabilitation to treat chondral defects [J]. Clin Orthop,2001,391:362-9.
    [13] Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilagerepair [J]. Eur Cell Mater,2005,9:23-32.
    [14] Hangody L, et al. Mosaicplasty for the treatment of articular defects of the kneeand ankle [J]. ClinOrthop,2001,391:328-36.
    [15] Mcnickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repairtechnology [J]. Sports Med Arthrosc,2008,16:196-201.
    [16] Shapiro F, Koide S, Glimeher MJ. Cell origin and differentiation in the repair offullthickness defects of articular cartilage [J]. J Bone Joint Surg Am,1993,75:532-553.
    [17] Thiede RM, Lu Y, Markel MD. A review of the treatment methods for cartilagedefects [J]. Vet Comp Orthop Traumatol,2012,25:263-72.
    [18] Hurtig M, et al. Arthroscopic mosaic arthroplastyin the equine third carpal bone[J]. Vet Surg,2001,30:228-39.
    [19] Solheim E, et al. Osteochondral autografting (mosaicplasty) in articular cartilagedefects in the knee: results at5to9years [J]. Knee,2010,17:84-87.
    [20] Bugbee WD. Fresh osteochondral allografts [J]. J Knee Surg,2002,15:191-5.
    [21] Stevenson S, et al. The fate of articular cartilage after transplantation of fresh andcryopreserved tissue-antigenmatched and mismatched osteochondral allografts indogs [J]. J Bone Joint Surg (Am),1989,71:1297-307.
    [22] Hangody L, Fules P. Autologous osteochondral mosaicplasty for the treatment offull-thickness defects of the weight-bearing joints: ten years of experimental andclinical experience [J]. J Bone Joint Surg Am,2003,85:25-32.
    [23] Hangody L, et al. Autologous osteochondral grafting: technique and long-termresults [J]. Injury,2008,39:32-9.
    [24] Brittberg M, et al. Treatment of deep cartilage defects in the knee withautologous chondrocyte transplantation [J]. N Engl J Med,1994,331:889-95.
    [25] Chow JC, et al. Arthroscopic autogenous osteochondral transplantation fortreating knee cartilage defects: a2-to5-year follow-up study [J]. Arthroscopy,2004,20:681-90.
    [26] Jakob RP, et al. Autologous osteochondral grafting in the knee: indication, results,and reflections [J]. Clin Orthop,2002,401:170-84.
    [27] O’Driscoll SW, Keeley FW, Salter RB. The chondrogenic potential of freeautogenous periosteal grafts for biological resurfacing of major full-thickness defectsin joint surfaces under the influence of continuous passive motion: an experimentalinvestigation in the rabbit [J]. J Bone Joint Surg Am,1986,68:1017-35.
    [28] O’Driscoll SW, Keeley FW, Salter RB. Durability of regenerated articularcartilage produced by free autogenous periosteal grafts in major full-thickness defectsin joint surfaces under the influence of continuous passive motion: a follow-up reportat one year [J]. J Bone Joint Surg Am,1988,70:595-606.
    [29] Giannini S, Vannini F, Buda R. Osteoarticular grafts in the treatment of OCD ofthe talus: mosaicplasty versus autologous chondrocyte transplantation [J]. Foot AnkleClin,2002,7:621-33.
    [30] Phipatanakul WP, et al. Immune response in patients receiving freshosteochondral allograft [J]. Am J Orthop,2004,33:345-8.
    [31] Langer R, Vacanti J P. Tissue engineering [J]. Science,1993,260:920-6.
    [32] Risbud MV, Sittinger M. Tissue engineering: advances in in vitro cartilagegeneration [J]. Trends Biotechnol,2002,20:351-6.
    [33] Atkinson PJ, Haut RC. Impact responses of the flexed human knee using adeformable impact interface [J]. J Biomech Eng,2011,123:205-11.
    [34] Fukuda Y, et al. Impact load transmission of the knee joint-influence of legalignment and the role of meniscus and articular cartilage [J]. Clinical Biomechanics,2000,15:516-21.
    [35] Athanasiou KA, et al. Interspecies comparisons of in situ intrinsic mechanicalproperties of distal femoral cartilage [J]. J Orthop Res,1991,9:330-40.
    [36] Hunziker EB, Quinn TM, Hauselmann HJ. Quantitative structural organizationof normal adult human articular cartilage [J]. Osteoarthritis Cartilage,2002,10:564-72.
    [37] Frank EH, Grodzinsky AJ. Cartilage electromechanics-I.Electrokinetictransduction and the effects of electrolyte pH and ionic strength [J]. J Biomech,1987,20:615-27.
    [38] Eyre DR. Collagen: molecular diversity in the body's protein scaffold [J].Science,1980,07:1315-22.
    [39] Aigner T. Collagens-Major component of the physiological cartilage matrix,major target of cartilage degeneration, major tool in cartilage repair [J]. Adv DrugDeliver Rev,2003,55:1569-93.
    [40] Eyre DR, et al. Biosynthesis of collagen and other matrix proteins by articularcartilage in experimental osteoarthrosis [J]. Biochem J,1980,188:823-37.
    [41] Akizuki S, et al. Tensile properties of human knee joint cartilage: I.Influence ofionic conditions, weight bearing, and fibrillation on the tensile modulus [J]. J OrthopRes,1986,4:379-92.
    [42] Akizuki S, et al. Tensile properties of human knee joint cartilage. II.Correlations between weight bearing and tissue pathology and the kinetics ofswelling [J]. J Orthop Res,1987,5:173-86.
    [43] Roth V, Mow VC. The intrinsic tensile behavior of the matrix of bovinearticular cartilage and its variation with age [J]. J Bone Joint Surg Am,1980,62:1102-17.
    [44] Muir H. Proteoglycans as organizers of the intercellular matrix [J]. BiochemSoc Trans,1983,11:613-22.
    [45] Caterson B, et al. Mechanisms involved in cartilage proteoglycan catabolism [J].Matrix Biology,2000,19:333-44.
    [46] Canal GC, Hung CT, Ateshian GA. Electrostatic and non-electrosta-ticcontributions of proteoglycans to the compressive equilibrium modulus of bovinearticular cartilage [J]. J Biomech,2010,43:1343-50.
    [47] Seror J, et al. Articular cartilage proteoglycans as boundary lubricants:structureand frictional interaction of surface-attached hyaluronan and hyaluronan-aggrecancomplexes [J]. Biomacromolecules,2011,12:3432-43.
    [48] Kwak YH, et al. Altered synthesis of cartilage-specific proteoglycans by mutanthuman cartilage oligomeric matrix protein [J]. Clin Orthop Surg,2009,1:181-7.
    [49] Maroudas AI. Balance between swelling pressure and collagen tension innormal and degenerate cartilage [J]. Nature,1976,260:808-9.
    [50] Maroudas A, et al. The permeability of articular cartilage [J]. J Bone Joint SurgBr,1968,50:166-77.
    [51] Pottenger LA, et al. Influence of cartilage particle size and proteoglycanaggregation on immobilization of proteoglycans [J]. J Biol Chem,1982,257:11479-85.
    [52] Maroudas A. Physicochemical properties of cartilage in the light of ionexchange theory [J]. Biophys J,1968,8:575-95.
    [53] Poole AR, et al. Composition and structure of articular cartilage:a template fortissue repair [J]. Clin Orthop Relat Res,2001,391:26-33.
    [54] Wu JZ, Herzog W. Elastic anisotropy of articular cartilage is associated with themicrostructures of collagen fibers and chondrocytes [J]. J Biomech,2002,35:931-42.
    [55] Green Jr WT. Articular cartilage repair. Behavior of rabbit chonfrocytes duringtissue culture and subsequent allografting [J]. Clinical orthopaedics and relatedresearch,1977,124:237-50.
    [56] Wakitani S, et al. Repair of rabbit articular surfaces with allograft chondrocytesembedded in collagen gel [J]. Journal of Bone and Joint Surgery,1989,71:74-80.
    [57] Vacanti CA, et al. Synthetic polymers seeded with chondrocytes provide atemplate for new cartilage formation [J]. Plastic and Reconstructive Surgery,1991,88:753-9.
    [58] Rahfoth B, et al. Transplantation of allograft chondrocytes embedded in agarosegel into cartilage defects of rabbits [J]. Osteoarthritis Cartilage,1998,6:50-65.
    [59] Lefebvre V, Peeters-Joris C, Vaes G. Production of collagens, collagenase andcollagenase inhibitor during the dedifferentiation of articular chondrocytes by serialsubcultures [J]. Biochim Biophys Acta,1990,1051:266-75.
    [60] Hwang NS, Varghese S, Elisseeff J. Cartilage tissue engineering: Directeddifferentiation of embryonic stem cells in three-dimensional hydrogel culture [J].Methods Mol Biol,2007,407:351-73.
    [61] Cao T, et al. Cartilage repair using hyaluronan hydrogel-encapsulated humanembryonic stem cell-derived chondrogenic cells [J]. Biomaterials,2010,31:6968-80.
    [62] Koh CJ, Atala A. Tissue engineering, stem cells, and cloning: opportunities foregenerative medicine [J]. J Am Soc Nephrol,2004,15:1113-25.
    [63] Sekiya I, et al. In vitro cartilage formation by human adult stem cells from bonemarrow stroma defines the sequence of cellular and molecular events duringchondrogenesis [J]. Proc Natl Acad Sci USA,2002,99:4397-402.
    [64] Han Y, et al. Cartilage regeneration using adipose-derived stem cells and thecontrolled-released hybrid microspheres [J]. Joint Bone Spine,2010,77:27-31.
    [65] Rada T, Reis RL, Gomes ME. Adipose tissue-derived stem cells and theirapplication in bone and cartilage tissue engineering [J]. Tissue Eng Part B Rev,2009,15:113-25.
    [66] Chuan Y, et al. PHB/PHBHHx scaffolds and human adipose-derived stem cellsfor cartilage tissue engineering [J]. Biomaterials,2009,30:4401-6.
    [67] Cui L, et al. Repair of articular cartilage defect in non-weight bearing areasusing adipose derived stem cells loaded polyglycolic acid mesh [J]. Biomaterials2009,30:2683-93.
    [68] Heineken FG, Skalak R. Tissue Engineering: a brief overview [J].J Biomech Eng,1991,113:111-2.
    [69] Stoop R. Smart biomaterials for tissue engineering of cartilage [J]. Injury,2008,39:77-87.
    [70] Iwasa J, et al. Clinical application of scaffolds for cartilage tissue engineering[J]. Knee Surg Sports Traumatol Arthrosc,2009,17:561-77.
    [71] El-Ayoubi R, et al. Design and dynamic culture of3D-scaffolds for cartilagetissue engineering [J]. J Biomater Appl,2011,25:429-44.
    [72] Heng BC, Cao T, Lee EH. Directing stem cell differentiation into thechondrogenic lineage in vitro [J]. Stem Cells,2004,22:1152-67.
    [73] Grande DA, et al. Evaluation of matrix scaffolds for tissue engineering ofarticular cartilage grafts [J]. J Biomed Mater Res,1997,34:211-20.
    [74] Coutts RD, et al. Matrices for cartilage repair [J]. Clin Orthop Relat Res,2001,391:271-9.
    [75] Kimura T, et al. Chondrocytes embedded in collagen gels maintain cartilagephenotype during long-term cultures [J]. Clin Orthop Relat Res,1984,186:231-9.
    [76] Kleinman HK, et al. Role of collagenous matrices in the adhesion and growth ofcells [J]. J Cell Biol,1981,88:473-85.
    [77] Capito RM, Spector M. Scaffold-based articular cartilage repair [J]. IEEE EngMed Biol Mag,2003,22:42-50.
    [78] Pieper JS, et al. Crosslinked type II collagen matrices: preparation,characterization, and potential for cartilage engineering [J]. Biomaterials,2002,23:3183-92.
    [79] Dai WD, et al. The influence of structural design of PLGA/collagen hybridscaffolds in cartilage tissue engineering [J]. Biomaterials,2010,31:2141-52.
    [80] Holmes TC. Novel peptide-based biomaterial scaffolds for tissue engineering [J].Trends Biotechnol,2002,20:16-21.
    [81] Spiller KL, et al. Hydrogels for the repair of articular cartilage defects [J]. TissueEng Part B,2011,17:281-99.
    [82] Lee HJ, et al. Collagen mimetic peptide-conjugated photopolymerizable PEGhydrogel [J]. Biomaterials,2006,27:5268-76.
    [83] Liu SQ, et al. Biomimetic hydrogels for chondrogenic differentiation of humanmesenchymal stem cells to neocartilage. Biomaterials,2010,31:7298-307.
    [84] Hsiao SW, et al. Interactions between chitosan and cells measured by AFM [J].Biomed Mater,2010,5:1-8.
    [85] Hsu SH, et al. Evaluation of chitosan-alginate-hyaluronate complexes modifiedby an RGD-containing protein as tissue-engineering scaffolds for cartilageregeneration [J]. Artif Organs,2004,28:693-703.
    [86] Park K, et al. RGD-conjugated chitosan-pluronic hydrogels as a cell supportedscaffold for articular cartilage regeneration [J]. Macromol Res,2008,16:517-23.
    [87] Cao T, et al. Synthesis and characterization of poly(L-glutamic acid) with a highmolecular weight. Chem J Chinese U2006,27:369-71.
    [88] Wang FY. Bionic design and initial preparation of tissue engineeredosteochondral composites:[D]. Third Military Medical University,2008.
    [89] Francis Suh JK, Matthew HWT. Application of chitosan-based polysaccharidebiomaterials in cartilage tissue engineering: a review [J]. Biomaterials,2000,21:2589-98.
    [90] Denuziere A, et al. Chitosan-chondroitin sulfate and chitosan-hyaluronatepolyelectrolyte complexes: biological properties [J]. Biomaterials,1998,19:1275-85.
    [91] Damour O, et al. A dermal substrate made of collagen-GAG-chitosan for deepburn coverage: first clinical uses [J]. Clin Mater,1994,15:273-6.
    [92] Bryant SJ, et al. Incorporation of tissue-specific molecules alters chondrocytemetabolism and gene expression in photocrosslinked hydrogels [J]. Acta Biomater,2005,1:243-52.
    [93] Chandy T, Sharma C. Chitosan-as a biomaterial [J]. Biomater Artif Cell ArtifOrgans,1990,18:1-24.
    [94] Sechriest VF, et al. GAG-augmented polysachharide hydrogel for chondrocyteculture. Annual Meeting, Biomed. Eng. Society,1998.
    [95] Sechriest VF, et al. GAG-augmented polysachharide hydrogel: a novelbiocompatible and biodegrable material to support chondrogenesis [J]. J BiomedMater Res,2000,49:534-41.
    [96] Suh J-K, et al. Glycosaminoglycan-augmented polysachharide hydrogel: apotential carrier for chondrocyte transplantation. Second Bi-annual Meeting of TissueEngineering Society, Orlando, FL,1998.
    [97] Frizziero L, Govoni E, Bacchini P. Intra-articular hyaluronic acid in the treatmentof osteoarthritis of the knee: clinical and morphological study [J]. Clin ExpRheumatol,1998,16:441-9.
    [98] Lisignoli G, et al. Celluar and molecular events during chondrogenesis of humanmeenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold [J].Biomaterials,2005,26:5677-5686.
    [99] Hegewald AA, et al. Hyaluronic acid and autologous synovial fluid inducechondrogenic differentiation of equine mesenchymal stem cells: a preliminary study[J]. Tissue Cell,2004,36:431-8.
    [100] Rodrigo JJ, et al. Effects of human knee synovial fluid on chondrogenesis invitro [J]. Am J Knee Surg,1995,8:124-9.
    [101] Yoon DM, et al. Addition of hyaluronic acid to alginate embeddedchondrocytes interferes with insulin-like growth factor-1signaling in vitro and in vivo[J]. Tissue Eng Part A,2009,15:3449-59.
    [102] Liao E, et al. Tissue-engineered cartilage constructs using composite hyaluronicacid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds [J]. TissueEng,2007,13:537-50.
    [103] Smeds KA, et al. Photocrosslinkable polysaccharides for in situ hydrogelformation [J]. J Biomed Mater Res,2001,54:115-21.
    [104] Nettles DL, et al. Photocrosslinkable hyaluronan as a scaffold for articularcartilage repair [J]. Ann Biomed Eng,2004,32:391-7.
    [105]顾忠伟.组织诱导性生物材料国际发展动态[M].北京:科学出版社,2010.9:20-52.
    [106]王佃亮.干细胞组织工程技术——基础理论与临床应用[M].北京:科学出版社,2011.3:110-111.
    [107] Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation ofengineered meniscus constructs [J]. Biomaterials,2007,28:1967-77.
    [108] Fisher MB, et al. Organized nanofibrous scaffolds that mimic the macroscopicand microscopic architecture of the knee meniscus [J]. Acta Biomater,2013,9:4496-4504.
    [109] Tae G, et al. Formation of a Novel Heparin-Based Hydrogel in the Presence ofHeparin-Binding Biomolecules [J]. Biomacromolecules,2007,8:1979-86.
    [110] Gong Y, et al. Hydrogel-filled polylactide porous scaffolds for cartilage tissueengineering [J]. J Biomed Mater Res B Appl Biomater,2007,82:192-204.
    [111] Drury JL, Mooney DJ. Hydrogels for tissue engineering: Scaffold designvariables and application [J]. Biomaterials,2003,24:4337-51.
    [112] Fragonas E, et al. Articular cartilage repair in rabbits by using suspensions ofallogenic chondrocytes in alginate [J]. Biomaterials,2000,21:795-801.
    [113] Lee CS, et al. Integration of layered chondrocyte-seeded alginate hydrogelscaffolds [J]. Biomaterials,2007,28:2987-93.
    [114] Ma HL, et al. Chondrogenesis of human mesenchymal stem cells encapsulatedin alginate beads [J]. J Biomed Mater Res A,2003,64:273-81.
    [115] Boanakovski D, et al. Chondrogenic differentiation of bovine bone marrowmesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type IIextracellular matrix on MSC chondrogeneses [J]. Biotechnol Bioeng,2006,93:1152-3.
    [116] Van Susante JL, et al. Culture of chondrocytes in alginate and collagen carriergels [J]. Acta Orthop Scand,1995,66:549-56.
    [117] Basser PJ, et al. Towards a constitutive law of cartilage: A polymer physicsperspective [J]. Macromol Symp,2005,227:53-64.
    [118] De Chalain T, et al. Bioengineering of elastic cartilage with aggregated porcineand human auricular chondrocytes and hydrogels containing alginate, collagen, andkappa-elastin [J]. J Biomed Mater Res,1999,44:280-8.
    [119] Mauck RL, et al. Functional tissue engineering of articular cartilage throughdynamic loading of chondrocyte-seeded agarose gels [J]. J Biomech Eng,2000,122:252-60.
    [120] Mauck RL, et al. Synergistic action of growth factors and dynamic loading forarticular cartilage tissue engineering [J]. Tissue Eng,2003,9:597-611.
    [121] Lu Z, et al. Collagen type II enhances chondrogenesis in adipose tissue-derivedstem cells by affecting cell shape. Tissue Eng Part A,2010,16:81-90.
    [122] Caplan AI. Mesenchymal stem cells [J]. J Orthop Res,1991,9:641-50.
    [123] Dare EV, et al. Fibrin sealants from fresh or fresh/frozen plasma as scaffolds forin vitro articular cartilage regeneration [J]. Tissue Eng Part A,2009,15:2285-97.
    [124] Chang F, et al. Repair of large full-thickness articular cartilage defects bytransplantation of autologous uncultured bone-marrow-derived mononuclear cells [J].J OrthopRes,2008,26:18-26.
    [125] Ho ST, et al. The influence of fibrin based hydrogels on the chondrogenicdifferentiation of human bone marrow stromal cells [J]. Biomaterials,2010,31:38-47.
    [126] Chung C, Burdick JA. Influence of three-dimensional hyaluronic acidmicroenvironments on mesenchymal stem cell chondrogenesis [J]. Tissue Eng Part A,2009,15:243-54.
    [127] Park SH, et al. Tissue-engineered cartilage using fibrin/hyaluronan compositegel and its in vivo implantation [J]. Artif Organs,2005,29:838-45.
    [128]Hoemann CD, et al. Tissue engineering of cartilage using an injectable andadhesive chitosan-based cell-delivery vehicle [J]. Osteoarthritis Cartilage/OARS,Osteoarthritis Res Soc2005,13:318-29.
    [129] Tan H, et al. Injectable in situ forming biodegradable chitosan-hyaluronic acidbased hydrogels for cartilage tissue engineering [J]. Biomaterials,2009,30:2499-506.
    [130] Jin R, et al. Injectable chitosan-based hydrogels for cartilage tissue engineering[J]. Biomaterials,2009,30:2544-51.
    [131] Chenite A, et al. Novel injectable neutral solutions of chitosan formbiodegradable gels in situ [J]. Biomaterials,2000,21:2155-61.
    [132] Hao T, et al. The support of matrix accumulation and the promotion of sheeparticular cartilage defects repair in vivo by chitosan hydrogels [J]. OsteoarthritisCartilage/OARS, Osteoarthritis Res Soc,2010,18:257-65.
    [133] Seliktar D. Designing cell-compatible hydrogels for biomedical applications [].Science,2012,336:1124-28.
    [134] Gao CY, et al. In vivo restoration of full-thickness cartilage defects bypoly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymalstem cells and DNA complexes [J]. Biomaterials,2010,31:5953-65.
    [135] Farshid Guilak, et al. Chondrogenic differentiation of adipose-derived adultstem cells in agarose, alginate, and gelatin scaffolds [J]. Biomaterials,2004,25:3211-22.
    [136] Cheng NC, et al. The influence of spheroid formation of human adipose-derivedstem cells on chitosan films on stemness and differentiation capabilities [J].Biomaterials,2012,33:1748-58.
    [137] Hsu SH, et al. Substrate-dependent Wnt signaling in MSC differentiation withinbiomaterial-derived3D spheroids [J]. Biomaterials,2013,34:4725-38.
    [138] Feng ZQ, et al. The effect of nanofibrous galactosylated chitosan scaffolds onthe formation of rat primary hepatocyte aggregates and the maintenance of liverfunction [J]. Biomaterials,2009,30:2753-63.
    [139] Lin SJ, et al. Formation of melanocyte spheroids on the chitosan-coated surface[J]. Biomaterials,2005,26:1413-22.
    [140] Leipzig ND, et al. Differentiation of neural stem cells in three-dimensionalgrowth factor-immobilized chitosan hydrogel scaffolds [J]. Biomaterials,2011,32:57-64.
    [141] Lee J, et al. Engineering liver tissue spheroids with inverted colloidal crystalscaffolds [J]. Biomaterials,2009,30:4687-94.
    [142] Staikos G, Bokias G, Tsitsilianis C. The viscometric methods in theinvestigation of the polyacid polybase interpolymer complexes [J]. J Appl Polym Sci,1993,48:215-7.
    [143] Shelton RM, Rasmussen C, Davies J E. Protein adsorption at the interfacebetween charged polymer substrata and migrating osteoblasts [J]. Biomatemals,1988,9:24-9.
    [144] Baldwin SP, Saltzman WM. Polymers for tissue engineering [J]. Trends inPolym Sci,1996,4:177-82.
    [145] Luo K, et al. Biodegradable interpolyelectrolyte complexes based on methoxypoly(ethylene glycol)-b-poly(α,L-glutamic acid) and chitosan [J].Biomacromolecules,2008,9:2653-61.
    [146] Baldwin SP, Saltzman WM. Materials for protein delivery in tissueengineering [J]. Adv Drug Deliver Rev,1998,33:71-86.
    [147] Cook SD, et al. Repair of articular cartilage defects with osteogenic protein-1(BMP-7) in dogs [J]. J Bone Joint Surg Am,2003,85:116-23.
    [148] Wakitani S, et al. Mesenchymal cell-based repair of large, full-thickness defectsof articular cartilage [J]. J Bone Joint Surg Am,1994,76:579-92.
    [149]杨波,张安,曹峻岭.组织工程修复关节软骨损伤研究进展.国外医学(医学地理分册),2007,28:1-6.
    [150] Sobral JM, et al. Three-dimensional plotted scaffolds with controlled pore sizegradients: effect of scaffold geometry on mechanical performance and cell seedingefficiency [J]. Acta Biomater,2010,7:1009-18.
    [151] Dickinson HR, et al. Biodegradation of a poly(amino acid) hydrogel. I. In vivo[J]. J Biomed Mater Res,1981,15:577-89.
    [152] Park H, et al. Effect of Swelling Ratio of Injectable Hydrogel Composites onChondrogenic Differentiation of Encapsulated Rabbit Marrow Mesenchymal StemCells In Vitro [J]. Biomacromolecules,2009,10:541-46.
    [153] Frenkel SR, Di Cesare PE. Scaffolds for articular cartilage repair [J]. AnnBiomed Eng,2004,32:26-34.
    [154] Kim BS, Mooney DJ. Development of biocompatible synthetic extracellularmatrices for tissue engineering [J]. Trends Biotechnol,1998,16:224-30.
    [155] Cui L, et al. Repair of articular cartilage defect in non-weight bearing areasusing adipose derived stem cells loaded polyglycolic acid mesh [J]. Biomaterials,2009,30:2683-93.
    [156]夏万尧,等.组织工程化软骨组织形成的最佳细胞浓度和最佳形成时间的实验研究[J].中国修复重建外科杂志,1999,13:442.
    [157]秦廷武,等.组织工程中细胞与材料的粘附作用[J].中国修复重建外科杂志,1999,13:13.
    [158]司徒镇强,吴军正.细胞培养[M].西安:世界图书出版公司,1996.4:7-8.
    [159] Zuk PA, et al. Human adipose tissue is a source of multipotent stem cells [J].Mol Bio Cell,2002,13:4279-95.
    [160] Mahmoudifar N, Doran PM. Chondrogenic differentiation of humanadipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic cultureconditions [J]. Biomaterials,2010,31:3858-67.
    [161] Wang Y, et al. Evaluation of three-dimensional scaffolds prepared frompoly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneicchondrocytes for cartilage repair in rabbits [J]. Biomaterials,2008,29:2858-68.
    [162] Franke O, et al. Mechanical properties of hyaline and repair cartilage studied bynanoindentation [J]. Acta Biomater,2007,3:873-81.
    [163]杨志明主编.组织工程基础与临床[M].成都:四川科学技术出版社,2000.
    [164] Yoo JU, et al. The chondrogenic potential of human bone marrow-derivedmesenchymal progenitor cells [J]. J Bone Joint Surg Am,1998,80:1745-57.
    [165] Delise AM, et al. Celluar interactions and signaling in cartilage development [J].Osteoarthritis Cartilage,2000,8:309-34.
    [166] Fell HB. The histogenesis of cartilage and bone in the long bones of theembryonic fowl [J]. J Morphol Physiol,2005,40:417-51.
    [167] Thorogood PV, Hinchliffe JR. An analysis of the condensation process duringchondrogenesis in the embryonic chick hind limb [J]. J Embryol Exp Morphol,1975,33:581-606.
    [168] Amaral IF, et al. Three-dimensional culture of human osteoblastic cells inchitosan sponges: The effect of the degree of acetylation [J]. J Biomed Mater Res PartA,2006,76:335-46.
    [169] Martino AD, et al. Chitosan: A versatile biopolymer for orthopaedictissue-engineering [J]. Biomaterials,2005,26:5983-90.
    [170] Lai YX, et al. Design and synthesis of a potent peptide containing both specificand non-specific cell-adhesion motifs [J]. Biomaterials,2010,31:4809-17.
    [171] Freier T, et al. Controlling cell adhesion and degradation of chitosan films byN-acetylation [J]. Biomaterials,2005,26:5872-8.
    [172] Yeh HY, et al. The calcium-dependent regulation of spheroid formation andcardiomyogenic differentiation for MSCs on chitosan membranes [J]. Biomaterials,2012,33:8943-54.
    [173] Bates RC, et al. Spheroids and cell survival [J]. Critical Reviews inOncology/Hematology,2000,36:61-74.
    [174] Denker AE, et al. Chondrogenic differentiation of murine C3H10T1/2multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2inhigh-density micromass cultures [J]. Differentiation,1999,64:67-76.
    [175] R.I.弗雷谢尼.动物细胞培养——基本技术指南[M].北京:科学出版社.2008,4:46-55.
    [176] Alberts B, et al. The molecular biology of the cell [M]. New York.2002,4thed.
    [177] Di Benedetto A, et al. N-cadherin and cadherin11modulate postnatal bonegrowth and osteoblast differentiation by distinct mechanisms [J]. J Cell Sci,2010,123:2640-8.
    [178] Quintana L, et al. Morphogenetic and regulatory mechanisms duringdevelopmental chondrogenesis: new paradigms for cartilage tissue engineering [J].Tissue Eng Part B Rev,2009,15:29-41.
    [179] Meredith JC, et al. Combinatorial characterization of cell interactions withpolymer surfaces [J]. J Biomed Mater Res Part A,2003,66:483-90.
    [180] Shelton RM, et al. Protein adsorption at the interface between charged polymersubstrata and migrating osteoblasts [J]. Biomatemals,1988,9:24-9.
    [181]李胜方,等.干燥方式对含直链淀粉半互穿网络水凝胶溶胀和降解的影响[J].高分子学报,2007,7:593-598.
    [182] Feldman K, et al. Probing Resistance to Protein Adsorption of Oligo(ethyleneglycol)-Terminated Self-Assembled Monolayers by Scanning Force Microscopy [J]. JAm Chem Soc,1999,121:10134-41.
    [183] Harder P et al. Molecular Conformation in Oligo(ethylene glycol)-TerminatedSelf-Assembled Monolayers on Gold and Silver Surfaces Determines Their AbilityTo Resist Protein Adsorption [J]. J Phys Chem B,1998,102:426-36.
    [184] Cortez C, et al. Multilayer Buildup and Biofouling Characteristics ofPSS-b-PEG Containing Films [J]. Langmuir,2010,26:9720-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700