用户名: 密码: 验证码:
柑橘耐盐性分析和氯离子转运相关基因的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘是一种重要的经济作物,但对盐胁迫较为敏感,尤其对含氯的盐分敏感。柑橘在盐胁迫下会积累大量的Na+和Cl-,导致植株光合下降、生长变缓并最终降低产量和果实品质。前人对柑橘耐盐性的研究主要集中在砧木上,而对不同柑橘品种间耐盐性的研究较少。此外,尽管Cl-转运在柑橘耐盐中起重要作用,但参与Cl-转运相关基因的研究还很缺乏。本研究比较了四个常见柑橘品种对NaCl胁迫的生理响应,分析了四个C1-转运相关的基因在这些盐胁迫品种叶片中的表达。此外,本研究在枳中克隆了其中的两个基因:PtrCLC和PtrCCC,并分析了基因的表达模式。为进一步研究基因在Cl-平衡中的作用,我们还将PtrCLC和PtrCCC分别在模式植物中进行了过表达,并分析了转基因植株和对照植株在盐胁迫下的表现。本研究的主要结果如下:
     1.比较了枳砧甜橙(纽荷尔和伦晚)和宽皮柑橘(鄂柑一号和国庆一号)对不同浓度NaCl (0、30、60和90mmol/L)胁迫的生理响应。结果表明:盐胁迫导致植株的干重、叶面积和净光合速率下降,但宽皮柑橘的下降幅度较小。与甜橙相比,宽皮柑橘叶片中积累的Na+和Cl-较低,而两种离子在植株根中的积累量较高。盐胁迫也导致品种间主要矿质元素含量的变化,而宽皮柑橘叶片中Ca和Mg的下降幅度低于甜橙。
     2.利用同源克隆法从枳中分离了一个CLC基因:PtrCLC。该序列包含2367bP的ORF,编码一个含789氨基酸的多肽。PtrCLC蛋白与其他物种CLC序列的一致性较高,该蛋白还含有10个跨膜区和两个CBS结构域。Real-time PCR分析表明PtrCLC在枳叶片和根中都有表达,同时该基因的表达在ABA、4℃和NaCl处理后上调。此外,在拟南芥AtCLCc突变体clcc中过表达35S::PtrCLC后发现,转基因植株的种子萌芽率在盐胁迫下得到提高。此外,在200mmol/L NaCl处理下,转基因拟南芥鲜重、电解质渗透和叶绿素含量的下降都小于突变体和野生型植株,并且转基因植株根部和地上部的C1-含量均低于突变体和野生型植株。
     3.为获得柑橘CLC基因家族的所有成员序列,我们用PtrCLC序列检索甜橙基因组数据库,共得到6个CLC基因序列。在枳中克隆验证了另外5个CLC基因。这6个CLC蛋白(PtrCLC1-6)长度在748-798个氨基酸之间,但成员之间序列差异较大。进化分析表明PtrCLCs可分为两个亚类,而PtrCLC4和PtrCLC6与细菌CLCs的关系相对较近。在大肠杆菌EcCLCA中,有三个与Cl-选择性吸收相关的位点:丝氨酸S107、谷氨酸E148和谷氨酸E203。序列比对发现,PtrCLC1在S107相对应位置为脯氨酸(P177), PtrCLC3在E148相对应位置为丙氨酸(A213),PtrCLC4和PtrCLC6在E203相对应位置分别为苏氨酸(T260)和丝氨酸(S295)。Real-timePCR分析表明PtrCLCs在枳叶片中偏好性表达,尤其是PtrCLC6.此外,我们分析了PtrCLCs对缺氮、NaC1和ABA处理的响应情况。缺氮后,PtrCLCs的表达都下调,而PtrCLCl在补充2mmol/L NO3-可后恢复表达。相反,NaCl处理导致PtrCLCs表达量增加,但PtrCLC2和PtrCLC4增加更明显,同时这两者也能够被ABA诱导上调表达。
     4.利用同源克隆法从枳中分离了一个CCC基因,PtrCCC。该序列长3438bp包含2943bP的ORF,编码一个含980氨基酸的多肽。PtrCCC蛋白含有11个跨膜区域。进化分析表明,PtrCCC与动物的KCC类转运蛋白进化关系较近。Real-timePCR分析表明PtrCCC在枳叶尖和根尖等幼嫩组织中的表达量高于成熟组织。此外,其表达能被KCl胁迫诱导上调。我们进一步将PtrCCC转入野生型烟草中进行基因的功能验证。在NaCl、KCl和NaCl+KCl胁迫下,转基因植株的生长表现都好于野生型植株。同时,在这三种盐胁迫尤其是在KCl胁迫下,转基因植株的根干重和地上部干重的积累都高于野生型植株。
Citrus, one of the most important fruit crops in the world, is hypersensitive to salt stress, particularly to the salt contained Cl". The citrus plants could accumulate high concentration of Na+and Cl-under salinity, which inhibit leaf photosynthesis, retard plant growth, and finally reduce yield and fruit quality. Previous studies on salt stress in citrus mainly focused on the rootstock, and fewer studies have been done on cultivars grafted on same rootstock. In addition, although Cl-transport plays an important role in citrus response to salinity, studies on the genes involved in Cl-transport are relative lacking. In the present study, we compared the difference in physiological responses of four common citrus cultivars under various NaCl concentrations and analyzed expression of four genes involved in Cl" transport in these salt-treated plants. In addition, two of the four genes, PtrCLC and PtrCCC, were isolated from trifoliate orange. Furthermore, the PtrCLC and PtrCCC were over-expressed in model plants to identify their possible functions in Cl" homeostasis. Responses of the transgenic and non-transgenic plants to salinity were then compared. The main results of this study are as follow:
     1. To compare the different responses to salt stress of citrus, four common cultivars belonging to sweet oranges (Newhall and Lane late) and loose-skin mandarins (E-gan No.l and Guoqing No.l) were grafted on trifoliate orange and exposed to0,30,60or90mmol/L NaCl for two months. Results showed that the NaCl stress induced less reduction in dry weight, leaf area, and photosynthetic rate in loose-skin mandarins than that in sweet oranges. It was further found that, as compared with sweet oranges, the loose-skin mandarins accumulated less Na+and Cl" in leaves while more these ions in their roots. Meanwhile, the changes in main nutrient contents varied among the salt-treated cultivars, and loose-skin mandarins showed less decreases in leaf Mg and Ca than those in sweet oranges.
     2. A putative CLC encoding gene, PtrCLC, was isolated from trifoliate orange using homologous cloning. The PtrCLC contained an ORF of2,367bp, encoding a protein of788amino acids. The deduced amino acids of PtrCLC shared high identity with other CLC-like sequences, which also contained ten transmembrane regions (TMs) and two cystathionine beta-synthase (CBS) domains. Real-time PCR analysis revealed that the PtrCLC gene expressed in the leaves and roots of trifoliate orange was up-regulated by ABA,4℃and NaCl. Transformation of Arabidopsis AtCLCc mutant clcc with35S:: PtrCLC improved the seed germination of transgenic plants under salinity. In addition, the reduction in fresh weight, electrolyte leakage and chlorophyll content was lower in the transgenic seedlings than that in mutant or wild-type at200mmol/L NaCl treatment. This was further supported by the observation that the total Cl" accumulated in the roots and shoots was lower in transgenic plants than that in mutant or wild-type.
     3. To obtain all CLC sequences in citrus, the PtrCLC were subjected to the orange genome database, which resulted in six putative CLC sequences. The other five CLCs were isolated from trifoliate orange. The six predicted proteins (PtrCLC1-6) had similar amino acids length, ranging from748to798, but they shared low sequence identity. Phylogenetic analysis revealed that the PtrCLCs were classified into two separate subgroup, PtrCLC4and PtrCLC6were more closely related to bacterial CLCs. In EcCLCA, the amino acids (S107, E148and E203) of the selective filter are involved in the interaction with Cl-. Comparison with EcCLCA revealed that the equivalent position of S107was P177in PtrCLCl, position of E148was A213in PtrCLC3, and position of E203was T260in PtrCLC4and S295in PtrCLC6, respectively. Real-time PCR analysis showed that PtrCLCs, particularly PtrCLC6, preferentially expressed in leaves of trifoliate orange. In addition, we analyzed the expression profiles of PtrCLCs in plants under nitrogen deficiency, NaCl and ABA treatments. Results showed that nitrogen deficiency inhibited expression of PtrCLCs, among which only the PtrCLCl reverted to the basal level when2mmol/L NO3-supplemented. In contrast, NaCl stress profoundly induced expression of the PtrCLCs particularly the PtrCLC2and PtrCLC4, both were also up-regulated by ABA treatment.
     4. A putative CCC encoding gene, PtrCCC, was isolated from trifoliate orange using homologous cloning. The PtrCCC was3,438bp long with an ORF of2,943bp, encoding a protein of980amino acids. The protein product was predicted to have11TMs. Phylogenetic tree revealed that PtrCCC was closely related to its counterparts in animal KCC transporters. Real-time PCR analysis revealed that PtrCCC preferentially expressed in tender tissues of trifoliate orange, such as leaf tip and root tip. In addition, its expression was up-regulated by KCl stress. PtrCCC was then over-expressed in wild-type tobacco to identify the gene function. Results showed that, under NaCl, KCl and NaCl+KCl stresses, the PtrCCC-overexpressing lines exhibited better growth phenotype than WT plants, which also had less reductions in root and shoot dry mass than that in WT under these salt stresses particularly under the KCl stress.
引文
1.陈亚华,沈振国,刘友良,陈梅.NaCl胁迫下棉花幼苗的离子平衡.棉花学报,2001,13:225-229.
    2.陈竹生,聂华堂,计玉,甘俊新,吴云伦.柑桔种质的耐盐性鉴定.园艺学报,1992,19:289-295.
    3.戴高兴,彭克勤,皮灿辉.钙对植物耐盐性的影响.中国农学通报,2003,19:97-101.
    4.邓秀新.国内外柑橘产业发展趋势与柑橘优势区域规划.广西园艺,2004,1,5:6-10.
    5.何劲,祁春节.中外柑橘产业发展模式的比较与借鉴.经济纵横,2010,2:110-113.
    6.江香梅,黄敏仁,王明庥.植物甜菜碱合成途径及基因工程研究进展.中国生物工程杂志,2002,22:49-56.
    7.李合生.植物生理生化实验原理和技术.北京高等教育出版社.2000
    8.刘爱荣,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用.植物生理与分子生物学学报,2005,31:389-395.
    9.刘友良,毛才良,汪良驹.植物耐盐性研究进展.植物生理学通讯,1987,4:1-7.
    10.马翠兰,刘星辉,陈中海.果树对盐胁迫的反应及耐盐性鉴定的研究进展.福建农业大学学报,2000,29:161-166.
    11.孙芳,夏新莉,尹伟伦.逆境胁迫下ABA与钙信号转导途径之间的相互调控机制.基因组学与应用生物学,2009,28:391-397.
    12.伍应保,於丙军.栽培大豆和野生大豆亲本及其杂交后代幼苗Cl-通道基因表达及其与耐氯性的关系.南京农业大学学报,2009,32:67-71.
    13.杨成龙,段瑞军,李瑞梅,胡新文,符少萍,郭建春.盐生植物海马齿耐盐的生理特性.生态学报,2010,30:4617-4627.
    14.於丙军,刘友良.植物中的氯、氯通道和耐氯性.植物学通报,2004,21:402-410.
    15.朱虹,祖元刚,王文杰,阎永庆.逆境胁迫条件下脯氨酸对植物生长的影响.东北林业大学学报,2009,37:86-89.
    16. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van der Straeten D, Peng JR,Harberd NP. Integration of plant responses to environmentally activated phytohormonal signals. Science,2006,311:91-94.
    17. Adragna NC, Fulvio MD, Lauf PK. Regulation of K-Cl cotransport:from function to genes. The Journal of Membrane Biology,2004,201:109-137.
    18. Ali Z, Park HC, Ali A, Oh DH, Aman R, Kropornicka A, Hong H, Choi W, Chung WS, Kim WY, Bressan RA, Bohnert HJ, Lee SY, Yun DJ. TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+specificity in the sresence of NaCl. Plant Physiology,2012,158:1463-1474.
    19. Almansa MS, Hernandez JA, Jimenez A, Botella MA, Sevilla F. Effect of salt stress on the superoxide dismutase activity in leaves of Citrus limonum in different rootstock-scion combinations. Biologia Plantarum,2002,45:545-549.
    20. Aloni R, Schwalm K, Langhans M, Ullrich C. Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta,2003,216:841-853.
    21. Al-Yassin A. Influcence of salinity on citrus:a review paper. Journal of Central European Agriculture,2004,5:263-272.
    22. Arbona V, Flors V, Jacas J, Garcia-Agustin P, Gomez-Cadenas A. Enzymatic and non-enzymatic antioxidant responses of carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant and Cell Physiology,2003,44:388-394.
    23. Ardie SW, Liu SK, Takano T. Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Reports,2010,29:865-874.
    24. Ardie SW, Xie LN, Takahashi R, Liu SK, Takano T. Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. Journal of Experimental Botany,2009,60:3491-3502.
    25. Aroca R, Porcel R, Ruiz-Lozano JM. Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany,2012,63:43-57.
    26. Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany,2007,59:206-216.
    27. Ashraf M, Harris PJC. Potential biochemical indicators of salinity tolerance in plants. Plant Science,2004,166:3-16.
    28. Aziz I, Khan MA. Effect of seawater on the growth, ion content and water potential of Rhizophora mucronata Lam. Journal of Plant Research,2001,114:369-373.
    29. Baki GKA-E, Siefritz F, Man HM, Weiner H, Kaldenhoff R, Kaiser WM. Nitrate reductase in Zea mays L. under salinity. Plant, Cell and Environment,2000,23: 515-521.
    30. Banuls J, Primo-Millo E. Effects of chloride and sodium on gas exchange parameters and water relations of Citrus plants. Physiologia Plantarum,1992,86:115-123.
    31. Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse JM, Gambale F, Thomine S, Wege S. Anion channels/transporters in plants:from molecular bases to regulatory networks. Annual Review of Plant Biology,2011,62:25-51.
    32. Bergsdorf EY, Zdebik AA, Jentsch TJ. Residues important for nitrate/proton coupling in plant and mammalian CLC transporters. Journal of Biological Chemistry,2008, 284:11184-11193.
    33. Blaesse P, Airaksinen MS, Rivera CKaila K. Cation-chloride cotransporters and neuronal function. Neuron,2009,61:820-838.
    34. Britto D, Ruth T, Lapi S, Kronzucker H. Cellular and whole-plant chloride dynamics in barley:insights into chloride-nitrogen interactions and salinity responses. Planta, 2004,218:615-622.
    35. Brumos J, Colmenero-Flores JM, Conesa A, Izquierdo P, Sanchez G, Iglesias DJ, Lopez-Climent MF, Gomez-Cadenas A, Talon M. Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive citrusrootstocks. Functional and Integrative Genomics,2009,9: 293-309.
    36. Brumos J, Talon M, Bouhlal R, Colmenero-Flores JM. Cl- homeostasis in includer and excluder citrus rootstocks:transport mechanisms and identification of candidate genes. Plant Cell and Environment,2010,33:2012-2027.
    37. Cerezo M, Garcia-Agustin P, Serna MD, Primo-Millo E. Kinetics of nitrate uptake by Citrus seedlings and inhibitory effects of salinity. Plant Science,1997,126:105-112.
    38. Chatzissavvidis C, Papadakis I, Therios I. Effect of calcium on the ion status and growth performance of a citrus rootstock grown under NaCl stress. Soil Science and Plant Nutrition,2008,54:910-915.
    39. Chen H, Jiang JG. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews,2010,18:309-319.
    40. Chen WR, He ZLL, Yang XE, Mishra S, Stoffella PJ. Chloride nutrition of higher plants:progress and perspectives Journal of Plant Nutrition,2010,33:943-952.
    41. Cheng SH, Willmann MR, Chen HC, Sheen J. Calcium signaling through protein kinases:the Arabidopsis Calcium-dependent protein kinase gene family. Plant Physiology,2002,129:469-485.
    42. Cherel I. Regulation of K+ channel activities in plants:from physiological to molecular aspects. Journal of Experimental Botany,2004,55:337-351.
    43. Chrispeels MJ, Crawford NM, Schroeder JI. Proteins for transport of water and mineral nutrients across the membranes of plant cells. The Plant Cell,1999,11: 661-675.
    44. Clough SJ, Bent AF. Floral dip:a simplified method forAgrobacterium-modiated transformation oUrabidopsis thaliana. The Plant Journal,1998,16:735-743.
    45. Colmenero-Flores JM, Martinez G, Gamba G, Vazquez N, Iglesias DJ, Brumos J, Talon M. Identification and functional characterization of cation-chloride cotransporters in plants. The Plant Journal,2007,50:278-292.
    46. Conde A, Silva P, Agasse A, Conde C, Geros H. Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea europaea under salt and osmotic Stresses. Plant and Cell Physiology,2011,52:1766-1775.
    47. Corratge-Faillie C, Jabnoune M, Zimmermann S, Very AA, Fizames C, Sentenac H. Potassium and sodium transport in non-animal cells:the Trk/Ktr/HKT transporter family. Cellular And Molecular Life Sciences,2010,67:2511-2532.
    48. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid:emergence of a core signaling network. Annual Review of Plant Biology,2010,61:651-679.
    49. Dammann C, Ichida A, Hong B, Romanowsky SM, Hrabak EM, Harmon AC, Pickard BG, Harper JF. Subcellular targeting of nine calcium-dependent protein pinase isoforms from Arabidopsis. Plant Physiology,2003,132:1840-1848.
    50. Davenport RJ, Munoz-Mayor A, Jha D, Essah PA, Rus ANA, Tester M. The Na+ transporter AtHKT1:1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant, Cell and Environment,2007,30:497-507.
    51. De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature,2006,442:939-942.
    52. De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H. CLC-mediated anion transport in plant cells. Philosophical Transactions of the Royal Society B-Biological Sciences,2009,364:195-201.
    53. De Angeli A, Thomine S, Frachisse JM, Ephritikhine G, Gambale F, Barbier-Brygoo H. Anion channels and transporters in plant cell membranes. Febs Letters,2007,581: 2367-2374.
    54. De Azevedo Neto AD, Prisco JT, Eneas-Filho J, Abreu CEBd, Gomes-Filho E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany,2006,56:87-94.
    55. Diedhiou C, Golldack D. Salt-dependent regulation of chloride channel transcripts in rice. Plant Science,2005,170:793-800.
    56. Ding XD, Tian CY, Zhang SR, Song J, Zhang FS, Mi GH, Feng G. Effects of NO3--N on the growth and salinity tolerance of Tamarix laxa Willd. Plant and Soil,2010,331: 57-67.
    57. Dombrowski JE, Martin RC. Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum. Journal of Plant Physiology,2012,169:915-919.
    58. Dulormne M, Musseau O, Muller F, Toribio A, Ba A. Effects of NaCl on growth, water status, N2 fixation, and ion distribution in Pterocarpus officinalis seedlings. Plant and Soil,2010,327:23-34.
    59. Dutzler R. The ClC family of chloride channels and transporters. Current Opinion in Structural Biology,2006,16:439-446.
    60. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 Areveals the molecular basis of anion selectivity. Nature, 2002,415:287-294.
    61. Elvington SM, Liu CW, Maduke MC. Substrate-driven conformational changes in CIC-ecl observed by fluorine NMR. The Embo Journal,2009,28:3090-3102.
    62. Estan MT, Martinez-Rodriguez MM, Perez-Alfocea F, Flowers TJ, Bolarin MC. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of Experimental Botany,2005,56:703-712.
    63. Flowers T, Yeo A. Ion relations of plants under drought and salinity. Functional Plant Biology,1986,13:75-91.
    64. Flowers TJ, Colmer TD. Salinity tolerance in halophytes. New Phytologist,2008,179: 945-963.
    65. Fricke W, Leigh RA, Tomos AD. The intercellular distribution of vacuolar solutes in the epidermis and mesophyll of barley leaves changes in response to NaCl. Journal of Experimental Botany,1996,47:1413-1426.
    66. Gamba G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiological Reviews,2005,85:423-493.
    67. Gambale F, Uozumi N. Properties of shaker-type potassium channels in higher plants. The Journal of Membrane Biology,2006,210:1-19.
    68. Garcia-Legaz MF, Ortiz JM, Garci-Lidon A, Cerda A. Effect of salinity on growth, ion content and CO2 assimilation rate in lemon varieties on different rootstocks. Physiologia Plantarum,1993,89:427-432.
    69. Garcia-Sanchez F, Jifon JL, Carvajal M, Syvertsen JP. Gas exchange, chlorophyll and nutrient contents in relation to Na+and Cl" accumulation in 'Sunburst' mandarin grafted on different rootstocks. Plant Science,2002,162:705-712.
    70. Gaxiola RA, Yuan DS, Klausner RD, Fink GR. The yeast CLC chloride channel functions in cation homeostasis. Proceedings of the National Academy of Sciences, 1998,95:4046-4050.
    71. Geelen D, Lurin C, Bouchez D, Frachisse JM, Lelievre F, Courtial B, Barbier-Brygoo H, Maurel C. Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. The Plant Journal,2000,21: 259-267.
    72. Gene Y, Tester M, McDonald GK. Calcium requirement of wheat in saline and non-saline conditions. Plant and Soil,2010,327:331-345.
    73. Gilliham M, Tester M. The regulation of anion loading to the maize root xylem. Plant Physiology,2005,137:819-828.
    74. Gimeno V, Syvertsen J, Rubio F, Martinez V, Garcia-Sanchez F. Growth and mineral nutrition are affected by substrate type and salt stress in seedlings of two contrasting citrus rootstocks. Journal of Plant Nutrition,2010,33:1435-1447.
    75. Gomez-Cadenas A, Arbona V, Jacas J, Primo-Millo E, Talon M. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. Journal of Plant Growth Regulation,2002,21:234-240.
    76. Gong HJ, Blackmore D, Clingeleffer P, Sykes S, Jha D, Tester M, Walker R. Contrast in chloride exclusion between two grapevine genotypes and its variation in their hybrid progeny. Journal of Experimental Botany,2011,62:989-999.
    77. Grattan SR, Grieve CM. Mineral element acquisition and growth response of plants grown in saline environments. Agriculture, Ecosystems and Environment,1992,38: 275-300.
    78. Grewal HS. Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity. Agricultural Water Management,2010,97:148-156.
    79. Group M, Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, et al. Mitogen-activated protein kinase cascades in plants:a new nomenclature. Trends in Plant Science,2002,7:301-308.
    80. Gurtovenko AA, Vattulainen I. Intrinsic potential of cell membranes:opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution. The Journal of Physical Chemistry B,2009,113:7194-7198.
    81. Hadi MR, Karimi N. The role of calcium in plants salt tolerance. Journal of Plant Nutrition,2012,35:2037-2054.
    82. Harada H, Kuromori T, Hirayama T, Shinozaki K, Leigh RA. Quantitative trait loci analysis of nitrate storage in Arabidopsis leading to an investigation of the contribution of the anion channel gene, AtCLC-c, to variation in nitrate levels. Journal of Experimental Botany,2004,55:2005-2014.
    83. Harling H, Czaja I, Schell J, Walden R. A plant cation-chloride cotransporter promoting auxin-independent tobacco protoplast division. Embo Journal,1997,16: 5855-5866.
    84. Hartzell J, Jordan T. Shifts in the relative availability of phosphorus and nitrogen along estuarine salinity gradients. Biogeochemistry,2012,107:489-500.
    85. Hasegawa PM, Bressan RA, Zhu JK. Bohnert HJ. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:463-499.
    86. Hassell RL, Memmott F, Liere DG Grafting methods for watermelon production. Hortscience,2008,43:1677-1679.
    87. Hassine AB, Lutts S. Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. Journal of Plant Physiology,2010,167:1448-1456.
    88. Hauser F, Waadt R, Schroeder JulianI. Evolution of abscisic acid synthesis and signaling mechanisms. Current Biology,2011,21:R346-R355.
    89. He C. Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photo synthetic performance under salt conditions and increases fiber yield in the field. Plant and Cell Physiology,2005,46:1848-1854.
    90. He CM, Yang AF, Zhang WW, Gao Q, Zhang JR. Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis. Plant Cell, Tissue and Organ Culture,2010,101:65-78.
    91. He Y, Zhu ZJ, Yang J, Ni XL, Zhu B. Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany,2009,66:270-278.
    92. Hebeisen S, Heidtmann H, Cosmelli D, Gonzalez C, Poser B, Latorre R, Alvarez O, Fahlke C. Anion permeation in human ClC-4 channels. Biophysical Journal,2003,84: 2306-2318.
    93. Heinrich M, Baldwin IT, Wu J. Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding-and specialist lepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata. Journal of Experimental Botany,2011, 62:4355-4365.
    94. Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era:past, present and future. The Plant Journal,2010,61:1041-1052.
    95. Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savoure A, Jaoua S. Overexpression of △1- pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science,2005,169: 746-752.
    96. Hoekenga OA, Maron LG, Pineros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV. AtALMTl, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences,2006,103:9738-9743.
    97. Hong CY, Chao YY, Yang MY, Cho SC, Kao CH. Na+ but not Cl-or osmotic stress is involved in NaCl-induced expression of Glutathione reductase in roots of rice seedlings. Journal of Plant Physiology,2009,166:1598-1606.
    98. Hu L, Lu H, Liu Q, Chen X, Jiang X. Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiology,2005,25:1273-1281.
    99. Hu Y, Schmidhalter U. Drought and salinity:A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science,2005,168:541-549.
    100. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF. Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports,2012,39:969-987.
    101. Isayenkov S, Isner JC, Maathuis FJM. Vacuolar ion channels:Roles in plant nutrition and signalling. Febs Letters,2010,584:1982-1988.
    102. Iyer R, Iverson TM, Accardi A, Miller C. A biological role for prokaryotic C1C chloride channels. Nature,2002,419:715-718.
    103.Jagendorf AT, Takabe T. Inducers of glycinebetaine synthesis in barley. Plant Physiology,2001,127:1827-1835.
    104. James RA, Davenport RJ, Munns R. Physiological characterization of two genes for Na+exclusion in durum wheat, Naxl and Nax2. Plant Physiology,2006,142: 1537-1547.
    105. Jang IC. Expression of a bifunctional fusion of the Escherichia co/igenes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiology,2003,131:516-524.
    106.Jentsch TJ, Neagoe I, Scheel O. CLC chloride channels and transporters. Current Opinion in Neurobiology,2005,15:319-325.
    107. Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiological Reviews,2002,82:503-568.
    108. Jentsch TJ, Steinmeyer K, Schwarz G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature,1990, 348:510-514.
    109. Jeschke WD, Pate JS. Cation and chloride partitioning through xylem and phloem within the whole plant of Ricinus communis L. under conditions of salt stress. Journal of Experimental Botany,1991,42:1105-1116.
    110.Jiang F, Hartung W. Long-distance signalling of abscisic acid (ABA):the factors regulating the intensity of the ABA signal. Journal of Experimental Botany,2008,59: 37-43.
    111.Jossier M, Kroniewicz L, Dalmas F, Thiec LD, Ephritikhine G, Thomine S, Barbier-Brygoo H, Vavasseur A, Filleur S, Leonhardt N. The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. The Plant Journal,2010,64:563-576.
    112.Kader MA, Seidel T, Golldack D, Lindberg S. Expressions of OsHKTl, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. Journal of Experimental Botany,2006, 57:4257-4268.
    113. Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP, Mount DB. Roles of the cation-chloride cotransporters in neurological disease. Nature Clinical Practice Neurology,2008,4:490-503.
    114.Karimi E, Abdolzadeh A, Saideghipour HR. Increasing salt tolerance in Olive, Olea europaea L. plants by supplemental potassium nutrition involves changes in ion accumulation and anatomical attributes. International Journal of Plant Production, 2009,3:49-60.
    115.Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ. Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell,2001,13:889-905.
    116.Kholova J, Sairam R, Meena R. Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiologiae Plantarum,2010,32:477-486.
    117. Kim J. Perception, transduction, and networks in cold signaling. Journal of Plant Biology,2007,50:139-147.
    118.Kishitani S, Takanami T, Suzuki M, Oikawa M, Yokoi S, Ishitani M, Alvarez-Nakase AM, Takabe T. Compatibility of glycinebetaine in rice plants:evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant, Cell and Environment,2000,23:107-114.
    119. Kollist H, Jossier M, Laanemets K, Thomine S. Anion channels in plant cells. Febs Journal,2011,278:4277-4292.
    120. Kong XQ, Gao XH, Sun W, An J, Zhao YX, Zhang H. Cloning and functional characterization of a cation-chloride cotransporter gene OsCCCl. Plant Molecular Biology,2011,75:567-578.
    121.Kreps JA. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology,2002,130:2129-2141.
    122.Kronzucker HJ, Britto DT. Sodium transport in plants:a critical review. New Phytologist,2011,189:54-81.
    123.Kurban H, Saneoka H, Nehira K, Adilla R, Premachandra GS, Fujita K. Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagipseudoalhagi (Bieb.). Soil Science and Plant Nutrition,1999,45:851-862.
    124.Lauchli A, James RA, Huang CX, McCully M, Munns R. Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant, Cell and Environment,2008,31:1565-1574.
    125.Lebaudy A, Very AA, Sentenac H. K+channel activity in plants:Genes, regulations and functions. Febs Letters,2007,581:2357-2366.
    126. Li Q, Cai S, Mo C, Chu B, Peng L, Yang F. Toxic effects of heavy metals and their accumulation in vegetables grown in a saline soil. Ecotoxicology and Environmental Safety,2010,73:84-88.
    127. Li WYF, Wong FL, Tsai SN, Phang TH, Shao GH, Lam HM. Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant Cell and Environment,2006,29:1122-1137.
    128. Li X, Zhou J, Chen Z, Chen S, Zhu F, Zhou L. Long-term expressional changes of Na+-K+-Cl- cotransporter 1 (NKCC1) and K+-Cl- cotransporter 2 (KCC2) in CAI region of hippocampus following lithium-pilocarpine induced status epilepticus (PISE). Brain Research,2008,1221:141-146.
    129. Liang Y. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil,1999,209:217-224.
    130. Liu H, Tang RJ, Zhang Y, Wang CT, Lv QD, Gao XS, Li WB, Zhang HX. AtNHX3 is a vacuolar K+/H+ antiporter required for low-potassium tolerance in Arabidopsis thaliana. Plant Cell and Environment,2010,33:1989-1999.
    131. Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK. The Arabidopsis thalianaSOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences,2000,97:3730-3734.
    132. Lloyd J, Syvertsen JP, Kriedemann PE. Salinity Effects of leaf water relations and gas exchange of 'Valencia' orange, Citrus sinensis (L.) Osbeck, on rootstocks with different salt exclusion characteristics. Functional Plant Biology,1987,14:605-617.
    133.Lohaus G, Hussmann M, Pennewiss K, Schneider H, Zhu JJ, Sattelmacher B. Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching. Journal of Experimental Botany,2000,51:1721-1732.
    134.Lopez-Climent MF, Arbona V, Perez-Clemente RM, Gomez-Cadenas A. Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environmental and Experimental Botany,2008,62:176-184.
    135.Lu C, Qiu N, Lu Q, Wang B, Kuang T. Does salt stress lead to increased susceptibility of photosystem Ⅱ to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Science, 2002,163:1063-1068.
    136. Lurin C, Geelen D, Barbier-Brygoo H, Guern J, Maurel C. Cloning and functional expression of a plant voltage-dependent chloride channel. The Plant Cell,1996,8: 701-711.
    137. Lv QD, Tang RJ, Liu H, Gao XS, Li YZ, Zheng HQ, Zhang HX. Cloning and molecular analyses of the Arabidopsis thaliana chloride channel gene family. Plant Science,2009,176:650-661.
    138.Maas EV. Salinity and citriculture. Tree Physiology,1993,12:195-216.
    139.Mahajan S, Tuteja N. Cold, salinity and drought stresses:An overview. Archives of Biochemistry and Biophysics,2005,444:139-158.
    140. Maria de Lourdes Oliveira Otoch, Menezes Sobreira AC, Farias de Aragao ME, Orellano EG, da Guia Silva Lima M, Fernandes de Melo D. Salt modulation of vacuolar H+-ATPase and H+-Pyrophosphatase activities in Vigna unguiculata. Journal of Plant Physiology,2001,158:545-551.
    141.Marmagne A, Vinauger-Douard M, Monachello D, de Longevialle AF, Charon C, Allot M, Rappaport F, Wollman FA, Barbier-Brygoo H, Ephritikhine G. Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively. Journal of Experimental Botany,2007,58:3385-3393.
    142.Matsumoto TK. An osmotically induced cytosolic Ca2+transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae. Journal of Biological Chemistry,2002,277:33075-33080.
    143.Matulef K, Maduke M. The CLC 'chloride channel' family:revelations from prokaryotes. Molecular Membrane Biology,2007,24:342-350.
    144.Melgar JC, Syvertsen JP, Martinez V, Garcia-Sanchez F. Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity. Biologia Plantarum,2008,52:385-390.
    145.Meng CM, Zhang TZ, Guo WZ. Molecular cloning and characterization of a novel Gossypium hirsutum L. bHLH gene in response to ABA and drought Stresses. Plant Molecular Biology Reporter,2009,27:381-387.
    146.Mickelbart MV, Melser S, Arpaia ML. Salinity-induced changes in ion concentrations of 'Hass' avocado trees on three rootstocks. Journal of Plant Nutrition, 2007,30:105-122.
    147. Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment,2010,33:453-467.
    148.Hechenberger M, Schwappach B,Fischer WN, Frommer WB, Jentsch TJ, Steinmeyer K. A family of putative chloride channels from Arabidopsisand functional complementation of a yeast strain with a CLC gene disruption. Journal of Biological Chemistry,1996,271:33632-33638.
    149.Mishra AK, Singh VP. A review of drought concepts. Journal of Hydrology,2010, 391:202-216.
    150.Misra AN, Sahu SM, Misra M, Singh P, Meera I, Das N, Kar M, Sahu P. Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biologia Plantarum,1997,39:257-262.
    151.Monachello D, Allot M, Oliva S, Krapp A, Daniel-Vedele F, Barbier-Brygoo H, Ephritikhine G Two anion transporters AtCICa and AtClCe fulfil interconnecting but not redundant roles in nitrate assimilation pathways. New Phytologist,2009,183: 88-94.
    152.Moya JL, Gomez-Cadenas A, Primo-Millo E, Talon M. Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. Journal of Experimental Botany,2003,54:825-833.
    153.Moya JL, Primo-Millo E, Talon M. Morphological factors determining salt tolerance in citrus seedlings:the shoot to root ratio modulates passive root uptake of chloride ions and their accumulation in leaves. Plant, Cell and Environment,1999,22: 1425-1433.
    154.Munnik T, Ligterink W, Meskiene I, Calderini O, Beyerly J, Musgrave A, Hirt H. Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. The Plant Journal,1999,20:381-388.
    155.Munns R. Comparative physiology of salt and water stress. Plant Cell and Environment,2002,25:239-250.
    156.Munns R. Genes and salt tolerance:bringing them together. New Phytologist,2005, 167:645-663.
    157. Munns R, James RA, Lauchli A. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany,2006,57:1025-1043.
    158. Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology,2008,59:651-681.
    159. Nakamura A, Fukuda A, Sakai S, Tanaka Y. Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.). Plant and Cell Physiology,2006,47:32-42.
    160.Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature,2008,452:483-486.
    161.Nieves M, Cerda A, Botella M. Salt tolerance of two lemon scions measured by leaf chloride and sodium accumulation. Journal of Plant Nutrition,1991,14:623-636.
    162.Nilius B, Droogmans G. Amazing chloride channels:an overview. Acta Physiologica Scandinavica,2003,177:119-147.
    163. Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. Febs Letters,2002,532:279-282.
    164. Osakabe Y, Kajita S, Osakabe K. Genetic engineering of woody plants:current and future targets in a stressful environment. Physiologia Plantarum,2011,142:105-117.
    165. Osakabe Y, Kawaoka A, Nishikubo N, Osakabe K. Responses to environmental stresses in woody plants:key to survive and longevity. Journal of Plant Research, 2012,125:1-10.
    166.Parida AK, Das AB. Salt tolerance and salinity effects on plants:a review. Ecotoxicology and Environmental Safety,2005,60:324-349.
    167.Parida AK, Jha B. Salt tolerance mechanisms in mangroves:a review. Trees-Structure and Function,2010,24:199-217.
    168. Perez-Tornero O, Tallon CI, Porras I, Navarro JM. Physiological and growth changes in micropropagated Citrus macrophylla explants due to salinity. Journal of Plant Physiology,2009,166:1923-1933.
    169.Peuke AD. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis. Journal of Experimental Botany,2010, 61:635-655.
    170.Pineros MA, Cancado GMA, Kochian LV. Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMTl) revealed by electrophysiological characterization in Xenopus oocytes:functional and structural implications. Plant Physiology,2008,147:2131-2146.
    171.Pitzschke A, Schikora A, Hirt H. MAPK cascade signalling networks in plant defence. Current Opinion In Plant Biology,2009,12:421-426.
    172.Pusch M. Structural insights intochloride and proton-mediated gating of CLC chloride channels. Biochemistry,2004,43:1135-1144.
    173.Rahnama A, Poustini K, Tavakkol-Afshari R, Ahmadi A, Alizadeh H. Growth properties and ion distribution in different tissues of bread wheat genotypes (Triticum aestivum L.) differing in salt solerance. Journal of Agronomy and Crop Science,2011, 197:21-30.
    174.Rahnama H, Vakilian H, Fahimi H, Ghareyazie B. Enhanced salt stress tolerance in transgenic potato plants(Solanum tuberosum L.) expressing a bacterial mtlD gene. Acta Physiologiae Plantarum,2011,33:1521-1532.
    175.Rathinasabapathi B, Burnet M, Russell BL, Gage DA, Liao PC, Nye GJ, Scott P, Golbeck JH, Hanson AD. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants:Prosthetic group characterization and cDNA cloning. Proceedings of the National Academy of Sciences,1997,94:3454-3458.
    176. Ray S, Agarwal P, Arora R, Kapoor S, Tyagi A. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Molecular Genetics and Genomics,2007,278:493-505.
    177. Roberts SK. Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytologist,2006,169:647-666.
    178. Robinson NC, Huang P, Kaetzel MA, Lamb FS, Nelson DJ. Identification of an N-terminal amino acid of the CLC-3 chloride channel critical in phosphorylation-dependent activation of a CaMKII-activated chloride current. The Journal of Physiology,2004,556:353-368.
    179. Ruiz D, Martinez V, Cerda A. Citrus response to salinity:growth and nutrient uptake. Tree Physiology,1997,17:141-150.
    180. Rus A, Lee BH, Munoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM. AtHKT1 facilitates Na+ omeostasis and K+ nutrition in planta. Plant Physiology,2004,136:2500-2511.
    181. Sahi C, Singh A, Blumwald E, Grover A. Beyond osmolytes and transporters:novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiologia Plantarum,2006,127:1-9.
    182. Sairam RK, Srivastava GC. Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science,2002,162:897-904.
    183. Sairam RK, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Current Science,2004,86:407-421.
    184. Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress:clues from transgenic plants. Plant, Cell and Environment,2002,25:163-171.
    185.Sanchez-Barrena MJ, Martinez-Ripoll M, Zhu JK, Albert A. The structure of the Arabidopsis thaliana SOS3:molecular mechanism of sensing calcium for salt stress response. Journal of Molecular Biology,2005,345:1253-1264.
    186. Santa-Cruz A, Martinez-Rodriguez MM, Perez-Alfocea F, Romero-Aranda R, Bolarin MC. The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Science,2002,162:825-831.
    187. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal,2004,37:645-653.
    188. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature Protocols,2008,3:1101-1108.
    189. Shabala S, Shabala L, Volkenburgh EV. Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Functional Plant Biology,2003,30: 507-514.
    190. Sheng O, Zhou GF, Wei QJ, Peng SA,Deng XX. Effects of excess boron on growth, gas exchange, and boron status of four orange scion-rootstock combinations. Journal of Plant Nutrition and Soil Science,2010,173:469-476.
    191. Shi H, Quintero FJ, Pardo JM, Zhu JK. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+transport in plants. The Plant Cell,2002, 14:465-477.
    192. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany,2002,53:1305-1319.
    193.Shimada TL, Shimada T, Hara-Nishimura I. A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. The Plant Journal,2010,61:519-528.
    194. Shulaev V, Cortes D, Miller G, Mittler R. Metabolomics for plant stress response. Physiologia Plantarum,2008,132:199-208.
    195.Siringam K, Juntawong N, Chaum S, Kirdmanee C. Relationships between sodium ion accumulation and physiological characteristics in rice (pryza sativa L. spp. indica) seedlings grown under iso-osmotic salinity stress. Pakistan Journal of Botany,2009, 41:1837-1850.
    196. Song CP, Guo Y, Qiu Q, Lambert G, Galbraith DW, Jagendorf A, Zhu JK. A probable Na+/H+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences,2004,101:10211-10216.
    197.Sotiropoulos TED, Kortessa N. Response to increasing rates of boron and NaCl on shoot proliferation and chemical composition of in vitro kiwifruit shoot cultures. Plant Cell, Tissue and Organ Culture,2005,79:285-289.
    198.Stauber T, Weinert S, Jentsch TJ. Cell biology and physiology of CLC chloride channels and transporters. Comprehensive Physiology,2012,2:1701-1744.
    199. Storey R, Schachtman DP, Thomas MR. Root structure and cellular chloride, sodium and potassium distribution in salinized grapevines. Plant, Cell and Environment, 2003,26:789-800.
    200. Storey R, Walker RR. Citrus and salinity. Scientia Horticulturae,1999,78:39-81.
    201.Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. The Plant Journal,1997,12:557-569.
    202. Sudhir P, Murthy SDS. Effects of salt stress on basic processes of photosynthesis. Photosynthetica,2004,42:481-486.
    203. Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang Z, Song J, Xu Y. NaCl-Induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiology,2009,149: 1141-1153.
    204. Suzuki M, Morita T, Iwamoto T. Diversity of Cl- channels. Cellular and Molecular Life Sciences,2006,63:12-24.
    205. Sykes SR. Chloride and sodium excluding capacities of citrus rootstock germplasm introduced to Australia from the People's Republic of China. Scientia Horticulturae, 2011,128:443-449.
    206. Syvertsen JP, Melgar JC, Garcia-Sanchez F. Salinity tolerance and leaf water use efficiency in Citrus. Journal of the American Society for Horticultural Science,2010, 135:33-39.
    207. Takahashi R, Liu S, Takano T. Cloning and functional comparison of a high-affinity K+transporter gene PhaHKTl of salt-tolerant and salt-sensitive reed plants. Journal of Experimental Botany,2007,58:4387-4395.
    208.Tanou G, Job C, Belghazi M, Molassiotis A, Diamantidis G, Job D. Proteomic signatures uncover hydrogen peroxide and nitric oxide cross-talk signaling network in citrus plants. Journal of Proteome Research,2010,9:5994-6006.
    209. Tarczynski MC, Jensen RG,, Bohnert HJ. Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proceedings of the National Academy of Sciences,1992,89:2600-2604.
    210.Tavakkoli E, Rengasamy P, McDonald GK. High concentrations of Na+and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany,2010,61:4449-4459.
    211.Teakle NL, Flowers TJ, Real D, Colmer TD. Lotus tenuis tolerates the interactive effects of salinity and waterlogging by 'excluding' Na+ and Cl- from the xylem. Journal of Experimental Botany,2007,58:2169-2180.
    212.Teakle NL, Tyerman SD. Mechanisms of Cl- transport contributing to salt tolerance. Plant Cell and Environment,2010,33:566-589.
    213. Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell,2004,15:141-152.
    214. Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany,2003,91:503-527.
    215.Toyoda H, Yamada J, Ueno S, Okabe A, Kato H, Sato K, Hashimoto K, Fukuda A. Differential functional expression of cation-Cl- cotransporter mRNAs (KCC1, KCC2, and NKCC1) in rat trigeminal nervous system. Molecular Brain Research,2005,133: 12-18.
    216.Tregeagle JM, Tisdall JM, Tester M, Walker RR. Cl- uptake, transport and accumulation in grapevine rootstocks of differing capacity for Cl- -exclusion. Functional Plant Biology,2010,37:665-673.
    217.Turkan I, Demiral T. Recent developments in understanding salinity tolerance. Environmental and Experimental Botany,2009,67:2-9.
    218. Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio Q Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder JI, Kangasjarvi J. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature, 2008,452:487-491.
    219.Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu JH. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal,2006,45:523-539.
    220. Vinocur BAltman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology,2005,16:123-132.
    221. Von der Fecht-Bartenbach J, Bogner M, Dynowski M, Ludewig U. CLC-b-mediated NO3-/H+ exchange across the tonoplast of Arabidopsis vacuoles. Plant and Cell Physiology,2010,51:960-968.
    222. Von der Fecht-Bartenbach J, Bogner M, Krebs M, Stierhof YD, Schumacher K, Ludewig U. Function of the anion transporter AtCLC-d in the trans-Golgi network. The Plant Journal,2007,50:466-474.
    223. Wang H, Wu Z, Zhou Y, Han J, Shi D. Effects of salt stress on ion balance and nitrogen metabolism in rice. Plant Soil and Environment,2012,58:62-67.
    224. Wang YY, Hsu PK, Tsay YF. Uptake, allocation and signaling of nitrate. Trends in Plant Science,2012,17:458-467.
    225. Ward JM, Maser P, Schroeder JI. Plant ion channels:gene families, physiology, and functional genomics analyses. Annual Review of Physiology,2009,71:59-82.
    226. Wege S, Jossier M, Filleur S, Thomine S, Barbier-Brygoo H, Gambale F, De Angeli A. The proline 160 in the selectivity filter of the Arabidopsis NO3-/H+ exchanger AtCLCa is essential for nitrate accumulation in planta. The Plant Journal,2010,63: 861-869.
    227. White MM, Miller C. A voltage-gated anion channel from the electric organ of Torpedo californica. Journal of Biological Chemistry,1979,254:10161-10166.
    228. White PJ, Broadley MR. Chloride in soils and its uptake and movement within the plant:A review. Annals of Botany,2001,88:967-988.
    229. Wong TH, Li MW, Yao XQ, Lam HM. The GmCLCl protein from soybean functions as a chloride ion transporter. Journal of Plant Physiology,2013,170:101-104.
    230.Xiong L, Zhu JK. Regulation of abscisic acid biosynthesis. Plant Physiology,2003, 133:29-36.
    231.Xu G, Magen H, Tarchitzky J, Kafkafi U.Advances in chloride nutrition of plants. Advances in Agronomy,1999,68:97-150.
    232. Xu HX, Jiang XY, Zhan KH, Cheng XY, Chen XJ, Pardo JM, Cui DQ. Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Archives of Biochemistry and Biophysics,2008,473:8-15.
    233. Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. Journal of Biological Chemistry,2008,283:26996-27006.
    234. Yang T, Poovaiah BW. Calcium/calmodulin-mediated signal network in plants. Trends in Plant Science,2003,8:505-512.
    235. Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. The Plant Journal,2002,30:529-539.
    236. Younis ME, Hasaneen MNA, Tourky SMN. Plant growth, metabolism and adaptation in relation to stress conditions. XXTV. Salinity-biofertility interactive effects on proline, glycine and various antioxidants in Lactuca sativa. Plant Omics,2009,2: 197-205.
    237. Zekri M. Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Scientia Horticulturae,1991,47:305-315.
    238. Zekri M, Parsons LR. Salinity tolerance of citrus rootstocks:Effects of salt on root and leaf mineral concentrations. Plant and Soil,1992,147:171-181.
    239. Zhang S, Klessig DF. MAPK cascades in plant defense signaling. Trends in Plant Science,2001,6:520-527.
    240. Zhou GA, Qiu LJ. Identification and functional analysis on abiotic stress response of soybean Cl" channel gene GmCLCnt. Agricultural Sciences in China,2010,9: 199-206.
    241. Zhu JK. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology,2002,53:247-273.
    242. Zhu JK. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology,2003,6:441-445.
    243.Zifarelli G, Pusch M. CLC transport proteins in plants. Febs Letters,2010,584: 2122-2127.
    244. Zimmermann S, Sentenac H. Plant ion channels:from molecular structures to physiological functions. Current Opinion In Plant Biology,1999,2:477-482.
    245.Zribi O, Labidi N, Slama I, Debez A, Ksouri R, Rabhi M, Smaoui A, Abdelly C. Alleviation of phosphorus deficiency stress by moderate salinity in the halophyte Hordeum maritimum L. Plant Growth Regulation,2012,66:75-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700