用户名: 密码: 验证码:
磷酸肌醇3-激酶信号通路参与肺损伤修复及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分PI3K抑制剂对急性肺损伤的保护作用及机制
     目的:探讨磷酸肌醇3-激酶(Phosphatidylinositol3-kinases, PI3K)抑制剂对肉毒素脂多糖(lipopolysaccharide, LPS)所致小鼠急性肺损伤的保护作用,并比较不同的给药方式、给药剂量、药物种类以及不同时间点的疗效差别。
     方法:取6-8周龄的雄性CD-1小鼠,连续3天分别经鼻(0.5mg/kg)或经胃管(50mg/kg)滴入3种不同的P13K抑制齐(?)(LY294002,SHBM009,GDC0941)或PBS,随后经气道滴入LPS(1.25mg/kg)诱导肺损伤,分别在LPS滴入后4h和24h处死小鼠(每组每个时间点10只)。观察这3种P13K抑制剂对LPS刺激后小鼠肺毛细血管通透性、肺组织重量/体重比值、肺组织气体容量(excised lung gas volume, ELGV)、肺泡灌洗液蛋白渗出和炎症细胞浸润、肺泡灌洗液(Brochoalveolar lavage fluid,BALF)炎症因子水平的影响,并比较不同给药方式、不同时间点的疗效差别。A549上皮细胞分别在含有不同浓度SHBM1009(1或10ug/mL)的培养基中培养,然后用LPS(1ug/ml)或PBS刺激。在刺激后3,6,12,24收集培养液上清,4℃离心10000rpm10min,用ELISA方法测定培养液上清中角质细胞源性趋化因子(KC)、白三烯B4(LTB4)的水平。
     结果:LPS刺激后4h和24h小鼠肺组织重量/体重的比值明显高于PBS刺激组(P<0.01),经鼻或经胃管滴入LY294002或GDC-0941能抑制肺组织重量/体重比值的升高(P<0.05),具有保护作用。经鼻滴入SHBM1009亦具有明显保护作用(P<0.01)。经鼻滴入LY294002或SHBM1009能明显抑制LPS刺激4h或24h后ELGV的增加(P<0.05)。经鼻滴入这3种P13K抑制剂均能抑制LPS刺激后4h肺泡灌洗液的白细胞浸润(P<0.01或0.05)。LPS刺激能明显增加4h和24h小鼠肺泡灌洗液角质细胞趋化因子(KC)的含量(P<0.01),只有SHBM1009经鼻滴入4h组显示出明显抑制作用(P<0.01)。利用伊文思蓝染色证明LPS能增加肺泡毛细血管通透性(P<0.01),而经鼻滴入SHBM1009具有明显保护作用(P<0.05)。通过肺组织免疫荧光染色方法发现经鼻滴入SHBM1009能抑制LPS所诱导的中性粒细胞(P<0.01)和巨噬细胞的浸润(P<0.05)。经LPS刺激的气道上皮细胞培养液上清中KC的水平在3-24h均有明显升高,而SHBM1009(1ug/ml和10ug/ml)能显著抑制上皮细胞分泌KC,且呈剂量依赖性(P值分别为P<0.05和P<0.01)。LPS刺激后24h,上清液中LTB4和LTB4的水平也有明显升高。
     结论:P13K抑制剂能预防LPS所导致的小鼠急性肺损伤,主要通过保护毛细血管内皮屏障、抑制上皮细胞活化、抑制炎症细胞浸润和黏附能力、减少炎症因子释放等。局部给药的保护作用优于全身给药,且不同P13K抑制剂的保护作用也有差异,这可能和药物的化学结构、靶向部位以及药动学特点有关。
     第二部分PI3K抑制剂对慢性气道炎症、组织损伤和气道重塑的治疗作用
     目的:探讨P13K抑制剂对胰弹性蛋白酶(pancreatic elastase,PE)所诱导的大鼠慢性气道炎症、组织损伤和气道重塑的治疗作用。
     方法:取180-200g的健康雄性Wistar大鼠,气道滴入PE(250IU/kg)诱导肺损伤模型,在随后的7天或28天内经鼻滴入PBS、SHBM1009或布地奈德(budesonide, Bud)观察其治疗作用。实验共分为6组:1)Sham组:PBS刺激+PBS治疗;2) Vehicle组:PE刺激+PBS治疗;3) SHBM1009对照组:PBS刺激+SHBM1009(10mg/kg);4) SHBM1009(?)(?)剂量组:PE刺激+SHBM1009(1mg/kg);5)SHBM1009高剂量组:PE刺激+SHBM1009(10mg/kg);6) Bud组:PE刺激+Bud (10mg/kg)。每组每个时间点6只大鼠。通过HE染色、电镜、Masson染色观察大鼠肺组织病理变化,同时测定大鼠ELGV、肺组织密度、肺组织重量/体重、BALF蛋白含量和细胞计数,ELISA方法检测肺泡灌洗液炎症因子IL-1β水平,RT-PCR方法检测肺组织Fibulin-5的表达。体外实验部分,A549细胞以合适密度接种于24孔培养板,以不同浓度PE(0.03U/ml,0.3U/ml,1U/ml,2U/m1)或Vehicle刺激与不同浓度的SHBM1009(0.01umol/L,0.1umol/L,1umol/L,10umol/L)或BEZ235(0.01umol/L,0.1umol/L,1umol/L,10umol/L)共培养,Cell-IQ细胞实时监测系统观察48h内细胞增生、分裂和凋亡情况。
     结果:组织病理学HE染色可见PE刺激后28天,肺泡壁断裂,肺泡腔明显扩大,电镜观察可发现肺泡II型上皮细胞微结构变化、间质胶原沉积及成纤维细胞增生、气血屏障破坏,Masson染色可见Vehicle治疗组胶原含量明显增多,而SHBM1009或Bud治疗能保护肺组织结构的破坏。Vehicle治疗组在7天和28天肺组织重量和ELGV值较Sham组和SHBM1009对照组明显升高(分别为P<0.05和P<0.01)。PE刺激能诱导肺组织重量增加,虽SHBM1009(1mg/kg)和Bud (10mg/kg)治疗组在第7天和28天肺组织重量较vehicle治疗组明显减轻,但与Sham组相比仍有明显升高(P<0.05or0.01)。在PE刺激后第7天,大鼠肺组织密度明显升高,第28天时,肺组织密度明显减轻,SHBM1009或Bud治疗具有明显保护作用(P<0.01)。PE刺激后第7天,Vehicle组肺泡灌洗液蛋白含量明显增加(P<0.01),SHBM1009或Bud治疗均具有明显抑制作用(P<0.05orP<0.01)。PE刺激后第7天和第28天,BALF细胞计数明显增多(P<0.01),SHBM1009或Bud治疗均具有明显抑制作用(P<0.05or0.01)。PE刺激能诱导BALF炎症因子IL-1p水平的升高,SHBM1009或Bud治疗均具有明显抑制作用(P<0.05or0.01)。Fibulin-5mRNA的水平在Vehicle组明显升高,SHBM10091mg/kg或10mg/kg治疗组在第28天均显示出治疗作用,Bud治疗组在第7天和28天均显示出治疗作用。PE刺激能明显抑制气道上皮细胞的增生和分裂,且呈剂量和时间依赖效应,而对细胞凋亡的影响较小。当PE浓度为1U/ml时,BEZ235在浓度0.1-1.0uM或SHBM1009在浓度0.01-10uM具有明显保护作用。而当PE浓度为0.3U/ml时,BEZ2350.01或0.1uM/ml或SHBM10090.01-1.0uM时保护作用较明显。
     结论:P13K参与了肺损伤的发生和发展过程,包括早期的炎症反应、肺水肿,以及后期的组织修复、气道重塑和肺气肿,其机制主要通过促进上皮细胞的增生分裂,修复损伤的上皮,并能抑制成纤维母细胞增生和胶原沉积,从而减轻气道重塑。P13K抑制剂可能成为慢性气道疾病的一个治疗的新靶点。
     第三部分KGF-2对大鼠原位肺缺血再灌注损伤的保护作用及机制
     目的:探讨角质细胞生长因子-2(keratinocyte growth factor-2,KGF-2)对大鼠原位肺缺血再灌注损伤的保护作用,及对内皮细胞屏障功能的影响。
     方法:健康雄性SD大鼠250g左右,分成6组,每组15只,分组如下:1)Sham组:手术开胸但不经历缺血-再灌注;3)缺血再灌注(ischemia-reperfusion, IR)组(I/R):动物经开胸后,左肺门夹闭60min,再灌注180min;3),4)和5)KGF-2低、中、高剂量治疗组:动物在手术前72h气道滴入KGF-22.5mg/kg,5mg/kg和10mg/kg,之后行缺血再灌注手术;6)地塞米松(dexamethasone, DXM)组:在缺血再灌注手术前2h腹腔注射地塞米松5mg/kg。在缺血再灌注损伤前后分别采集血标本行血气分析,动物处死后HE染色行肺组织形态学测量,计算肺湿干重比值,收集肺泡灌洗液进行细胞计数和蛋白水平检测,肺组织提取RNA和蛋白进行后续分子生物学分析。体外培养人肺微血管内皮细胞(human pulmonary microvascular endothelial cell, HPMEC)进一步探讨KGF-2对内皮细胞保护作用的机制。Cell-IQ. Brdu细胞增殖实验检测KGF-2对细胞增殖和凋亡的影响;FITC标记白蛋白的通透性及跨膜电阻抗检测内皮细胞屏障功能。
     结果:肺组织形态学观察显示IR组肺组织出血、水肿和炎症反应明显较Sham组严重,KGF-2和DXM均具有预防作用,其中KGF-22.5mg/kg和5mg/kg的保护作用最明显(P<0.01)。IR组肺组织湿/干重比值明显增大,KGF-22.5mg/kg,5mg/kg和DXM5mg/kg具有保护作用(P<0.05)。缺血再灌注之前,所有组血氧分压无明显差别,IR之后,IR组、KGF-210mg/kg组及DXM组血氧分压均明显降低(P<0.05),而KGF-22.5mg/kg和5mg/kg预处理显示出明显保护作用(P<0.05)。IR之后,大鼠肺泡灌洗液细胞计数和蛋白水平均明显增加,KGF-2和DXM均显示出不同程度的保护作用(P<0.05或P<0.01)。RT-PCR检测显示KGF-2能促进肺泡表面蛋白C (surfactant protein C, SPC)的表达,而对SPA的表达量无明显影响。体外实验发现,在无损伤刺激的情况下,KGF-2不促进内皮细胞的过度增殖,但可维持损伤情况下细胞总数的稳定增长。此外,KGF-2还可保护内皮细胞的正常屏障功能。
     结论:KGF-2预处理能保护缺血再灌注所致肺损伤,减轻炎症反应、水肿和出血。其保护作用机制可能包括促进肺泡表面活性物质的表达、维持气血屏障的正常结构和功能。
Part1Preventive Effects of Phosphatidylinositol3-kinases Inhibitors on Lipopolysaccharide induced Acute Lung Injury in Mice
     Objective:To investigated the preventive effects of Phosphatidylinositol3-kinases (PI3K) inhibitors and compared the efficacy of intratracheal and intragastrical deliveries on lung edema and gas volume, leukocyte recruitment, and chemokine production at4and24h after LPS induced ALI in mice. In vitro studies were further conducted to investigate whether the PI3K inhibitor has direct effects on epithelial cells and neutrophils.
     Methods:Male CD-1mice aged6-8weeks were selected and administered3different PI3K inhibitors (LY294002, GDC0941and SHBM1009) either intranasally or intragastrically once a day for3days before intratracheal instillation of lipopolysaccharide at4h and24h. Animal bodyweight (BW) was measured both before the experiment and at termination. After termination, the lung weight/body weight (LW/BW) ratio, gas volume, and total number of leukocytes and levels of KC in Brochoalveolar lavage fluid (BALF) were measured. Excised lung gas volume (ELGV) was measured based on the Archimedes principle. Effects of SHBM1009on lipopolysaccharide (LPS)-induced capillary permeability were evaluated by Evans blue dye, leukocyte distribution and activation were measured. The number of neutrophils and macrophages in the lung tissue was measured as the average cell number per cross-section of lungs based on evaluating10lung areas per specimen. For the in vitro study, the CD-1mouse airway epithelial cells and circulating neutrophils were isolated, purified, and cultured cultured in the presence or absence of LPS at1mg/mL and SHBM1009at1or10mg/mL. The production of KC and LTB4was evaluated using ELISA kit at3,6,12, and24h after LPS challenge. Neutrophil adhesion was measured. The direct inhibitory effects of LY294002and SHBM1009at different concentrations on the superoxide generation from mouse neutrophils stimulated by LPS at1mg/mL for24h were measured as described previously.
     Results:LW/BW ratio in animals pretreated with vehicle and challenged with LPS were significantly higher than those challenged with PBS at4and24h (P<0.01), which was prevented by intranasal or intragastrical pretreatment with LY294002, intragastrically with GDC-0941, and intranasally with SHBM1009(P<0.05and P<0.01, respectively). Levels in animals with LY294002(intranasally at24h) and GDC-0941(intranasally at4h and intragastrically at4and24h) were still significantly higher than those without LPS (P<0.05for both). Intranasal pretreatment with either LY294002or SHBM1009significantly prevented LPS-induced increase of ELGV at4or24h after LPS challenge (P<0.05). Intranasal pretreatment with all PI3K inhibitors significantly prevented LPS-induced leukocyte influx in BALF at4h (P<0.05and P<0.01, respectively). Intranasal pretreatment with LY294002or SHBM1009at4or24h showed partially preventive effects on LPS-induced KC production (P<0.05). LPS significantly increased Evans blue dye leakage in the airway and lung (P<0.01vs control subjects), which was prevented by intranasal delivery of SHBM1009(P<0.05vs animals with vehicle and LPS). Pretreatment with SHBM1009prevented LPS-increased number of neutrophils (P<0.01) and macrophages (P<0.05). Levels of KC in the mouse epithelial cell supernatant were significantly higher from3h after LPS challenge compared with the control or those treated with SHBM1009at1or10mg/mL (P<0.05and P<0.01, respectively). The adhesion rate of mouse neutrophils stimulated by KC, LTB4, or LPS was inhibited by SHBM1009at different concentrations. The inhibitory potency of SHBM1009depended on stimuli. LY294002or SHBM1009significantly inhibited superoxide production from LPS-stimulated mouse neutrophils, and the50%inhibitory dose of SHBM1009was much lower than that of LY294002.
     Conclusion:Local delivery of PI3K inhibitors played more effective roles in the prevention of endotoxin-induced lung injury than the systemic delivery. The preventive effects of PI3K inhibitors varied most likely because of chemical properties, targeting sites, and pharmacokinetics. The protective effects of PI3K inhibitors on ALI may through direct inhibition of airway epithelial cells, neutrophils, and macrophages. PI3K may be a therapeutic target for acute lung injury, and local delivery of PI3K inhibitors may be one of the optimal approaches for the therapy.
     Part2Roles and mechanism of phosphoinositide3-kinase in acute and chronic lung inflammation, tissue injury, remodeling and emphysema in rats
     Objective:To evaluate the therapeutic effects of SHBM1009, a new PI3K/mTOR inhibitor, on chronic lung inflammation, tissue injury and remodeling7and28days after the intratracheal instillation of pancreatic elastase (PE), and potential mechanisms by which PI3K may be involved in the inflammation or biological functions of airway epithelial cells or pulmonary myofibroblasts.
     Methods:Adult male Wister rats, weighing180-200g, were intratracheally instilled with PE (0.2mL,100IU) or PBS, followed by7or28days of continuously intranasal instillation of SHBM1009or budesonide (the reference drug). The animals were divided randomly into six experimental groups:1) animals were challenged with vehicle and treated with vehicle at0.2ml;2) animals were challenged with PE and treated with vehicle;3) animals were challenged with vehicle and treated with SHBM1009at10mg-kg-1,4and5) animals were challenged with PE and treated with SHBM1009at1and10mg-kg-1or6) animals were challenged with PE and treated with budesonide at1mg-kg-1, respectively. There were12animals per group and6in each time point. Lung weight, body weight and lung density were measured for each rat. Excised lung gas volume (ELGV) was measured by Archimedes' principle. The bronchoalveolar lavage fluid was harvested for evaluating cell count, protein concentration, levels of IL-1β and TGF-β1. HE staining, scanning electron microscopy and Masson staining were used to evaluate lung morphometry. Besides, cellular biological functions were monitored and determined with Cell-IQ, an integrated, fully automated system which can monitor and record the cell number, proliferation, differentiation, apoptosis or movement without use of labels or markers. The cells were plated onto24-well plates with an appropriate density and challenged with PE at concentrations of0.03,0.30,1.00, or2.00U/ml, respectively, to evaluate damaging effects of PE per se. In order to determine protective and dose-associated effects of PI3K inhibitors, cells were co-cultured with BEZ235at concentrations of0.01,0.10,1.00or10μM, or SHBM1009at concentrations of0.01,0.10,1.00, or10μM, respectively, under PE at1.00U/ml. The effects of BEZ235or SHBM1009at concentrations of0.01,0.10, or1.00μM were furthermore evaluated under PE challenge at0.3U/ml.
     Results:Intratracheal instillation of SHBM1009at the dose of lmg/kg and budesonide can prevent PE-increased lung weights on7and28days, respectively. Values of lung densities in animals with PE and vehicle7days after the challenge were significantly higher than those without PE, which were significantly attenuated by the treatment with SHBM1009or budesonide (p<0.01). PE instillation increased the lung density at7days while decreased it at28days, while the treatment with SHBM100910mg/kg and budesonide can significantly attenuate such reduction (p<0.01). Levels of total protein in BALF significantly increased7days after the challenge with PE (p<0.01), which was prevented by the treatment with SHBM1009at1or10mg/kg and budesonide (p<0.01or0.05, respectively). Treatment with SHBM1009or budesonide significantly inhibited PE-increased inflammatory cells in BALF on both7and28days (p<0.05or0.01, respectively). Levels of IL-1in BALF or serum harvested from animals with PE challenge and vehicle treatment were significantly higher than from those without PE on7and28days (p<0.01, Fig2C), and were significantly attenuated by treatment with SHBM1009and budesonide (p<0.05or0.01, respectively). For the morphologic changes, alveolar walls and airspace were compromised and enlarged, the thickness of remained alveolar walls increased, and the number of monocytes with the wall elevated in PE-challenged animals treated with vehicle. PE-induced lung injury was protected by the treatment with SHBM1009or Budesonide, while therapeutic effects of SHBM1009at10mg/kg were better than at1mg/kg. Intratracheal instillation of PE induced a significant increase in the area of collagen-positive staining in the lung, while the treatment with SHBM1009or budesonide significantly inhibited the deposition of collagen. Total number of lung epithelial cells significantly decreased when the co-culture with PE in a dose-dependent pattern. PE (1U/ml)-induced reductions of total cell number were partially prevented by the addition of BEZ at0.1-1.0uM or SHBM1009at0.01-10uM, while SHBM1009at0.01-1.0uM or BEZ at0.01and0.1uM fully prevented from decreased total cell number by PE at0.3U/ml. Altered number of stable, differentiated and death cells co-cultured with PE alone or PE at1.0or0.3U/ml plus BEZ or SHBM1009at the different concentrations was similar to the pattern of total cell number.
     Conclusion:PI3K plays a critical role in the development of both acute and chronic lung injury and the progress of tissue remodeling and emphysema. The mechanisms include promoting proliferation and differentiation of epithelial cells, inhibiting the proliferation and differential of fibroblasts and collagen deposition. PI3K inhibitors may be considered as one of new therapeutic alternatives for chronic lung diseases e.g. COPD or emphysema, or at least as a candidate of therapeutic combination.
     Part3Protective effects of keratinocyte growth factor-2on warm ischemia reperfusion induced lung injury in rats
     Objectives:The purpose of this study was to investigate whether KGF-2had a beneficial effect on IR-induced ALI. In addition, the effect of KGF-2on endothelial cells was also investigated to provide insight into the possible molecular mechanisms involved in the action of KGF-2.
     Methods:SD rats were randomly divided into seven experimental groups (n=15):1) Sham group:animals undergoing a sham operation and pre-treated with vehicle;2) IR group:animals with I/R-ALI and pre-treated with vehicle;3),4) and5) KGF-2low, middle, and high treatment group:animals were intratracheally instilled with2.5mg/kg,5mg/kg and10mg/kg KGF-272hours prior to IR surgery;7) dexamethasone (DXM) group:DXM at a dose of5mg/kg was administered introperitoneally2hours prior to IR. Keratinocyte growth factor-2(2.5,5, or10mg/kg) was administered intratracheally to rats3days before surgery. Then the left lung in rats was subjected to ischemia for60minutes and reperfusion for as long as180minutes. Lung morphology, blood gas analysis, total cell number and protein concentration in the bronchoalveolar lavage fluid were measured to evaluate the lung injury. The protective effects of keratinocyte growth factor-2on human pulmonary microvascular endothelial cells and related mechanisms were evaluated in vitro. Cell-IQ was applied to monitoring biological behavior; Brdu proliferation assay was used to assess cell proliferation; measurement of the permeability of FITC-labeled albumin and transendothelial electrical resistence to assesse barrier function of the endothelial.
     Results:Pre-treatment with keratinocyte growth factor-2at the doses of2.5mg and-5mg/kg effectively inhibited lung edema, inflammatory cell infiltration, protein exudation and the release of inflammatory cytokines. In vitro study demonstrated that keratinocyte growth factor-2could inhibit endothelial cell apoptosis, enhancing migration, and maintaining the integrity of the blood-gas barrier. Phosphoinositide3-kinase inhibitors attenuated the protective effect of Keratinocyte growth factor-2in endothelial cells.
     Conclusion:Keratinocyte growth factor-2pre-treatment reduced ischemia reperfusion-induced acute lung injury. The protective effects of keratinocyte growth factor-2may contribute to its protective effects on both epithelial and endothelial cells.
引文
[1]Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury [J]. New Engl J Med.2005,353(16):1685-1693.
    [2]Li Y, Wang Q, Chen H, Gao HM, et al. Epidemiological features and risk factor analysis of children with acute lung injury [J]. World J Pediatr.2012,8(1):43-46.
    [3]Sessler CN, Gay PC. Are corticosteroids useful in late-stage acute respiratory distress syndrome? [J]. Respir Care.2010,55(1):43-55.
    [4]Peter JV, John P, Graham PL, et al. Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults:meta-analysis [J]. BMJ.2008,336(7651):1006-1009.
    [5]Okayama N, Kakihana Y, Setoguchi D, et al. Clinical effects of a neutrophil elastase inhibitor, sivelestat, in patients with acute respiratory distress syndrome [J]. J Anesth.2006,20(1):6-10.
    [6]Adhikari NK, Burns KE, Friedrich JO, et al. Effect of nitric oxide on oxygenation and mortality in acute lung injury:systematic review and meta-analysis [J]. BMJ. 2007,334(7597):779.
    [7]Geiger R, Kleinsasser A, Meier S, et al. Intravenous tezosentan improves gas exchange and hemodynamics in acute lung injury secondary to meconium aspiration [J]. Intensive Care Med.2008,34(2):368-376.
    [8]Willson DF, Thomas NJ, Markovitz BP, et al. Effect of exogenous surfactant (calfactant) in pediatric acute lung injury:a randomized controlled trial [J]. JAMA. 2005,293(4):470-476.
    [9]Anzueto A, Baughman RP, Guntupalli KK, et al. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. Exosurf Acute Respiratory Distress Syndrome Sepsis Study Group [J]. N Engl J Med.1996,334(22):1417-1421.
    [10]Lee J W. beta2 adrenergic agonists in acute lung injury? The heart of the matter [J]. Crit Care 2009,13(6):1011.
    [11]Vincent JL, Artigas A, Petersen LC, et al. A multicenter, randomized, double-blind, placebo-controlled, dose-escalation trial assessing safety and efficacy of active site inactivated 40 recombinant factor VⅡa in subjects with acute lung injury or acute respiratory distress syndrome [J]. Crit Care Med.2009, 37(6):1874-1880.
    [12]Liu KD, Levitt J, Zhuo HJ, et al. Randomized clinical trial of activated 41 protein C for the treatment of acute lung injury [J]. Am J Respir Crit Care.2008,178(6), 618-623.
    [13]Schultz MJ, Haitsma JJ, Zhang HB, et al. Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia-a review [J]. Crit Care Med.2006,34(3),871-877.
    [14]The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome [J]. N Engl J Med.2000,342:1301-1308.
    [15]Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030 [J]. PLoS Med.2006,3(11):e442.
    [16]Fang X, Wang X, Bai C. COPD in China:the burden and importance of proper management [J]. Chest.2011,139(4):920-929.
    [17]The Lung Health Study Research Group. Effect of inhaled triamcinolone on the decline in pulmonary function in chronic obstructive pulmonary disease [J]. N Engl J Med.2000,343(26):1902-1909.
    [18]Alsaeedi A, Sin DD, McAlister FA. The effects of inhaled corticosteroids in chronic obstructive pulmonary disease:a systematic review of randomized placebo-controlled trials [J]. Am J Med.2002,13:59-65.
    [19]Bonnick SL. Bone densitometry in clinical practice:application and interpretation [M]. Totowa, NJ:Humana Press; 1998.
    [20]Dubois EF, Roder E, Dekhuijzen PN, et al. Dual energy X-ray absorptiometry outcomes in male COPD patients after treatment with different glucocorticoid regimens [J]. Chest.2002,121(5):1456-1463.
    [21]McEvoy CE, Niewoehner DE. Adverse effects of corticosteroid therapy for COPD:a critical review [J]. Chest.1997,111(3):732-743.
    [22]Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med [J].2000,342(18):1334-49.
    [23]Tomashefski JF Jr. Pulmonary pathology of acute respiratory distress syndrome [J]. Clin Chest Med.2000,21(3):435-66.
    [24]Adamson IY, Bowden DH. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen [J]. Lab Invest. 1974,30(1):35-42.
    [25]Willis BC, Liebler JM, Luby-Phelps K, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-betal:potential role in idiopathic pulmonary fibrosis [J]. Am J Pathol.2005, 166(5):1321-1332.
    [26]Stein R C, Waterfield M D. PI3-kinase inhibition:a target for drug development? [J]. Mol Med Today.2000,6(9):347-357.
    [27]Hirsch E, Katanaev VL, Garlanda C, et al. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation [J]. Science.2000,287(5455): 1049-1053.
    [28]Ali K, Bilancio A, Thomas M, et al. Essential role for the p110delta phosphoino-sitide 3-kinase in the allergic response [J]. Nature.2004,431(7011): 1007-1011.
    [29]Scott P H, Belham C M, Alhafidh J, et al. A regulatory role for cAMP in phosphatidylinositol 3-kinase/p70 ribosomal S6 kinase-mediated DNA synthesis in platelet-derived-growth-factor-stimulated bovine airway smooth-muscle cells [J]. Biochem J.1996,318(Pt 3):965-971.
    [30]Moore SM, Rintoul RC, Walker TR, et al. The presence of a constitutively active phosphoinositide 3-kinase in small cell lung cancer cells mediates anchorage-independent proliferation via a protein kinase B and p70(s6k)-dependent pathway [J]. Cancer Res.1998,58(22):5239-5247.
    [31]Chen Y, Chang L, Li W, et al. Thioredoxin protects fetal type Ⅱ epithelial cells from hyperoxia-induced injury. Pediatr Pulmonol.2010,45(12):1192-1200.
    [32]Lee JP, Li YC, Chen HY, et al. Protective effects of luteolin against lipopolysaccharide-induced acute lung injury involves inhibition of MEK/ERK and PI3K/Akt pathways in neutrophils. Acta Pharmacol Sin.2010,31(7); 831-838.
    [33]Peng XQ, Damarla M, Skirball J, et al. Protective role of PI3-kinase/Akt/eNOS signaling in mechanical stress through inhibition of p38 mitogen-activated protein kinase in mouse lung [J]. Acta Pharmacol Sin.2010,31(2):175-183.
    [34]Yang SJ, Chen HM, Hsieh CH, et al. Akt pathway is required for oestrogen-mediated attenuation of lung injury in a rodent model of cerulein-induced acute pancreatitis [J]. Injury.2011,42(7):638-642.
    [35]Fakhrzadeh L, Laskin JD, Laskin DL. Regulation of caveolin-1 expression, nitric oxide production and tissue injury by tumor necrosis factor-alpha following ozone inhalation [J].Toxicol Appl Pharmacol.2008,227(3):380-9.
    [36]Conte E, Fruciano M, Fagone E, et al. Inhibition of PI3K prevents the proliferation and differentiation of human lung fibroblasts into myofibroblasts:the role of class I P110 isoforms [J]. PLoS One.2011,6(10):e24663.
    [37]Fagone E, Conte E, Gili E, et al. Resveratrol inhibits transforming growth factor-beta-induced proliferation and differentiation of ex vivo human lung fibroblasts into myofibroblasts through ERK/Akt inhibition and PTEN restoration [J]. Exp Lung Res.2011,37:162-174.
    [38]Emoto H, Tagashira S, Mattei MG, et al. Structure and expression of human fibroblast growth factor-10 [J]. J Biol Chem.1997,272(37):23191-23194.
    [39]Igarashi M, Finch PW, Aaronson SA.Characterization of recombinant human fibroblast growth factor(FGF)-10 reveals functional similarities with keratinocyte growth factor(FGF-7) [J].J Biol Chem.1998,273(21):13230-13235.
    [40]Jameson J, Ugarte K, Chen N,et al. A role fur skin yST cells in wound repair [J]. Science.2002,296(5568):747-749.
    [41]De Moerlooze L, Spencer-Dene B, Revest JM, et al. An important role fur the HIb isofurm of fibroblast growth factor receptor 2(FGFR2)in mesenchymal-epithelial signaling during mouso organogenesis [J].Development,2000,127(3):483-492.
    [42]Szebenyi G, Fallon J F. Fibroblast growth factors as multifunctional signaling factors [J]. Int Rcv Cytol.1999,185:45-106.
    [43]Wemer S, Smola H, Liao X. et al. The function of KGF in morphogenesis of epithelium and reepithelialization ofwounds [J]. Science.1994,266(5186):819-822.
    [44]Ohuchi H, Hori Y, Yamasaki M, et al. FGF10 acts as a major ligand for FGF receptor 2 Mb in mousc multiorgan development [J]. Biochem Biophys Res Commun.2000,277(3):643-649.
    [45]Yamasaki M, Miyake A, Tagashira S, et al. Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family [J]. J Biol Chem.1996,271(27),15918-15921.
    [46]Bellusci S, Grindley J, Emoto H, et al. Fibroblast growth factor 10(FGF10) and branching morphogenesis in the embryonic mouse lung [J]. Development.1997, 124(23),4867-4878.
    [47]Clark JC, Tichelaar JW, Wert SE, et al. FGF-10 disrupts lung morphogenesis and causes pulmonary adenomas in vivo [J]. Am J Physiol Lung Cell Mol Physiol.2001, 280(4),705-715.
    [48]Ishiwata T, Naito Z, Lu YP, et al. Differential distribution of fibroblast growth factor (FGF)-7 and FGF-10 in L-arginine-induced acute pancreatitis [J]. Exp Mol Pathol.2002,73(3):181-190.
    [49]Gillis P, Savla U, Volpert OV, et al. Keratinocyte growth factor induces angiogenesis and protects endothelial barrier function [J]. J Cell Sci.1999,112(12): 2049-2057.
    [50]Upadhyay D, Bundesmann M, Panduri V, et al. Fibroblast growth factor-10 attenuates H2O2-induced alveolar epithelial cell DNA damage-role of MAPK activation and DNA repair [J]. Am J Respir Cell Mol Biol.2004,31(1):107-113.
    [51]Upadhyay D, Correa-Meyer E, Sznajder JI, et al. FGF-10 prevents mechanical stretch-induced alveolar epithelial cell DNA damage via MAPK activation [J]. Am J Physiol Lung Cell Mol Physiol.2003,284(2):350-359.
    [52]Upadhyay D, Panduri V, Kamp DW. Fibroblast growth factor-10 prevents asbestos-induced alveolar epithelial cell apoptosis by a mitogen-activated protein kinase-dependent mechanism [J]. Am J Respir Cell Mol Biol.2005,32(3):232-238.
    [53]Tagashira S, Harada H, Katsumata T, et al. Cloning of mouse FGF10 and up-regulation of its gene expression during wound healing [J]. Gene.1997,197(1-2): 399-404.
    [1]Lu Q, Harrington EO, Newton J, et al. Adenosine protected against pulmonary edema through transporter-and receptor A2-mediated endothelial barrier enhancement [J]. Am J Physiol Lung Cell Mol Physiol.2010,298(6):755-767.
    [2]Deng XM, Wang XD, Andersson R. Endothelial barrier resistance in multiple organs after septic and non-septic challenges in the rat [J]. J Appl Physiol.1995,78(6): 2052-2061.
    [3]Zmijewski JW, Lome E, Zhao X, et al. Antiinflammatory effects of hydrogen peroxide in neutrophil activation and acute lung injury [J]. Am J Respir Crit Care Med 2009; 179(8):694-704.
    [4]Howard M, Roux J, Lee H, et al. Activation of the stress protein response inhibits the STAT1 signalling pathway and iNOS function in alveolar macrophages:role of Hsp90 and Hsp70 [J]. Thorax.2010; 65(4):346-353.
    [5]Deng XM, Wang XD, Andersson R. Alterations in endothelial barrier permeability in multiple organs during overactivation of macrophages in rats [J]. Shock.1996,6(2): 126-133.
    [6]Zhao X, Dib M, Wang XD, et al. Influence of mast cells on the expression of adhesion molecules on circulating and migrating leukocytes in acute pancreatitis-associated lung injury [J]. Lung.2005,183(4):253-264.
    [7]Wang XD, Adler KB, Erjefalt J, et al. Role of Airway Epithelial Dysfunction in Development of Acute Lung Injury and Acute Respiratory Distress Syndrome [J]. Expert Rev Respir Dis.2007,1(1):149-155.
    [8]Wang XD, Wang Y, Zhao X, et al. Potential effects of peroxisome proliferator-activated receptor activator on LPS-induced lung injury in rats [J]. Pulm Pharmacol Ther.2009,22(4):318-325.
    [9]Yang D, Tong L, Wang D, et al. Roles of CC chemokine receptors (CCRs) on lipopolysaccharide-induced acute lung injury [J]. Respir Physiol Neurobiol.2010, 170(3):253-259.
    [10]Workman P, Clarke PA, Raynaud FI, et al. Drugging the PI3 kinome:from chemical tools to drugs in the clinic [J]. Cancer Res.2010,70(6):2146-2157.
    [11]He Z, Zhu Y, Jiang H. Toll-like receptor 4 mediates lipopolysaccharide-induced collagen secretion by phosphoinositide3-kinase-Akt pathway in fibroblasts during acute lung injury [J]. J Recept Signal Transduct Res.2009,29(2):119-125.
    [12]Kolliputi N, Waxman AB. IL-6 cytoprotection in hyperoxic acute lung injury occurs via PI3K/Akt-mediated Bax phosphorylation [J]. Am J Physiol Lung Cell Mol Physiol.2009,297(1):6-16.
    [13]Miyahara T, Hamanaka K, Weber DS, et al. Phosphoinositide 3-kinase, Src, and Akt modulate acute ventilation-induced vascular permeability increases in mouse lungs [J]. Am J Physiol Lung Cell Mol Physiol 2007,293(1):L11-21.
    [14]Ong E, Gao XP, Predescu D, et al. Role of phosphatidylinositol 3-kinase-gamma in mediating lung neutrophil sequestration and vascular injury induced by E. coli sepsis [J]. Am J Physiol Lung Cell Mol Physiol 2005,289(6):L1094-1103.
    [15]Jansson AH, Eriksson C, Wang XD. Lung inflammatory responses and hyperinflation induced by an intratracheal exposure to lipopolysaccharide in rats [J]. Lung.2004,182(3):1-9.
    [16]Lim DH, Cho JY, Song DJ, et al. PI3K gamma-deficient mice have reduced levels of allergen-induced eosinophilic inflammation and airway remodeling [J]. Am J Physiol Lung Cell Mol Physiol.2009,296(2):L210-219.
    [17]Yan H, Deshpande DA, Misior AM, et al. Anti-mitogenic effects of {beta}-agonists and PGE2 on airway smooth muscle are PKA dependent [J]. FASEB J.2010,25(1):1-9.
    [18]Ather JL, Alcorn JF, Brown AL, et al. Distinct Functions of Airway Epithelial NF-{kappa}B Activity Regulate Nitrogen Dioxide-induced Acute Lung Injury [J]. Am J Respir Cell Mol Biol.2009,43(4):443-451.
    [19]Karin M. Inflammation and cancer:the long reach of Ras [J]. Nature Med.2005, 11(1):20-22.
    [20]Farberman MM, Ibricevic A, Joseph TD, et al. Effect of polarized release of CXC-chemokines from wild-type and cystic fibrosis murine airway epithelial cells [J]. Am J Respir Cell Mol Biol.2011,45(2):221-228.
    [21]Ward PA. Oxidative stress:acute and progressive lung injury. Ann N Y Acad Sci. 2010,1203:53-59.
    [22]Gao XP, Zhu X, Fu J, et al. Blockade of class IA phosphoinositide 3-kinase in neutrophils prevents NADPH oxidase activation-and adhesion-dependent inflammation [J]. J Biol Chem.2007; 282(9):6116-6125.
    [1]The Lung Health Study Research Group. Effect of inhaled triamcinolone on the decline in pulmonary function in chronic obstructive pulmonary disease [J]. N Engl J Med.2000,343(26):1902-1909.
    [2]Alsaeedi A, Sin DD, McAlister FA. The effects of inhaled corticosteroids in chronic obstructive pulmonary disease:a systematic review of randomized placebo-controlled trials [J]. Am J Med.2002,113(1):59-65.
    [3]Bonnick SL. Bone densitometry in clinical practice:application and interpretation. Totowa, NJ:Humana Press; 1998.
    [4]Dubois EF, Roder E, Dekhuijzen PN, et al. Dual energy X-ray absorptiometry outcomes in male COPD patients after treatment with different glucocorticoid regimens [J]. Chest.2002,121(5):1456-1463.
    [5]McEvoy CE, Niewoehner DE. Adverse effects of corticosteroid therapy for COPD: a critical review [J]. Chest.1997;111(3):732-743.
    [6]Inoue K, Yanagisawa R, Koike E, et al. Effects of carbon black nanoparticles on elastase-induced emphysematous lung injury in mice. Basic Clin Pharmacol Toxicol [J].2011,108(4):234-240.
    [7]Boyer L, Plantier L, Dagouassat M, et al. Role of nitric oxide synthases in elastase-induced emphysema [J]. Lab Invest.2011,91(3):353-362.
    [8]Jansson AH, Smailagic A, Andersson AM, et al. Evaluation of excised lung gas volume measurements in animals with genetic or induced emphysema [J]. Respir Physiol Neurobiol.2006,150(2-3):240-250.
    [9]Jansson AH, Eriksson C, Wang X. Effects of budesonide and N-acetylcysteine on acute lung hyperinflation, inflammation and injury in rats [J]. Vascul Pharmacol.2005, 43(2):101-111.
    [10]Russo RC, Guabiraba R, Garcia CC, et al. Role of the Chemokine Receptor CXCR2 in Bleomycin-Induced Pulmonary Inflammation and Fibrosis [J]. Am J Respir cell Mol Biol.2009,40(4):410-421.
    [11]Kuang PP, Joyce-Brady M, Zhang XH, et al. Fibulin-5 gene expression in human lung fibroblasts is regulated by TGF-beta and phosphatidylinositol 3-kinase activity [J]. Am J Physiol cell physiol.2006,291 (6):1412-1421.
    [12]Kuang PP, Goldstein RH, Liu Y, et al. Coordinate expression of fibulin-5/DANCE and elastin during lung injury repair [J]. Am J Physiol Lung Cell Mol Physiol.2003;285(5):L1147-1152.
    [13]Fagone E, Conte E, Gili E, et al. Resveratrol inhibits transforming growth factor-beta-induced proliferation and differentiation of ex vivo human lung fibroblasts into myofibroblasts through ERK/Akt inhibition and PTEN restoration [J]. Exp Lung Res.2011,37(3):162-174.
    [14]Kramer EL, Mushaben EM, Pastura PA, et al. Early growth response-1 suppresses epidermal growth factor receptor-mediated airway hyperresponsiveness and lung remodeling in mice [J]. Am J Respir Cell Mol Biol.2009;41(4):415-425.
    [15]Kramer EL, Hardie WD, Mushaben EM, et al. Rapamycin Decreases Airway Remodeling and Hyperreactivity in a Transgenic Model of Noninflammatory Lung Disease [J]. J App1 Physiol.2011,111(6):1760-1767.
    [16]Conte E, Fruciano M, Fagone E, et al. Inhibition of PI3K prevents the proliferation and differentiation of human lung fibroblasts into myofibroblasts:The Role of Class I P110 Isoforms [J]. PLoS One.2011,6(10):e24663.
    [17]Kolb M, Margetts PJ, Anthony DC, et al. Transient expression of IL-lbeta induces acute lung injury and chronic repair leading to pulmonary fibrosis [J]. J Clin Invest.2001,107(12):1529-1536.
    [18]Lappalainen U, Whitsett JA, Wert SE, et al. Interleukin-lbeta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung [J]. Am J Respir Cell Mol Biol 2005; 32(4):311-318.
    [19]Kitamura H, Cambier S, Somanath S, et al. Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin αvβ8-mediated activation of TGF-β [J]. J Clin Invest.2011;121(7):2863-2875.
    [1]Emoto H, Tagashira S, Mattei MG, et a 1.Structure and expression of human fibroblast growth factor 10 [J]. J Biol Chem.1997,272(37):23191-23194.
    [2]Igarashi M, Finch PW, Aaronson SA.Characterization of recombinant human fibroblast growth factor(FGF)-10 reveals functional similarities with keratinocyte growth factor(FGF-7) [J]. J Biol Chem.1998,273(21):13230-13235.
    [3]Wemer S, Smola H, Liao X, et al. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds [J]. Science.1994,266:819-822.
    [4]Ohuchi H, Hori Y, Yamasaki M, et al. FGF-10 acts as a major ligand for FGF receptor 2111b in mousc multiorgan development [J]. Biochem Biophys Res Commun.2000,277(3):643-649.
    [5]Panos RJ, Bak PM, Simonet WS, et al. Intratracheal instillation of keartinocyte growth factor decreases hyperoxia-induced mortality in rats [J]. J Clin Invest.1995, 96(4),2026-2033.
    [6]Yano T, Deterding RR, Simonet WS, et al. Keratinocyte growth factor reduces lung damage due to acid instillation in rats [J]. Am J Respir Cell Mol Biol.1996, 15(4):433-442.
    [7]Sugahara K, Iyama KI, Kuroda MJ, et al. Double intratracheal instillation of keratinocyte growth factor prevents bleomycin-induced lung fibrosis in rats [J]. J Pathol.1998,186(1):90-98.
    [8]Yi ES, Williams ST, Lee H, et al. Keratinocyte growth factor ameliorates radiation-and bleomycin-induced lung injury and mortality [J]. Am J Pathol.1996, 149(6):1963-1970.
    [9]Guo J, Yi ES, Havill AM, et al. Intravenous keratinocyte growth factor protects against experimental pulmonary injury [J]. Am J Physiol Lung Cell Mol Physiol.1998, 275(4):L800-L805.
    [10]Yi ES, Salgado M, Williams S, et al. Keratinocyte growth factor decreases pulmonary edema, transforming growth factor-b and platelet-derived growth factor-BB expression, and alveolar type Ⅱ cell loss in bleomycin-induced lung injury [J]. Inflammation.1998,22(3):315-325.
    [11]Deterding RR, Havill AM, Yano T, et al. Prevention of bleomycin-induced lung injury in rats by keratinocyte growth factor [J]. Proc Assoc Am Physicians.1997, 109(3):254-268.
    [12]Guery R, Mason CM, Dobard EP, et al. Keratinocyte growth factor increases transalveolar sodium reabsorption in normal and injured rat lungs [J]. Am J Respir Crit Care.1997,155(5):1777-1784.
    [13]Mason CM, Guery B, Summer WR, et al. Keratinocyte growth factor attenuates lung leak induced by a-naphthylthiourea in rats [J]. Crit Care Med.1996,24(6), 925-931.
    [14]Welsh DA, Summer WR, Dobard EP, et al. Keratinocyte growth factor prevents ventilator-induced lung injury in an ex vivo rat model [J]. Am J Respir Crit Care. 2000,162(3):1081-1086.
    [15]Viget NB, Guery B, Ader F, et al. Keratinocyte growth factor protects against Pseudomonas aeruginosa-induced lung injury [J]. Am J Physiol Lung Cell Mol Physiol.2000,279(6):L1199-L1209.
    [16]Nakano K, Fukabori Y, Itoh N, et al. Androgen-stimulated human prostate epithelial growth mediated by stromal-derived fibroblast growth factor-10 [J]. Endocr 11999,46(3):405-413.
    [17]Xia C, Wei H, Wei WG, et al. Effects of keratinocyte growth factor 2(kgf-2) on keratinocyte growth, migration and on excisional wound healing [J]. Prog Biochem Biophys.2009,36(7):854-862.
    [18]Jang JH. Stimulation of human hair growth by the recombinant human keratinocyte growth factor-2 (kgf-2) [J]. Biotechnol Lett.2005,27(11):749-752.
    [19]Zhang XY, Wu MJ, Zhang WW, et al. Differentiation of human adipose-derived stem cells induced by recombinantly expressed fibroblast growth factor 10 in vitro and in vivo [J]. In Vitro Cell Dev-An.2010,46(1):60-71.
    [20]Nomura S, Yoshitomi H, Takano S, et al. Fgf10/fgfr2 signal induces cell migration and invasion in pancreatic cancer [J]. Brit J Cancer.2008,99(2):305-313.
    [21]Yamasaki M, Miyake A, Tagashira S, et al. Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family [J]. J Biol Chem.1996,271(27):15918-15921.
    [22]Peng C, He Q, Luo C. Lack of keratinocyte growth factor retards angiogenesis in cutaneous wounds [J]. J Int Med Res 2011; 39(2):416-423.
    [23]Gillis P, Savla U, Volpert OV, et al. Keratinocyte growth factor induces angiogenesis and protects endothelial barrier function [J]. J Cell Sci.1999,112(Pt12): 2049-2057.
    [24]Park WY, Miranda B, Lebeche D, et al. FGF-10 is a chemotactic factor for distal epithelial buds during lung development [J]. Dev Biol.1998,201(2):125-134.
    [25]Upadhyay D, Bundesmann M, Panduri V, et al. Fibroblast growth factor-10 attenuates H2O2-induced alveolar epithelial cell DNA damage-role of mapk activation and dna repair [J]. Am J Resp Cell Mol.2004,31(1):107-113.
    [26]Wu KI, Pollack N, Panos RJ, et al. Keratinocyte growth factor promotes alveolar epithelial cell dna repair after H2O2 exposure [J]. Am J Physiol.1998,275(4Pt1): 780-787.
    [27]Upadhyay D, Correa-Meyer E, Sznajder JI, et al. Fgf-10 prevents mechanical stretch-induced alveolar epithelial cell dna damage via mapk activation [J]. Am J Physiol.2003,284(2):350-359.
    [28]Upadhyay D, Panduri V, Kamp DW. Fibroblast growth factor-10 prevents asbestos-induced alveolar epithelial cell apoptosis by a mitogen-activated protein kinase-dependent mechanism [J]. Am J Respir Cell Mol Biol.2005,32(3):232-238.
    [29]Hawkins PT, Anderson KE, Davidson K, et al. Signalling through Class I PI3Ks in mammalian cells [J]. Biochem Soc Trans.2006,34(Pt5):647-662.
    [30]Taboubi S, Garrouste F, Parat F, et al. Gq-coupled purinergic receptors inhibit insulin-like growth factor-I/phosphoinositide 3-kinase pathway-dependent keratinocyte migration [J]. Mol Biol Cell.2010,21(6):946-955.
    [31]Chang HL, Sugimoto Y, Liu S, et al. Keratinocyte growth factor (KGF) regulates estrogen receptor-alpha (ER-alpha) expression and cell apoptosis via phosphatidylinositol 3-kinase (PI3K)/Akt pathway in human breast cancer cells [J]. Anticancer Res.2009,29(8):3195-3205.
    [32]Zhang T, Guan H, Yang K. Keratinocyte growth factor promotes preadipocyte proliferation via an autocrine mechanism [J]. J Cell Biochem.2010,109(4):737-746.
    1. Ware LB, Matthay MA. Medical progress-the acute respiratory distress syndrome. N. Engl. J. Med.342(18),1334-1349 (2000).
    2. Tomashefski JF. Pulmonary pathology of acute respiratory distress syndrome. Clin. Chest Med.21(3),435-466 (2000).
    3. Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med.163(6),1376-1383 (2001).
    4. Seeger W, Gunther A, Walmrath HD, Griminger F, Lasch HG. Alveolar surfactant and adult respiratory distress syndrome-pathogenetic role and therapeutic prospects. Clin. Investig.71(3),177-190 (1993).
    5. Idell S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. Crit. Care Med.31(4), S213-S220 (2003).
    6. Ware LB, Camerer E, Welty-Wolf K, Schultz MJ, Matthay MA. Bench to bedside: targeting coagulation and fibrinolysis in acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol.291(3), L307-L311 (2006).
    7. Goss CH, Brower RG, Hudson LD, Rubenfeld GD. Incidence of acute lung injury in the United States. Crit. Care Med.31(6),1607-1611 (2003).
    8. Hu X, Qian S, Xu F et al. Incidence, management and mortality of acute hypoxemic respiratory failure and acute respiratory distress syndrome from a prospective study of Chinese paediatric intensive care network. Acta Paediatr. 99(5),715-721(2010).
    9. Brower RG, Matthay MA, Morris A et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl.J. Med.342(18),1301-1308 (2000).
    10. Sessler CN, Gay PC. Are corticosteroids useful in late-stage acute respiratory distress syndrome? Respir. Care 55(1),43-52 (2010).
    11. Peter JV, John P, Graham PL, Moran JL, George IA, Bersten A. Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults:meta-analysis. Br. Med. J.336(7651),1006-1009 (2008).
    12. Meduri GU, Golden E, Freire AX et al. Methylprednisolone infusion in patients with early acute respiratory distress syndrome (ARDS) significantly improves lung function:results of a randomized controlled trial (RCT). Chest 128(Suppl.4), 129S-130S (2005).
    13. Okayama N, Kakihana Y, Setoguchi Det al. Clinical effects of a neutrophil elastase inhibitor, sivelestat, in patients with acute respiratory distress syndrome. J. Anesth.20(1) 6-10 (2006).
    14. Hofstra J, Juffermans NP, Schultz MJ et al. Pulmonary coagulopathy as a new target in lung injury-a review of available pre-clinical models. Curr. Med. Chem. 15(6),588-595(2008).
    15. Willson DF, Thomas NJ, Markovitz BP et al. Effect of exogenous surfactant (Calfactant) in pediatric acute lung injury-a randomized controlled trial. JAMA 293(4),470-476 (2005).
    16. Anzueto A, Baughman RP, Guntupalli KK et al. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. N. Engl. J. Med.334(22), 1417-1421 (1996).
    17. Siobal MS, Hess DR. Are inhaled vasodilators useful in acute lung injury and acute respiratory distress syndrome? Respir. Care 55(2),144-161 (2010).
    18. Lee JW. b(2) adrenergic agonists in acute lung injury? The heart of the matter. Crit. Care 13(6),1011 (2009).
    19. Perkins GD, McAuley DF, Thickett DR, Gao F. The b-agonist lung injury trial (BALTI)-a randomized placebo-controlled clinical trial. Am. J. Respir. Crit. Care Med.173(3),281-287 (2006).
    20. Adhikari NK, Burns KE, Friedrich JO, Granton JT, Cook DJ, Meade MO. Effect of nitric oxide on oxygenation and mortality in acute lung injury:systematic review and meta-analysis. Br. Med. J.334(7597),779-782 (2007).
    21. Dellinger RP, Zimmerman JL, Taylor RW et al. Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome:results of a randomized Phase II trial. Crit. Care Med.26(1),15-23 (1998).
    22. Lundin S, Mang H, Smithies M, Stenqvist O, Frostell C. Inhalation of nitric oxide in acute lung injury:results of a European multicentre study. Intensive Care Med. 25(9),911-919 (1999).
    23. Taylor RW, Zimmerman JL, Dellinger RP et al. Low-dose inhaled nitric oxide in patients with acute lung injury-a randomized controlled trial. JAMA 291(13), 1603-1609(2004).
    24. Geiger R, Kleinsasser A, Meier S et al. Intravenous tezosentan improves gas exchange and hemodynamics in acute lung injury secondary to meconium aspiration. Intensive Care Med.34(2),368-376 (2008).
    25. Putensen C, Hormann C, Kleinsasser A, Putensen-Himmer G. Cardiopulmonary effects of aerosolized prostaglandin E-1 and nitric oxide inhalation in patients with acute respiratory distress syndrome.Am. J. Respir. Crit. Care 157(6),1743-1747 (1998).
    26. Kesecioglu J, Beale R, Stewart TE et al. Exogenous natural surfactant for treatment of acute lung injury and the acute respiratory distress syndrome. Am. J. Respir. Crit. Care 180(10),989-994 (2009).
    27. Taut F, Rippin G, Schenk P et al. A search for subgroups of patients with ARDS who may benefit from surfactant replacement therapy a pooled analysis of five studies with recombinant surfactant protein-C surfactant (Venticute). Chest 134(4), 724-732 (2008).
    28. Spragg RG, Lewis JF, Wurst W et al. Treatment of acute respiratory distress syndrome with recombinant surfactant protein C surfactant. Am. J. Respir. Crit. Care 167(11),1562-1566(2003).
    29. Vincent JL, Artigas A, Petersen LC,39 Meyer C. A multicenter, randomized, double-blind, placebo-controlled, dose-escalation trial assessing safety and efficacy of active site inactivated 40 recombinant factor Vila in subjects with acute lung injury or acute respiratory distress syndrome. Crit. Care Med.37(6), 1874-1880(2009).
    30. Liu KD, Levitt J, Zhuo HJ et al. Randomized clinical trial of activated 41 protein C for the treatment of acute lung injury. Am. J. Respir. Crit. Care 178(6),618-623 (2008).
    31. Schultz MJ, Haitsma JJ, Zhang HB, Slutsky AS. Pulmonary coagulopathy as a· new target in therapeutic studies of acute lung injury or pneumonia-a review. Crit.42 Care Med.34(3),871-877 (2006).
    32. Lee JW, Fang XH, Gupta N, Serikovd V, Matthaya MA. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc. Natl Acad. Sci. USA 106(38), 16357-16362(2009).
    33. Serrano-Mollar A, Nacher M, Gay-Jordi G,44 Closa D, Xaubet A, Bulbena O. Intratracheal transplantation of alveolar type Ⅱ cells reverses bleomycin-induced lung fibrosis. Am. J. Respir. Crit. Care 176(12),1261-1268 (2007).
    34. Berthiaume Y, Lesur O, Dagenais A. Treatment of adult respiratory distress syndrome:plea for rescue therapy of the alveolar epithelium. Thorax 54(2),150- 160(1999).
    35. Orfanos SE, Mavrommati I, Korovesi I,46 Roussos C. Pulmonary endothelium in acute lung injury:from basic science to the critically ill. Intensive Care Med. 30(9),1702-1714(2004).
    36. Shimabukuro DW, Sawa T, Gropper MA. Injury and repair in lung and airways. Crit. Care Med.31(Suppl.8), S524-S531 (2003).
    37. Yamasaki M, Miyake A, Tagashira S, Itoh N. Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J. Biol. Chem.271(27),15918-15921 (1996).
    38. Igarashi M, Finch PW, Aaronson SA. Characterization of recombinant human fibroblast growth factor (FGF)-10 reveals functional similarities with keratinocyte growth factor (FGF-7). J. Biol. Chem.273(21),13230-13235 (1998).
    39. Emoto H, Tagashira S, Mattei MG et al. Structure and expression of human fibroblast growth factor-10. J. Biol. Chem.272(37),23191-23194 (1997).
    40. Zhang XQ, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family-the complete mammalian FGF family. J. Biol. Chem.281(23),15694-15700 (2006).
    41. Ohuchi H, Hori Y, Yamasaki M et al. FGF 10 acts as a major ligand for FGF receptor 2 Ⅲb in mouse multi-organ development. Biochem. Biophys. Res. Commun.277(3),643-649 (2000).
    42. Belleudi F, Leone L, Nobili V et al. Keratinocyte growth factor receptor ligands target the receptor to different intracellular pathways. Traffic 8(12),1854-1872 (2007).
    43. Belleudi F, Leone L, Maggio M, Torrisi MR. Hrs regulates the endocytic sorting of the fibroblast growth factor receptor 2b angiogenesis and protects endothelial barrier function. J. Cell Sci.112(12),2049-2057(1999).
    44. Ramasamy SK, Mailleux AA, Gupte VV et al. FGF 10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development. Dev. Biol.307(2),237-247 (2007).
    45. Sekine K, Ohuchi H, Fujiwara M et al. FGF10 is essential for limb and lung formation. Nat. Genet.21(1),138-141 (1999). Classic evidence of the importance of FGF-10 in limb and lung formation.
    46. Bellusci S, Grindley J, Emoto H, Itoh N, Hogan B. Fibroblast growth factor 10(FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124(23),4867-4878 (1997).
    47. Clark JC, Tichelaar JW, Wert SE et al. FGF-10 disrupts lung morphogenesis and causes pulmonary adenomas in vivo. Am. J. Physiol. Lung Cell Mol. Physiol. 280(4), L705-L715 (2001).
    48. Ishiwata T, Naito Z, Lu YP, Kawahara K, Fujii T, Kawamoto Y, Teduka K, Sugisaki Y. Differential distribution of fibroblast growth factor (FGF)-7 and FGF-10 in L-arginine-induced acute pancreatitis. Exp. Mol. Pathol.73(3),181-190(2002).
    49. Gillis P, Savla U, Volpert OV, Jimenez B, Waters CM, Panos RJ, Bouck NP. Keratinocyte growth factor induces angiogenesis and protects endothelial barrier function. J. Cell Sci.112(12),2049-2057(1999).
    50. Tagashira S, Harada H, Katsumata T et al. Cloning of mouse FGF10 and up-regulation of its gene expression during wound healing. Gene 197(1-2),399-404 (1997).
    51. Upadhyay D, Bundesmann M, Panduri V, Correa-Meyer E, Kamp DW. Fibroblast growth factor-10 attenuates H2O2-induced alveolar epithelial cell DNA damage-role of MAPK activation and DNA repair. Am. J. Respir. Cell Mol. Biol.31(1), 107-113(2004).
    52. Upadhyay D, Correa-Meyer E, Sznajder JI, Kamp DW. FGF-10 prevents mechanical stretch-induced alveolar epithelial cell DNA damage via MAPK activation. Am. J. Physiol. Lung Cell Mol. Physiol.284(2), L350-L359 (2003).
    53. Upadhyay D, Panduri V, Kamp DW. Fibroblast growth factor-10 prevents asbestos-induced alveolar epithelial cell apoptosis by a mitogen-activated protein kinase-dependent mechanism. Am. J. Respir. Cell Mol. Biol.32(3),232-238 (2005).
    54. Han DS, Li FL, Holt L et al. Keratinocyte growth factor-2 (FGF-10) promotes healing of experimental small intestinal ulceration in rats. Am. J. Physiol. Gastrointest. Liver Physiol.279(5), G1011-G1022 (2000).
    55. Sung C, Pary TJ, Riccobene TA et al. Pharmacologic and pharmacokinetic profile of repifermin (KGF-2) in monkeys and comparative pharmacokinetics in humans. AAPS PharmSci 4(82), E8 (2002).
    56. Hokuto I, Per1 A, Whitsett JA. FGF signaling is required for pulmonary homeostasis following hyperoxia. Am. J. Physiol. Lung Cell Mol. Physiol.286(3), L580-L587 (2004).
    57. Gupte W, Ramasamy SK, Reddy R et al. Overexpression of fibroblast growth factor-10 during both inflammatory and fibrotic phases attenuates bleomycin-induced pulmonary fibrosis in mice. Am. J. Respir. Crit. Care 180(5),424-436 (2009).
    58. Nakano K, Fukabori Y, Itoh N et al. Androgen-stimulated human prostate epithelial growth mediated by stromal-derived fibroblast growth factor-10. Endocr. J.46(3),405-413 (1999).
    59. Xia C, Wei H, Wei WG et al. Effects of keratinocyte growth factor 2(kgf-2) on keratinocyte growth, migration and on excisional wound healing. Prog. Inorg. Biochem. Biophys.36(7),854-862 (2009).
    60. Jang JH. Stimulation of human hair growth by the recombinant human keratinocyte growth factor-2 (KGF-2). Biotechnol. Lett.27(11),749-752 (2005).
    61. Yamasaki M, Emoto H, Konishi M et al. FGF-10 is a growth factor for preadipocytes in white adipose tissue. Biochem. Biophys. Res. Commun.258(1), 109-112(1999).
    62. Zhang XY, Wu MJ, Zhang WW, Shen JF, Liu HQ. Differentiation of human adipose-derived stem cells induced by recombinantly expressed fibroblast growth factor 10 in vitro and in vivo. In Vitro Cell Dev. Biol. Anim.46(1),60-71 (2010).
    63. Konishi M, Asaki T, Koike N, Miwa H, Miyake A, Itoh N. Role of FGF10 in cell proliferation in white adipose tissue. Mol. Cell. Endocrinol.249(1-2),71-77 (2006).
    64. Shin M, Noji S, Neubuser A, Yasugi S. FGF10 is required for cell proliferation and gland formation in the stomach epithelium of the chicken embryo. Dev. Biol. 294(1),11-23 (2006).
    65. Jimenez PA, Rampy MA. Keratinocyte growth factor-2 accelerates wound healing in incisional wounds. J. Surg. Res.81(2),238-242 (1999).
    66. Nomura S, Yoshitomi H, Takano S et al.. FGF10/FGFR2 signal induces cell migration and invasion in pancreatic cancer. Br. J. Cancer 99(2),305-313 (2008).
    67. Tao H, Shimizu M, Kusumoto R, Ono K, Noji S, Ohuchi H. A dual role of FGF10 in proliferation and coordinated migration of epithelial leading edge cells during mouse eyelid development. Development 132(14),3217-3230 (2005).
    68. Panos RJ, Bak PM, Simonet WS, Rubin JS, Smith LJ. Intratracheal instillation of keartinocyte growth factor decreases hyperoxia-induced mortality in rats. J. Clin. Invest.96(4),2026-2033 (1995).
    69. Huang M, Berkland C. Controlled release of repifermin (R) from polyelectrolyte complexes stimulates endothelial cell proliferation. J. Pharm. Sci.98(1),268-280 (2009).
    70. Yano T, Deterding RR, Simonet WS, Shannon JM, Mason RJ. Keratinocyte growth factor reduces lung damage due to acid instillation in rats. Am. J. Respir. Cell Mol. Biol.15(4),433-442 (1996).
    71. Sugahara K, Iyama KI, Kuroda MJ, Sano K. Double intratracheal instillation of keratinocyte growth factor prevents bleomycin-induced lung fibrosis in rats. J. Pathol.186(1),90-98(1998).
    72. Yi ES, Williams ST, Lee H et al. Keratinocyte growth factor ameliorates radiation-and bleomycin-induced lung injury and mortality. Am J. Pathol.149(6), 1963-1970(1996).
    73. Guo J, Yi ES, Havill AM et al. Intravenous keratinocyte growth factor protects against experimental pulmonary injury. Am. J. Physiol. Lung Cell Mol. Physiol. 275(4), L800-L805 (1998).
    74. Yi ES, Salgado M, Williams S et al. Keratinocyte growth factor decreases pulmonary edema, transforming growth factor-b and platelet-derived growth factor-BB expression, and alveolar type Ⅱ cell loss in bleomycin-induced lung injury. Inflammation 22(3),315-325 (1998).
    75. Deterding RR, Havill AM, Yano T et al. Prevention of bleomycin-induced lung injury in rats by keratinocyte growth factor. Proc. Assoc. Am. Physicians 109(3), 254-268(1997).
    76. Guery R, Mason CM, Dobard EP, Beaucaire G, Summer WR, Nelson S. Keratinocyte growth factor increases transalveolar sodium reabsorption in normal and injured rat lungs. Am. J. Respir. Crit. Care 155(5),1777-1784 (1997).
    77. Mason CM, Guery B, Summer WR, Nelson S. Keratinocyte growth factor attenuates lung leak induced by a-naphthylthiourea in rats. Crit. Care Med.24(6), 925-931(1996).
    78. Welsh DA, Summer WR, Dobard EP, Nelson S, Mason CM. Keratinocyte growth factor prevents ventilator-induced lung injury in an ex vivo rat model. Am. J. Respir. Crit. Care 162(3),1081-1086 (2000).
    79. Viget NB, Guery B, Ader F et al. Keratinocyte growth factor protects against Pseudomonas aeruginosa-induced lung injury. Am. J. Physiol. Lung Cell Mol. Physiol.279(6), L1199-L1209 (2000).
    80. Ulich TR, Yi ES, Longmuir K et al. Keratinocyte growth factor is a growth factor for type Ⅱ pneumocytes in vivo. J. Clin. Invest.93(3),1298-1306 (1994).
    81. Bao SY, Wang YJ, Sweeney P et al. Keratinocyte growth factor induces Akt kinase activity and inhibits Fas-mediated apoptosis in A549 lung epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol.288(1), L36-L42 (2005).
    82. Wang G, Slepushkin VA, Bodner M et al. Keratinocyte growth factor induced epithelial proliferation facilitates retroviral-mediated gene transfer to distal lung epithelia in vivo. J. Gene Med.1(1),22-30 (1999).
    83. Sugahara K, Rubin JS, Mason RJ, Aronson EL, Shannon JM. Keratinocyte growth factor increases mRNAs for SP-A and SP-B in adult rat alveolar type Ⅱ cells in culture. Am. J Physiol.269(3), L344-L350 (1995).
    84. Borok Z, Danto SI, Dimen LL et al. Na+-K+-ATPase expression in alveolar epithelial cells:upregulation of active ion transport by KGF. Am. J. Physiol. Lung Cell Mol. Physiol.274(1), L149-L158 (1998).
    85. Guery R, Mason CM, Dobard EP et al. Keratinocyte growth factor increases transalveolar sodium reabsorption in normal and injured rat lungs. Am. J. Respir. Crit. Care Med.155(5),1777-1784 (1997).
    86. Waters CM, Savla U, Panos RJ et al. KGF prevents hydrogen peroxide-induced increases in airway epithelial cell permeability. Am. J. Physiol. Lung Cell Mol. Physiol.272(4), L681-L689(1997).
    87. Park WY, Miranda B, Lebeche D, Hashimoto G, Cardoso WV. FGF-10 is a chemotactic factor for distal epithelial buds during lung development. Dev. Biol. 201(2),125-134(1998).
    88. Hart A, Papadopoulou S, Edlund H. FGF10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Dev. Dyn. 228(2),185-193 (2003).
    89. Bhushan A, Itoh N, Kato S et al. FGF10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128(24),5109-5117 (2001).
    90. Alderson R, Gohari-Fritsch S, Olsen H et al. In vitro and in vivo effects of repifermin (keratinocyte growth factor-2, KGF-2) on human carcinoma cells. Cancer Chemother. Pharm.50(3),202-212(2002).
    91. Asaki T, Konishi M, Miyake A, Kato S, Tomizawa M, Itoh N. Roles of fibroblast growth factor 10 (FGF10) in adipogenesis in vivo. Mol. Cell. Endocrinol.218(1-2),119-128(2004).
    92. Browne G, Bhavsar M, O'Kane CM et al. A potential role for keratinocyte growth factor and clarithromycin in the treatment of paraquat overdose. Q. J. Med.103(8), 611-613(2010).
    93. Wheeler G. Repifermin. Human Genome Sciences/GlaxoSmithKline. IDrugs 4(7) 813-819(2001).
    94. Robson MC, Phillips TJ, Falanga V et al. Randomized trial of topically applied, repifermin (recombinant human keratinocyte growth factor-2) to accelerate wound healing in venous ulcers. Wound Repair Regen.9(5),347-352 (2001).
    95. Stern JB, Fierobe L, Paugam C et al.. Keratinocyte growth factor and hepatocyte growth factor in bronchoalveolar lavage fluid in acute respiratory distress syndrome patients. Crit. Care Med.28(7),2326-2333 (2000).
    96. Verghese GM, McCormick-Shannon K, Mason RJ, Matthay MA. Hepatocyte growth factor and keratinocyte growth factor in the pulmonary edema fluid of patients with acute lung injury-biological and clinical significance. Am. J. Respir. Crit. Care 158(2),386-394 (1998).
    97. Quesnel C, Marchand-Adam S, Fabre A et al. Regulation of hepatocyte growth factor secretion by fibroblasts in patients with acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol.294(2), L334-L343 (2008).
    98. Chandel NS, Budinger GR, Mutlu GM et al. Keratinocyte growth factor expression is suppressed in early acute lung injury/acute respiratory distress syndrome by smad and c-Abl pathways. Crit. Care Med.37(5),1678-1684 (2009).
    1. Rabe KF, Hurd S, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease-GOLD executive summary. Am J Respir Crit Care Med.2007;176(6):532-555.
    2. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. Plos Medicine.2006;3(e44211):2011-2030.
    3. Halbert RJ, Natoli JL, Gano A, et al. Global burden of COPD:systematic review and meta-analysis. Eur Respir J.2006;28(3):523-532.
    4. World Health Organization. The global burden of disease:2004 update.(available online at: http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/inde x.html).
    5. Zhong N, Wang C, Yao W, et al. Prevalence of chronic obstructive pulmonary disease in China-A large, population-based survey. Am J Respir Crit Care Med. 2007;176(8):753-760.
    6. Liu S, Wang X, Wang D, et al. [Epidemiologic analysis of COPD in Guangdong province]. Chin Med J.2005;85(11):747-752.
    7. Yao W, Zhu H, Shen N, et al. [Epidemiological data of chronic obstructive pulmonary disease in Yanqing County in Beijing]. J Peking Univ. 2005;37(2):121-125.
    8. Wang X, Zhou Y, Zeng X, et al. [Study on the prevalence rate of chronic obstructive pulmonary disease in northern part of Guangdong province]. Chin J Epidemiol.2005;26(3):211-213.
    9. Chen H, Su W, Chen X. [Epidemiologic survey and risk factors analysis of COPD in People aged 40ys or older in rural areas of Lianjiang, Guangdong]. J Guangdong Med.2008;26(5):560-564.
    10. Shan S, Chen B. [Epidemiology Investigation of Chronic obstructive pulmonary disease in city and country of Tianjin]. Med J Tianjin Univ.2007;35(7):488-490.
    11. Jiang R, Luo D, Huang C, et al. [Study on the prevalence rate and risk factors of chronic obstructive pulmonary disease in rural community population in Hubei province]. Chin J Epidemiol.2007;28(10):976-979.
    12. Tang G, Yuan F, Pang Y, et al. [Survey on prevalence and risk factors of COPD in rural areas in Anhui province]. Chin J Tuberc Respir Dis.2000;24(4):245.
    13. Cai L, Zhao K, Tang P. [Analysis On Burden of Chronic Obstructive Pulmonary Disease in Rural Kunming]. Chin J Prev Control Chron Dis.2009; 17(1):80-81.
    14.马睿,程齐俭,姚迪等.上海地区老年人慢性阻塞性肺部疾病的流行病学研究.上海第二医科大学学报,2005.25(5):521-524.
    15.侯刚,李猛;冯学威等,辽宁部分农村地区女性慢性阻塞性肺疾病流行病学调查.中国医科大学学报,2007.36(6):671-672.
    16.洪秀琴.湖南省部分地区慢性阻塞性肺疾病流行现状和危险因素分析[D].湖南省:中南大学,2009.
    17.张明泳.青岛市周边农村慢性阻塞性肺疾病危险因素的流行病学研究[D].山东省:青岛大学,2006.
    18.李琦,廖秀清,张巧,等.重庆市部分城区慢性阻塞性肺疾病流行病学的抽样调查.中国呼吸与危重监护杂志2009;8(1):12-15.
    19. COPD prevalence in 12 Asia-Pacific countries and regions:projections based on the COPD prevalence estimation model. Respirology.2003;8(2):192-198.
    20. Halbert RJ, Isonaka S, George D, et al. Interpreting COPD prevalence estimates: What is the true burden of disease? Chest..2003; 123(5):1684-1692.
    21. Xu F, Yin XY, Zhang M, et al. Prevalence of physician-diagnosed COPD and its association with smoking among urban and rural residents in regional mainland China. Chest.2005;128(4):2818-2823.
    22. Chinese Ministry Of Health. The top-ten disease-specific rates and causes of death among urban and rural residents.2008. (available online at: http://www.moh.gov.cn/publicfiles/business/htmlfiles/zwgkzt/ptjnj/200908/42635. htm).
    23. He J, Gu DF, Wu XG, et al. Major causes of death among men and women in China. New Engl J Med.2005;353(11):1124-1134.
    24. Reilly KH, Gu DF, Duan XF, et al. Risk factors for chronic obstructive pulmonary disease mortality in Chinese adults. Am J Epidemiol.2008; 167(8):998-1004.
    25. Tan WC, Seale P, Ip M, et al. Trends in COPD mortality and hospitalizations in countries and regions of Asia-Pacific. Respirology.2009;14(1):90-97.
    26. Wan C. Tan, Tze P. Ng. COPD in Asia:where East meets West. Chest.2008; 133(2)
    27. Chiang CH. Cost analysis of chronic obstructive pulmonary disease in a tertiary care setting in Taiwan. Respirology.2008;13(5):689-694.
    28. He QY, Zhou X, Xie CM, et al. [Impact of chronic obstructive pulmonary disease on quality of life and economic burden in Chinese urban areas]. Chin J Tuberc RespirDis.2009;32(4):253-257.
    29. Chinese center for disease control and prevention.Report on Chronic Disease in China,2006. (available online at: http://www.chinacdc.net.cn/n272442/n272530/n272742/appendix/manxingbing.pd f).
    30. Wipfli H, Samet JM. Global Economic and Health Benefits of Tobacco Control: Part 1. Clin Pharmacol Ther.2009;86(3):263-271.
    31. Yang G, Ma J, Chen AP, et al. Smoking among adolescents in China:1998 survey findings. Int J Epidemiol.2004;33(5):1103-1110.
    32. Anderson JC, Palmer PH, Chou CP, et al. Tobacco use among youth and adults in Mainland China:the China Seven Cities Study. Public Health. 2006; 120(12):1156-1169.
    33. Mao R, Li XM, Stanton B, et al. Psychosocial correlates of cigarette smoking among college students in China. Health Edu Res.2009;24(1):105-118.
    34. Wang CP, Ma SJ, Xu XF, et al. The prevalence of household second-hand smoke exposure and its correlated factors in six counties of China. Tob Control. 2009;18(2):121-126.
    35.韩京秀,马玲,张宏伟等.中国三城市非吸烟妇女被动吸烟现况及影响因素分析.卫生研究.2006;35(5):609-611.
    36. Zhang H, Cai BQ. The impact of tobacco on lung health in China. Respirology. 2003;8(1):17-21.
    37. Hesketh T, Lu L, Jun YX, et al. Smoking, cessation and expenditure in low income Chinese:cross sectional survey. BMC Public Health.2007;7(29).
    38. Martin P, Glasgow H, Patterson J. Chronic obstructive pulmonary disease (COPD): smoking remains the most important cause[abstract]. New Zeal Med J. 2005;118(1213):U1409.
    39. Gu DF, Kelly TN, Wu XG, et al. Mortality Attributable to Smoking in China. New Engl J Med.2009;360(2):150-159.
    40. Xu F, Yin XM, Shen HB, et al. Better understanding the influence of cigarette smoking and indoor air pollution on chronic obstructive pulmonary disease:A case-control study in Mainland China. Respirology.2007;12(6):891-897.
    41. Yin P, Jiang CQ, Cheng KK, et al. Passive smoking exposure and risk of COPD among adults in China:the Guangzhou Biobank Cohort Study. Lancet. 2007;370(9589):751-757.
    42. Menezes A, Hallal PC. Role of passive smoking on COPD risk in non-smokers. Lancet.2007;370(9589):716-717.
    43. Yang G, Ma J, Liu N, et al. [Smoking and passive smoking in Chinese,2002]. Chin J Epidemiol.2005;26(2):77-83.
    44.程义斌,金银龙,顾珩,等.中国农村居民吸烟行为调查卫生研究.2003;32(4):366-368.
    45. Lin HH, Murray M, Cohen T, et al. Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China:a time-based, multiple risk factor, modelling study. Lancet.2008;372(9648):1473-1483.
    46. Yang GH, Ma JM, Chen AP, et al. Smoking cessation in China:findings from the 1996 national prevalence survey. Tob Control.2001;10(2):170-174.
    47. Ekici A, Ekici M, Kurtipek E, et al. Obstructive airway diseases in women exposed to biomass smoke. Environ Res.2005;99(1):93-98.
    48. PerezPadilla R, Regalado J, Vedal S, et al. Exposure to biomass smoke and chronic airway disease in Mexican women-A case-control study. Am J Respir Crit Care Med.1996;154(3):701-706.
    49. Kiraz K, Kart L, Demir R, et al. Chronic pulmonary disease in rural women exposed to biomass fumes. Clin Invest Med.2003;26(5):243-248.
    50. Liu SM, Zhou YM, Wang XP, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax. 2007;62(10):889-897.
    51. Hu GP, Zhou YM, Tian J, et al. Risk of COPD From Exposure to Biomass Smoke-A Metaanalysis. Chest.2010;138(1):20-31.
    52. Ran P, Wang C, Yao W, et al. [The risk factors for chronic obstructive pulmonary disease in females in Chinese rural areas]. Chin J Intern Med. 2006;45(12):974-979.
    53. Chapman RS, He XZ, Blair AE, et al. Improvement in household stoves and risk of chronic obstructive pulmonary disease in Xuanwei, China:retrospective cohort study. BMJ.2005;331(7524):1050-1052.
    54. Yang GH, Zhong NS. Effect on health from smoking and use of solid fuel in China. Lancet.2008; 372(9648):1445-1446.
    55. Lieberman J, Winter B, Sastre A. Alpha 1-antitrypsin-types in 965 COPD patients. Chest.1986;89(3):370-373.
    56. Zhu YJ. Epidemiological survey of chronic obstructive pulmonary disease and alpha-1-deficiency in China. Respirology.2001;6(Suppl):13-15.
    57. Zhong L, Fu WP, Sun C, et al. Absence of association between SERPINE2 genetic polymorphisms and chronic obstructive pulmonary disease in Han Chinese: a case-control cohort study. BMC Med Genet.2009; 10:66.
    58. Zhu G, Warren L, Aponte J, et al. The SERPINE2 gene is associated with chronic obstructive pulmonary disease in two large populations. Am J Respir Crit Care Med..2007;176(2):167-173.
    59. Hu G P, Shi Z, Hu JX, et al. Association between polymorphisms of microsomal epoxide hydrolase and COPD:Results from meta-analyses. Respirology. 2008;13(6):837-850.
    60. Fu WP, Zhao ZH, Fang LZ, et al. Heme oxygenase-1 polymorphism associated with severity of chronic obstructive pulmonary disease. Chin Med J. 2007;120(1):12-16.
    61. Fu WP, Sun C, Dai LM, et al. Relationship between COPD and polymorphisms of HOX-1 and mEPH in a Chinese population. Oncol Rep.2007;17(2):483-488.
    62. Liu SM, Li B, Zhou YM et al. Genetic analysis of CC16, OGG1 and GCLC polymorphisms and susceptibility to COPD. Respirology.2007;12(1):29-33.
    63. Huang N, Liu L, Wang XZ, et al. Association of interleukin (IL)-12 and IL-27 gene polymorphisms with chronic obstructive pulmonary disease in a Chinese population. DNA Cell Biol.2008;27(9):527-531.
    64. Yuan YM, Liu XJ, Li JW. The association of matrix metalloproteinase-9 gene polymorphism with chronic obstructive pulmonary disease susceptibility in han nationality of southwestern China. Chest.2006;130(Suppl).S:277S.
    65. Hu G, Peng G, Hu J, et al. Association of tumor necrosis factor alpha 308 G/A gene promoter polymorphism with the presence of chronic obstructive pulmonary disease:a meta-analysis. Chin J Tuberx Respir Dis.2007;30(8):588-594.
    66. Sakao S, Tatumi K, Igari H. Association of tumor necrosis factor alpha gene promoter polymorphism with the presence of chronic obstructive pulmonary disease. Am J Respir Crit Care Med.2001; 163(2):420-422.
    67. Jiang L, He B,; Zhao, MW, et al. Association of gene polymorphisms of tumour necrosis factor-alpha and interleukin-13 with chronic obstructive pulmonary disease in Han nationality in Beijing. Chin Med J.2005;118(7):541-547.
    68. Ning YY, Ying BW, Han SX, et al.Polymorphisms of aquaporin5 gene in chronic obstructive pulmonary disease in a Chinese population. Swiss Med Wkly. 2008;138(39-40):573-578.
    69. Wang K, Feng YL, Wen FQ, et al. Decreased expression of human aquaporin-5 correlated with mucus overproduction in airways of chronic obstructive pulmonary disease. Acta Pharmacol Sin.2007;28(8):1166-1174.
    70.周玉民,王辰,姚婉贞等.职业接触粉尘和烟雾对慢性阻塞性肺疾病及呼吸道症状的影响.中国呼吸与危重监护杂志.2009;8(1):6-1 1.
    71.胡云平,潘举升,王晓江等.焦炉逸散物作业工人慢性阻塞性肺疾病流行病学调查.环境与职业医学.2003;20(3):191-194.
    72. Hu Y, Chen B, Yin Z, et al. Increased risk of chronic obstructive pulmonary diseases in coke oven workers:interaction between occupational exposure and smoking. Thorax..2006;61(4):290-295.
    73. Wang XR, Yano E, Nonaka K, et al. Respiratory impairments due to dust exposure:A comparative study among workers exposed to silica, asbestos, and coalmine dust. Am JInd Med.1997;31(5):495-502.
    74. Ran P, Wang C, Yao W. A study of correlation of body mass index with COPD and quality of life. Chin J Tuberc Respir Dis.2007;30(l):18-22.
    75.黄志俭,罗琴,凌敏等.慢性阻塞性肺病体重指数与肺功能的相关性研究.临床肺科杂志.2009;14(1):14-16.
    76.薛兵,杨霁,李秀叶等.体重指数对慢性阻塞性肺疾病愈后的影响.临床肺科杂志.2008;13(3):281-282.
    77.杜月君,罗怡,霍震.慢性阻塞性肺疾病体重指数与再住院关系分析.医学理论与实践.2007;20(2):183-184.
    78. Viegi, G.; Maio, S.; Pistelli, et al. Epidemiology of chronic obstructive pulmonary disease:Health effects of air pollution. Respirology.2006; 11(5):523-532.
    79. Kan, HD, Chen BH. A case-crossover analysis of air pollution and daily mortality in Shanghai. J Occup Health.2003;45(2):119-124.
    80. Respiratory Diseases Branch of Chinese Medical Association. A National guideline for the diagnosis, management, and prevention of chronic obstructive pulmonary disease in China. Chin J Tuberc Respir Dis.2007;30(1):8-17.
    81.张海琴,李燕芹,秦慧等.关于内科医师对慢性阻塞性肺疾病诊疗行为的调查.上海医学.2008;31(11):806-811.
    82.刘振威,顾宇彤,蔡映云.临床医师掌握肺功能检查在诊断慢性阻塞性肺疾病中的意义的调研.中国临床医学.2004;11(1):39-41.
    83.娄培安,安晓红,张雷等.农村不同性别慢性阻塞性肺疾病患者行为认知差异分析.中华保健医学杂志.2009;11(3):198-201.
    84. Shen N, Yao WHSC, Zhu H. Patient's perspective of chronic obstructive pulmonary disease in Yanqing County of Beijing. Chin J Tuberc Respir Dis. 2008;31(3):206-208.
    85. Li Z, Huang J, Tang K. [Retrospective studies on 713 cases chronic obstructive pulmonary disease]. Chin J Epidemiol.2003;24(8):722-724.
    86. He Q, Zhao Q. Spirometry utilization for COPD in several provinces in China. Chin J Tuberc Respir Dis.2003;26(1):39-40.
    87.李晓峰,张峰英,杭晶卿.肺功能检测在慢性阻塞性肺疾病诊断应用现状.临床荟萃.2009;24(5):387-389.
    88. Sin DD, Tan WC. Breaking down the "great wall" of COPD care in China. Am J Respir Crit Care Med.2007;176(8):732-733.
    89.陈炼,张国林,林少姗等.健康教育对稳定期慢性阻塞性肺疾病患者肺功能和生活质量的影响.中华流行病学杂志..2005;26(10):808-810.
    90. Xie G, Cheng X, Xu X, et al. [Effects of comprehensive interventions in community on smoking, chronic bronchitis, and asthma in rural areas of Beijing]. Chin J Med Sci.2005;27(1):92-98.
    91.陈奎利COPD患者对疾病认知的状况调查[D]辽宁省:中国医科大学.2009.
    92.鄢莉宏,冷蓓峥,许宾等.慢性阻塞性肺疾病患者对疾病认知情况及健康教育需求.中国初级卫生保健.2009;23(2):62-63.
    93.张雪梅,徐蕾,周小燕.老年COPD稳定期患者家庭氧疗的调查.现代预防医学.2008;35(11):2196-2200.
    94.陈燕,吴尚洁,向旭东.慢性阻塞性肺疾病患者长期家庭氧疗现状调查.中国现代医学杂志.2007;17(21):2658-2660.
    95.娄培安,余加席,安晓红.徐州市慢性阻塞性肺疾病患者的认知情况调查.中华全科医师杂志.2009;8(3):157-159.
    96.何权瀛,周新,谢灿茂等.中国部分城市稳定期慢性阻塞性肺疾病治疗现况断面调查.中国实用内科杂志.2009;29(4):354-357.
    97.张荣葆.何权瀛 基层医生对慢性阻塞性肺疾病相关知识的认知情况.中国慢性病预防与控制.2009;17(1):61-63.
    98.姜垣,李新华,吴曦.中国医生吸烟与戒烟行为.中国慢性病预防与控制. 2009;17(3):224-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700