用户名: 密码: 验证码:
星间激光通信终端及其实验室检测平台光学系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光通信具有信息容量大、光学增益高、高度抗干扰和抗截获能力等突出优点,得到了国内外广大关注。激光通信中光学系统支路繁多、波像差要求极高,对光学元件的加工和装调要求非常严格,因此研究合理的光学系统结构,建立像差和通信性能参数之间关系,可以有效指导设计、加工和装调;通信终端通信距离非常远,难以在地面开展行之有效的试验,所以研制终端检测所需的实验室平台和空间通信链路模拟设备是评估终端整体性能的有效途径。
     在不考虑大气、电子学等影响的前提下,本文针对通信终端不同支路的作用特点和探测方式,建立了发射系统单色像差和远场激光能量分布、接收系统单色像差和跟踪精度、接收功率以及通信系统误码率之间的关系,并利用建立的关系分析了单色像差对于指向、跟踪精度和误码率的影响;分析结果表明,慧差和倾斜将严重影响指向和捕获跟踪精度,分别呈三次和线性关系,像差对于误码率的影响和理论误码率大小有关,理论误码率越低,通信终端对光学系统要求越高;通过对IM/DD(Intensity Modulation Direct Detection)和BPSK(Binary Phase ShiftKeying)调制解调方式的分析,指出了基于BPSK相干通信对光学系统波像差要求要高于IM/DD非相干激光通信的依据;通过对不同光束相干外差效率的研究,指出获取较高外差效率时,根据探测器确定相干光束参数的依据。
     根据GEO(Geosynchronous orbit)和地面通信终端的使用要求和特点,提出了基于BPSK调制GEO通信终端的光学系统要求。在该指标下,比较了采用透射、离轴反射、卡式和改进卡式结构设计终端天线时对体积、加工、装调的要求。结果表明改进的卡式结构具有体积小、加工难度低、装配公差松的优点,非常适合于通信终端的应用。采用改进的卡式结构设计了基于BPSK调制的GEO终端光学系统,分析了该光学系统的性能。
     通过对国外激光通信终端实验室测试设备的功能分析,结合通信终端光学系统的特点,提出了测试通信终端所用的实验室检测平台光学系统原理和设计要求,根据光学要求设计了该测试平台,平台采用全反射结构,利用分束器反射和透射相结合的结构消除光学系统的偏振分离,使得平台不仅能测试不同激光波长的终端、又能对不同调制下的终端进行性能评估;平台调试结果表明,平台不能满足指标波像差要求,通过分析平台波像差的特点,提出了采用掩模相位板补偿系统波面的方法,并对补偿效果和可行性进行了分析和实验验证,结果表明该方法稳定可行;根据研制的测试平台,对应的设计了能够模拟空间可变距离光束传输的实验室系统,系统采用全反射级联、物像同时移动实现,结构明确、体积小。精度分析表明在现有工艺下,系统能够保证1%的能量测试精度,满足测试系统要求。
Laser communication Terminals(LCT) have got widespread attention now, duesto its advantages such as huge capacity of information, high optical gain and highanti-interception ability. The optical system of LCT has the characteristics of highimaging quality requirement and multi-channel used, which give a great pressure onoptical manufacture and alignment. As to direct optical design, manufacture andalignment, studying on the relationship between aberration and communicationproperty and developing more reasonable optical structure are very significative.Besides, it’s difficult to promote effective experiment on ground because of the fardistance among the communication LCTs, therefore, developing test platform for LCTand designing the space link models to evaluation LCT in laboratory is veryindispensable.
     Based on different detection model and the function peculiarity of differentchannels, the relationship between primary monochrome aberrations of transmitantenna and far field laser intensity distribution, primary monochrome aberrations ofreceiving terminals and tracking accuracy, receiving power, and bit error rate(BER)were established. The relationship between pointing error, tracking accuracy, BER andaberration were analyzed by numerical method. The results indicate that tilt and comahave a great effect on pointing error and tracking accuracy, liner and cubic curve can stand its relationship, respectively. The effects of aberration to BER were determinedby the ideal BER, the lower BER needs higher requirements of the optical system.Coherent heterodyne detection based on BPSK modulation have rigid requirement onaberration, compared to uncoherent detection based on IM/DD modulation. Theanalysis of heterodyne efficiency with different coherent beam shows that theparameters of the beam rest with the detector parameters and coherent beam styles soas to obtain high heterodyne efficiency.
     On the basis of the GEO-Ground LCT’s working mode and application feature,optical index of GEO LCT based on BPSK modulation were presented. In order todevelop a suitable antenna optical structure, transmission, reflection of off-axis,classical cassegrain and developed cassegrain types were compared upon manufacture,alignment and test. The results states developed cassegrain have the advantages ofsmaller size, easier manufacture and looser tolerance, and is propitious to be used foroptical antenna of inter-satellite communication. Using Zemax software, the opticalsystem was designed with developed cassegrain structure, and its performance werealso discussed.
     According to the analysis of the function and characteristic about laboratory testequipment of LCT at home and aboard, principle and optical requirement of LCT’slab test and link model system were brought forward, and also designed the opticalsystem upon the requirement with reflection structure, the beam splitter’s reflectionand transmission were used to compensated the polarization diverse. The system canbe used to test different LCT that not only different communication wavelength, butdifferent types of modulation. Because of the manufacture levels and highly imagequality demand, the alignment results were not satisfied for the optical requirementsproposed. After analyzed the wavefront’s features, method using mask phase plate tocorrect the wavefront was discussed. The result indicated that mask phase plate canimprove the wavefront to its requirments with practicable process. The space linkmodel was also designed based on the test equipment, the theoretical analysis of thespace link model shows its can model10~3km~10~5km communication link, which can satisfied the most LCT payload used in inter-satellite communication.
引文
[1]姜会林,佟首峰.空间激光通信技术与系统[M].北京:国防工业出版社,2010
    [2] Morio Toyoshima. Comparison of microwave and light wave communicationsystems in space applications[J]. Optical Engineering,2007,46(1):015003-1~015003-7
    [3] Sophocles J. Orfanidis. Electromagnetic Waves and Antennas[M]. New Jersey:Rutgers University,2010
    [4] R. Lange, B. Smutny. Optical inter-satellite links based on homodyne BPSKmodulation: heritage, status and outlook[J]. Proc. of SPIE.2005,5712:1~12
    [5] Olivier Bouchet, Hervé Sizun, Christian Boisrobert, et al. Free-Space OpticsPropagation and Communication[M]. London: ISTE Ltd,2006
    [6] Mark A. Stephen, Anthony W. Yu, Michael, et al. Spaceborne laserdevelopment for future remote sensing applications[J]. Proc. of SPIE,2011,8154(6):815406-1~815406-10
    [7] N. W. Spellmeyer, J. C. Gottschalk, D. O. Caplan.“High-sensitivity40-Gb/sRZ-DPSK with forward error correction,” IEEE Photonics Technology Letters,v.16, no.6, pp.1579-1581, June2004.
    [8] Yoichi Koishi, Yoshiaki Suzuki, Tamaki Takahashi, et al, Research andDevelop-ment of40Gbps Optical Free Space Communication from Satellite/Airplane[N]. IEEE,2011,81~92
    [9] Mark Gregory, Frank Heine, Hartmut. Commercial optical inter-satellitecommu-nication at high data rates [J].Optical Engineering,2012,51(3):031202-1~031202-7
    [10] Special Report: The USA’s Transformational Communications SatelliteSystem (TSAT).htm,2009
    [11]汪清泉.部分相干激光通信性能受大气湍流影响的分析[D].西安:电子科技大学,2011
    [12]李波,王挺峰,田玉珍.激光大气传输湍流扰动仿真技术[J].中国光学,2012,5(3):289~294
    [13] Brian R. Strickland, Michael J. Lavan, Eric Woodbridge, et al. Effects of fogon the bit-error rate of a free-space laser communication system[J]. APPLIEDOPTICS,1999,38(3):424~431
    [14] Yuan Hu, Huilin Jiang, Tuegang Fu. Environmental AdaptabilityAnalysis ofNear Space Laser Communication Optical System[N]. ICOM(IEEE),2012,331~333
    [15] Jennifer C. Ricklin, Frederic M. Davidson. Atmospheric turbulence effects ona partiallycoherent Gaussian beam:implications for free-space lasercommunication [J].OSA,2002,19(9):1794~1801
    [16]马东堂.大气激光通信中的多光束发射和接收技术研究[D].合肥:中国科学技术大学,2004
    [17]王修阁.相干光通信若干关键技术的研究[D].武汉:华中科技大学,2008
    [18]柯熙政,宋鹏,裴国强.无线激光通信中的多孔径接收技术研究[J].光学学报,2011,31(12):1201003-1~1201003-7
    [19]温涛.无线激光通信中ATP关键技术研究[D].合肥:中国科学技术大学,2006
    [20] Chien-chung Chen,Chester S. Gardner. Impact of Random Pointing andTracking Errors on the Design of Coherent and Incoherent OpticalInter-satellite Communication Links[J]. IEEE,1989,37(3):252~260
    [21] Shlomi Arnon, Norman S. Kopeika. Performance limitations of free-spaceoptical communication satellite networks due to vibrations—analog case[J].Opt. Eng.,1997,36(1):175~182
    [22] Shlomi Arnon. Power versus stabilization for laser satellite communication[J].APPLIED OPTICS,1999,38(15):3229~3233
    [23]赵馨,佟首峰,刘云清.基于四像限探测器的光斑检测跟踪技术[J].中国激光,2010,37(7):1756~1761
    [24]许楠,刘立人,万玲玉.空间相干激光通信中目标位置误差的相干探测[J].光学学报,2010,30(2):347~350
    [25]郑燕红.卫星激光通信终端系统捕获瞄准跟踪技术研究[D].哈尔滨:哈尔滨工业大学,2010
    [26] D. Russ ell, H.An sari, C.-C.Chen. Lasercom pointing, acquisition, andtracking control using a CCD-based tracker [J]. Proc. of SPIE,1994,2123:294~303
    [27] T.-T.Nielsen. Pointing, acquisition and tracking system for the free spacecommunication system, Silex [J]. Proc. of SPIE,1995,2381:194~205
    [28]钱锋,贾建军,张亮,王建宇.捕获、跟踪、瞄准系统中光斑探测相机的定位精度[J].中国激光,2013,40(2):0205007-1~0205007-7
    [29]佟首峰,刘云清,姜会林.自由空间激光通信系统APT粗跟踪链路功率分析[J].红外与激光工程2006,35(3):323~350
    [30]陈翠华,柴金华,张江辉.自由空间光通信光电子器件的现状分析[J].光电子技术与信息,2005,18(2):11~17
    [31] S. Arnon, S. R. Rotman, N. S. Kopeika. Bandwidth maximization for satellitelaser communication[J]. IEEE,1999,35(2):675~681
    [32] Yan Han, Guifang Li. Coherent optical communication using polarizationmultiple-input-multiple-output[J]. OPTICS EXPRESS,13(19):7527~7534
    [33] Frowin Derr, Coherent Optical QPSK Intradyne System: Concept andDigital Receiver Realization[J]. JOURNAL OF LIGHT WAVETECHNOLOGY,199210(09):1290~1296
    [34] Ezra Ip, Alan Pak Tao Lau, Daniel J. F. Barros. Coherent detection in opticalfiber systems [J]. OPTICS EXPRESS,2008,16(2):753~791
    [35] Robert Lange, Berry Smutny. Homodyne BPSK-based optical inter-satellitecommunication links[J]. Proc. of SPIE,2007,2457(03):645703-1~645703~9
    [36] F. Herzog, K. Kudielka, D.Erni. Optical phase locked loop for transparentinter-satellite communication[J].2005,13(10):3816~3821
    [37] Ya’nan Zhi, Jianfeng Sun, Enwen Dai. High data-rate differential phase shiftkeying receiver for satellite-to-ground optical communication link[J]. Proc. ofSPIE,2012,8517(0F):85170F-1~10
    [38] Shlomi Arnon. Power versus stabilization for laser satellite communication[J].APPLIED OPTICS,1999,38(15):3229~3233
    [39] Liying Tan,Yiwei Song, Jing Ma. Pointing error due to temperaturedistribution of SiC reflectors in intersatellite laser communications[J].APPLIED OPTICS,2010,49(22):4168~4174
    [40] Shlomi Arnon. Use of satellite natural vibrations to improve performance offree-space satellite laser communication[J]. APPLIED OPTICS,1998,37(21):5031~5036
    [41] Zhou Li, Wen Chuanhua, Liu Baoming. Optical adaptive Antenna Array forfree-space laser inter-satellites [C]. IEEE,2008
    [42] A. E. Siegman. TheAntenna Properties of Optical Heterodyne Receivers[J].APPLIED OPTICS.1966,5(10):1588~1596
    [43]葛林,邱昆,唐明光.激光空间通信中的天线研究[J].电子科技大学学报,1998,27(4):367~370
    [44] Nobuhiro Saga, KazumasaTanaka, and Otozo Fukumitsu. Diffraction of aGaussian beam through a finite aperture lens and the resulting heterodyneefficiency. APPLIED OPTICS,1981,20(16):2827~2828
    [45] Morio Toyoshima. Trends in Laser Communications in Space[C]. Space JapanReview,2010,70:1~6
    [46] Alex A. Kazemi. Intersatellite Laser Communication systems for harshenvironment of space [J]. Proc. of SPIE,8720(10):872010-1~13
    [47]刘华,胡渝.欧洲卫星间光通信发展现状[J].电子科技大学学报,1998,27(5):552~555
    [48]吴从均,颜昌翔,高志良.空间激光通信发展概述[J].中国光学,2013,6(5):670~679
    [49] Larry B. Stotts, Brian Stadler, Gary Lee. Free space optical communications:coming of age[J]. Proc. of SPIE,6951(10):69510W-1~69510W-15
    [50] Zoran Sodnik, Hanspeter Lutz,, Bernhard Furch, et al.. Optical SatelliteCommunications in Europe[C]. Proc. of SPIE,7587(05):758705-1~758705-9
    [51] G. Oppenh user, M. Wittig, A. Popescu. The European SILEX project andother advanced concepts for optical space communications [J]. Proc. of SPIE,1991,1552:1~13
    [52] G.Planche, B.Laurent, JC.Guillen, et al. SILEX final ground testing andin-flight performances assessment [J]. Proc. of SPIE,1999,3615:64~77
    [53] Francois Cosson, Patrick Doubrere, Eric Perez, et al.. Simulation model andon-ground performances validation of the PAT system for SILEX program[J].Proc. of SPIE,1991,1417:262~276
    [54] D. Malaise, M. Renard. SILEX Beacon [J]. Proc. of SPIE,1992,1635:337~344
    [55] G. Oppenh user, M. Wittig, A. Popescu. The European SILEX project:concept, performances, status and planning[J].1990,1218:27~37
    [56] Knut B hmer, Mark Gregory, Frank Heine,et al. Laser communicationterminals for the European Data Relay System[J]. Proc. of SPIE,2012,8246(0D):82460D-1~82460D-7
    [57] Guy Baister, Klaus Kudielka, Thomas Dreischer, et al. Results from theDOLCE (Deep Space Optical Link Communications Experiment) project[J].Proc. of SPIE,2009,7199(0B):71990B-1~71990B-9
    [58] Reyes M., Sodnik Z., Lopez P., Alonso A., Viera T., Oppenh user G.,Preliminary results of the in-orbit tests ofARTEMIS with the Optical GroundStation[J], Proc. of SPIE,vol.4635,(2002).
    [59] Zoran Sodnik, Josep Perdigues Armengol, Reinhard H. Czichy. AdaptiveOptics and ESA’s Optical Ground Station[J]. Proc. of SPIE,2009,7464(06):746406-1~746406-9
    [60] H. Kunimori, Y. Shoji, M. Toyoshima, et al.. Research and developmentactivities on space laser communications in NICT[J]. Proc. of SPIE,2009,7199(04):719904-1~719904-7
    [61] Shiro Yamakawa, Tatsuyuki Hanada, Hiroki Kohata, et al.. JAXA's effortstoward next generation space data-relay satellite using optical inter-orbitcommunication technology[J]. Proc. of SPIE,2010,7587(0P):75870P-1~75870P-6
    [62] YoshinoriArimoto, Mono Toyoshima, Masahiro Toyoda. Preliminary result onlaser communication experiment using ETS-VI[J]. Proc. of SPIE,2381:151~158
    [63] Motokazu Shikatani, Masahiro Toyoda, Hideki Takami, et al. Ground systemdevelopment for the ETS-VI/LCE laser communications experiment[J]. Proc.of SPIE,1866:21~29
    [64] Morio Toyoshima. Optical Space communications in Japan[J]. Functionalmaterials,2003,10(3):427~438
    [65] Takashi Jono, Yoshihisa Takayama, Nobuhiro Kura. OICETS on-orbit lasercommunication experiments[J]. Proc. of SPIE,2006,6105(03):610503-1~610503-11
    [66] Takashi Jono, Yoshihisa Takayama, Koichi Shiratama, et al.. Overview of theinter-orbit and orbit-to-ground laser communication demonstration byOICETS[C]. Proc. of SPIE,2007,6457(02):645702-1~645702-10
    [67] Keizo Nakagawa, Akio Yamamoto, et al.. Preliminary design of LaserUtilizing Communications Equipment (LUCE) installed on Optical Inter-OrbitCommun-ications Engineering Test Satellite(OICETS)[J]. Proc. of SPIE,2381:14~25
    [68] W. Thomas Roberts, Malcolm W. Wright, Joseph Kovalik, et al.. OCTLtoOICETS optical link experiment (OTOOLE) electro-optical systems[J]. Proc.of SPIE,2010,7587(0Y):75870Y-1~75870Y-11
    [69] Akio Yamamoto, Toshihiro Hon, Takafumi Shimizu, et al.. Japanese firstoptical inter-orbit communications engineering test satellite (OICETS[J]. Proc.of SPIE,2210:30~38
    [70] Yoshihisa Takayama, Morio Toyoshima, Yozo Shoji, et al.. Expanded lasercommunications demonstrations with OICETS and ground stations[J]. Proc. ofSPIE,2010,7587(0D):75870D-1~75870D-8
    [71] Shiro Yamakawa, Tatsuyuki Hanada, Hiroki Kohata, et al. JAXA's effortstoward next generation space data-relay satellite using optical inter-orbitcommunication technology[J]. Proc. of SPIE,2010,7587(0P):75870P-1~75870P-6
    [72] Tatsuyuki Hanada, Shiro Yamakawa, Hiroki Kohata, et al.. Study of opticalinter-orbit communication technology for next generation space data-relaysatellite[J]. Proc. of SPIE,2011,7923(0B):79230B-1~79230B-6
    [73] Morio Toyoshima. Trends in satellite communications and the role of opticalfree-space communications [J]. JOURNAL OF OPTICAL NETWORKING,2005,4(6):300~311
    [74] Vincent Cazaubiel, Gilles Planche, Vincent Chorvalli. LOLA: A40.000kmoptical link between an aircraft and a geostationary satellite[C]. Proc.ESA,2006: SP-62.
    [75] L. Vaillon, G. Planche, V. Chorvilli, and L. Le Hors,“Optical CommunicationsBe-tween an Aircraft and a GEO Relay Satellite: Design and Flight Results ofthe LOLADemonstrator,” Proceedings of the7th International Conference onSpace Optics (ICSO), ESTEC,2008
    [76] L. Vaillon, G. Planche, P. Bernard.“From SILEX/LOLAto High data rateoptical telemetry for LEO satellite”, Proc. International Conference on SpaceOptical Systems and Applications (ICSOS),2012
    [77] Renny Fields, Carl Lunde, Robert Wong. NFIRE-to-TerraSAR-X LaserCommunication Results: Satellite Pointing, Disturbances, and Other AttributesConsistent With Successful Performance[C]. Proc. of SPIE,2009,7330(0Q):73300Q-1~73300Q-15
    [78] Mark Gregory, Frank Heine, Hartmut K mpfner. Coherent Inter-Satellite andSatellite-Ground Laser Links[C]. Proc. of SPIE,2011,7923(03):792303-1~792303-1
    [79] Fields R. et al.:“5.625Gbps bidirectional laser communications and rangingmeasurements between the NFIRE satellite and an optical ground station” Proc.of the Photonics West (2011)
    [80] Wolfgang Griethe, Frank Heine, Lester L. Begg, et al.. LaserCom in UASMissions: Benefits and OperationalAspects[J]. Proc. of SPIE,2013,8713:87130A-1~87130A-7
    [81] H. Hemmati. Overview of Laser Communications Research at JPL[C]. Proc.of SPIE,2001,4273:190~193
    [82] K. E. Wilson, J. R. Lesh, et al.. Overview of the Ground-to-Orbit LasercomDemonstration[C]. SPIE.1997,2990:23~30
    [83] D. O. Caplan. High-performance free-space laser communications and futuretrends[J]. OSA/OAA,2005
    [84] Norman A. Page. Design of the Optical Communication Demonstratorinstrument optical system[J]. SPIE,2123:498~504
    [85] M. Jeganathan, A. Portillo, C. Racho. Lessons learnt from the OpticalCommuni-cations Demonstrator (OCD)[J]. SPIE,3615,23~30
    [86] Chien Chen, James R. Lesh. Overview of the optical communicationsdemonst-rator[J]. SPIE,2125:85~95
    [87] A. Biswas, N. Page, J. Neal, D. Zhu, M. Wright. Airborne Optical Communi-cations Demonstrator design and pre-flight test results[J]. Proc. of SPIE,2005,5712:205~216
    [88] D. M. Boroson, B. S. Robinson, D. A. Burianek, et al.. Overview and Status ofthe Lunar Laser Communication Demonstration. Proc. of SPIE,2012,8246(0C):82460C-1~82460C-10
    [89] Kate E. Nevin, Keith B. Doyle, Allen D. Pillsbury. Optomechanical design andanalysis for the LLCD space terminal telescope[J]. Proc. of SPIE,2011,8127:81270G-1~81270G-11
    [90] John D. Moores, Keith E. Wilson. The architecture of the lasercommunications relay demonstration ground stations: an overview[J]. Proc. ofSPIE,2013,8610:86100L-1~86100L-9
    [91] D. M. Boroson, A. Biswas, B. L. Edwards. MLCD: Overview of NASA’sMars Laser Communications Demonstration System[J]. Proc. of SPIE,2004,5338:16~28
    [92] A. Biswas, M. W. Wright, J. Kovalik, et al. Uplink beacon laser for Mars LaserCommunication Demonstration (MLCD)[J]. Proc of SPIE,2005,5712:93~100
    [93] E. Korevaar, R. J. Hofmeister, J. Schuster, et al.. Design of Satellite Terminalfor Ballistic Missile DefenseOrganization (BMDO) Lasercom TechnologyDemonstration [J]. Proc. of SPIE.1995,2381:60~71
    [94]付强,姜会林,王晓曼等.空间激光通信研究现状及发展趋势[J].中国光学,2012,5(2):116~125
    [95] Special Report The USA’s Transformational Communications Satellite System(TSAT).htm
    [96] Guy Baister,, Thomas Dreischer, Edgar Fischer. OPTEL family of opticalterminals for space based and airborne platform communications links[J]. Proc.of SPIE,2005,5986(0Z):59860Z-1~59860Z-10
    [97] E. Fischer, P. Adolph, T. Weigel. Advanced optical solutions for inter-satellitecommunications. OPTIK,2001,112(9):442~448
    [98] Nicolay P. Garaymovich, Vladimir N. Grigoriev, Alexander P. Huppenen, et al..Free-space laser communication systems: internationally and in Russia[J].Proc. of SPIE,2001,4354:197~203
    [99] P. F. Szajowski, G. Nykolak, J. J. Auborn, H. M. Presbyh, G. E. Tourgee, D.Romain. Key elements of high-speed WDM terrestrial free-space opticalcommunications systems. Proc. of SPIE,3932:2~1
    [100] R. Dumas, B. Laurent. System Test Bed for demonstration of the optical spacecommunications feasibility[J]. Proc. of SPIE,1990,1218:398~411
    [101]刘立人.卫星激光通信Ⅱ地面检测和验证技术[J].中国激光,2007,34(2):147~154
    [102] Keizo Nakagawa, Akio Yamamoto. Engineering model test of LUCE (LaserUtilizing Communications Equipment)[J]. Proc. of SPIE,2699:114~120
    [103] M. Shikatani, M. Toyoda. Ground system development f or the ET S-VI/LCElaser communications experiment [C]. Proc. of SPIE,1993,1866:21~29
    [104] K. Araki, Y. Arimoto, M. S hikatani, et al.. Performance evaluation of lasercommunication equipment onboard the ETS-VI satellite[C]. Proc. of SPIE,1996,2699:52~59
    [105] K. E. Wilson, N. Page, A. Biswas, et al.. The lasercom test and evaluationstation for flight terminal evaluation[J]. Proc. of SPIE,1996,2990:152-158
    [106] A. Biswas, K.E. Wilson, N. A. Page. Lasercom Test and Evaluation Station(LTES) development: an update[J]. Proc. of SPIE,3266:22~32
    [107] G. C. Baister, T. Dreischer, E. R. Ground et al.. The OPTEL terminaldevelopment programma-enabling technologies for future optical cross linkapplications[C]. AIAA, http://www. constraves. com/popup/popupoptel. htm
    [108]韩昌元.光学系统成像质量评价及测试[M].长春:长春光机所职工教育内部教材
    [109] M.Toyoshima,N.Takahashi,T.Jono,T.Yamawaki,K.Nakagawa.etc. MutualAlignment Errors Due to the Variation of Wave-front Aberrations in aFree-space Laser Communication Link[J].Opt.Express.2001,9:592~602
    [110] Jianfeng Sun, Liren Liu, Maojin Yun. Mutual alignment errors due towave-front aberrations in intersatellite laser communications[J]. APPLIEDOPTICS,2005,44(23):4953~4958
    [111]刘宏展,纪越峰,刘立人.像差对星间相干光通信接收系统误码性能的影响[J].光学学报,2012,32(1):0106002-1~0106002-6
    [112]杨玉强.波前畸变对星间激光通信链路性能的影响研究[D].哈尔滨:哈尔滨工业大学,2009
    [113] Yuqiang Yang, Liying Tan, Jing Ma. Pointing and tracking errors due tolocalized deformation induced by transmission-type antenna in intersatellitelaser communication links. Appl. Opt.,2009,48(4):786-791
    [114] Yuqiang Yang, Qiqi Han, Liying Tan. Research on Bit Error Rate in thePresence of Local Wavefront Aberration in Intersatellite LaserCommunications [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY,2011,29(19):2893~2898
    [115]周义建,张磊,张月.星间相干激光通信中反射镜面形畸变状态下通信性能的研究[J].光学技术,2013,39(2):138~140
    [116]向劲松,潘乐春.空间相干光通信外差效率及天线像差的影响[J].光电工程,2009,36(11):53~57
    [117] Steven C. Cohen. Heterodyne detection: phase front alignment, beam spot size,and detector uniformity[J]. APPLIED OPTICS,1975,14(8):1953~1959
    [118] Takashi Takenaka, Kazumasa Tanaka, Otozo Fukumitsu. Signal-to-noiseratio in optical heterodyne detection for Gaussian fields[J]. APPLIED OPTICS,1978,17(21):3466~3471
    [119] Kazumasa Tanaka, Naoyuki Ohta. Effects of tilt and offset of signal field onheterodyne efficiency[J]. APPLIED OPTICS,1987,26(4):627~632
    [120] Oswald Wallner, Peter J. Winzer, Walter R. Leeb. Alignment tolerances forplane-wave to single-mode fiber coupling and their mitigation by use ofpigtailed collimators [J]. APPLIED OPTICS,2002,41(4);637~643
    [121] Diana M. Chambers. Modeling heterodyne efficiency for coherent laser radarin the presence of aberrations[J]. OPTICS EXPRESS,1997,1(3):60~67
    [122] B. J. Rye. Primary aberration contribution to incoherent backscatterheterodyne lidar returns[J]. APPLIED OPTICS,1982,21(5):839~844
    [123]吴从均,颜昌翔,刘伟.像差对通信捕获光斑质心的影响分析[J].中国激光,2013,40(10):1005004-1~1005004-7
    [124]王之江.光学技术手册[M].北京:机械工业出版社,1978:918~937
    [125]李林.现代光学设计方法[M].北京:北京理工大学出版社,2009:32~40
    [126]陈静,薛海中,刘学文等.无线激光通信系统弱光干扰技术[J].光学学报,2012,32(1):0106005-1~0106005-6
    [127]周炳坤,高以智,陈惆嵘等.激光原理第六版[M].北京:国防工业出版社,2012:70~74
    [128] Robert R. Shannon. The Art and Science of Optical Design[J]. New York:Cambridge University,1997
    [129] ZEMAX Development Corporation. ZEMAX Manual[M].2005:166~176
    [130] McGraw-Hill. Optical System Design[M]. New York,2008:55~56
    [131]张以谟.应用光学.北京:电子工业出版社,2008:272~276
    [132]赵长政.空间相干光通信初步方案及外差效率研究[D].秦皇岛:燕山大学,2007
    [133] H.M.Ross. Optical Heterodyne Mixing Efficiency Invariance[J]. IEEE,1970:1766~1767
    [134]李晓峰,陈彦,胡渝.空-地激光通信链路波长选择因素分析[J].应用光学,2004,25(1):30~33
    [135]尹丽菊.基于GM-APD的光子计数成像技术研究[D].南京:南京理工大学,2012
    [136]韩昌元.高分辨力空间相机的光学系统研究[J].光学精密工程,2008,16(11):2165~2171
    [137]卢宝文,徐学科,余祥.不同沉积速率下热蒸发银膜的光学性能和结构分析[J].光学学报,2010,30(1):283~286
    [138]闫佩佩,樊学武. R-C光学系统设计及杂散光分析[J].红外技术,2011,33(4):214~218
    [139]杨凯,郭卫平,张鹏等.眼图分析法在干扰效果评估中的应用[J].电子对抗,2009,4:46~49
    [140] Philip WYoung, Lawrence M Germann, Roy Nelson. Pointing, acquisition,and tracking subsystem for space-based laser communications[J]. SPIE,1986(616):118~128
    [141]李卫森,邬双阳.星地激光通信链路地面集成测试系统的构建[J].无线光通信,2013,1:53~55
    [142]万玲玉,刘立人,张明丽.自由空间激光远距离传输的地面模拟研究[J].中国激光,2005,32(10):1367~1370
    [143]常君,翁志成,姜会林.宽覆盖、离轴空间相机光学系统的设计[J].光学精密工程,2003,11(1):55~58
    [144]杨华峰.用于提高自适应光学系统空间校正能力的组合变形镜波前校正技术研究[D].长沙:国防科学技术大学研究生院
    [145]金群锋,冯华君,徐之海.波前编码系统中相位掩膜板的新设计[J].光电工程,2005,32(9):35~38
    [146]邱传凯.用于ICF光学系统静态波前畸变校正[D].成都:电子科技大学,2006
    [147] H.M.Ross. Optical Heterodyne Mixing Efficiency Invariance[J]. IEEE,1970:1766~1767
    [148]姜会林,胡源,丁莹.空间激光通信组网光学原理研究[J].光学学报,2012,32(10):1006003-1~1006003-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700