用户名: 密码: 验证码:
核磁共振地下水探测仪模拟跟踪滤波器研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,工频及其谐波的干扰一直是困扰人们生产生活的难题,例如在核磁共振地下水探测仪中,工频的奇次谐波(由于电力系统是由双向对称的元件组成的,这些元件产生的电压和电流具有半波对称的特性,偶次谐波被抵消,故不考虑偶次谐波)会对核磁共振信号的提取造成严重的干扰,影响仪器后期信号处理、数据反演的精度,最终导致测量结果的可信度降低,为地下水探测工作的顺利开展带来不便。吉林大学研制的核磁共振地下水探测仪中主要从仪器系统采用合理的电磁兼容设计、采用无源四阶高通滤波器针对1KHz以下的工频谐波进行简单的滤除、采用双二次型带通滤波器进一步抑制工频及其2次谐波的干扰、采取开关电容滤波器窄带程控滤波器具有较好的滤波效果、软件滤波等方面对工频谐波干扰进行抑制:尽管目前已经使用多种方法对工频谐波干扰加以抑制,但效果并不是十分显著。
     本文是针对吉林大学仪器科学与电气工程学院自主研发的隧道灾害水源磁共振与瞬变电磁联合超前探测仪抗工频谐波干扰问题的研究,主要内容包括:核磁共振地下水探测仪抗干扰部分存在的问题及核磁共振地下水探测仪内部接收到的工频谐波干扰分析、模拟跟踪滤波器的理论分析、快速高精度的幅度测量技术,精确测量干扰信号幅度的有效值、快速高精度的FPGA频率测量技术,精确测量干扰信号的频率值、快速高精度的相位跟踪技术,精确测量干扰信号和任意正弦信号的发生器产生信号的相位差、任意正弦波信号发生技术,产生与干扰信号同幅度同频率同相位的正弦信号。经过测试核磁共振地下水探测仪模拟跟踪滤波器的各项功能模块的稳定性,测量精度均达到了预期设计的目的,并为后期开展隧道灾害水源磁共振与瞬变电磁联合超前探测仪产品化和抗干扰性能的进一步提升奠定了研究基础。
With the rapid development of China’s industrial economy, more and morenonlinear devices connected to the power network, which leading to a series ofproblems that large numbers of harmonic current injected into the power network,results in a serious decrease of power quality, energy waste and lower economicefficiency. The interference of power frequency and its harmonics always puzzledpeople’s working and living for a long time. In MRS(Magnetic ResonanceSounding) underground water detection system, the odd harmonic of power frequencycaused serious interference to the extraction of the MRS signal. The odd harmonicaffected the accuracy of signal process and data inversion, which eventually lead tolow reliability of the measurement results and brought inconvenience for groundwaterexploration. In the MRS groundwater detection instrument designed and developed byJilin University, reasonable design of electromagnetic compatibility was taken intoconsideration and many types of filter technique was applied. Passive fourth-orderhigh-pass filter was used to remove industrial frequency harmonic less than1KHz;Double quadratic bandpass filter was used to further suppress power frequency and itsharmonicinterference; Switched capacitor filter and narrowband program-controlledfilter both have good filtering performance; Software filter also used to filter interference. Despite these methods to be used to suppress the industrial frequencyharmonics interference, but the effect is not obvious enough.
     This paper was discussed the issue of reducing industrial frequency harmonicsinterference, the result would applied to the MRS and TEM joint advanced detectorfor tunnel water disasters developed by college of instrumentation&electricalengineering, Jilin university. This paper was consist of three parts, the first part wastheoretical research about characteristics of the harmonic interference and analogtracking filter; the second part was the whole design of analog tracking filter,including software and hardware; the third part was the testing result and analysis.
     Chapter one was the exordium. It includes: background and significance ofanalog tracking filter; current progress and problems in suppressing interference athome and abroad; research content and order of the paper.
     Chapter two was the fundamental theory. Includes the basic theory of MRSgroundwater exploration, working principle of JLMRS-1MRS groundwater detectioninstrument and current problems of the instrument anti-interference.
     Chapter three introduced the detailed analysis of industrial frequency harmonicsinterference of MRS groundwater detection instrument and basic design principle ofanalog tracking filter module.
     Chapter four introduced the hardware design of analog tracking filter in detail,which mainly includes measurement part, frequency measurement part, phasemeasurement part and signal generating part.
     Chapter five introduced the software design of analog tracking filter, whichmainly divides into signal measurement and signal generation.
     Chapter six was mainly on the test of each and whole function and analysed thetest result of analog tracking filter.
     Chapter seven arrived at some conclusion. The remaining problems of thismethod and researches had been discussed, as well as suggestion for futuredevelopment and application.
     After lots of tests, the stability of each function modules and measurementaccuracy of MRS groundwater detection analog tracking filter achieve the expected design purpose. This research provided the foundation for product forming andimprovement of anti-interference performance of the MRS and TEM joint advanceddetector for tunnel water disasters.
引文
[1]王增平.浅谈电力谐波的危害及其治理措施[J].内蒙古技术.2007.6:37‐39.
    [2]高少兰,王育武.电网谐波的危害及治理方案分析[J].广东科技.2011.05:100‐101.
    [3]姜志宁.浅析电力谐波的危害及治理[J].通信电源技术.2009.01:67‐71.
    [4]李建明.电力谐波抑制与无源电力滤波技术[J].电源世界.2009.2:21‐28.
    [5] GB/T14549‐93电能质量电力系统频率允许偏差.公共电网谐波.中华人民共和国国家标准.2008.
    [6]中华人民共和国国家经济委员会.全国供用电规则[M].水利电力出版社.1984.3.
    [7]田瑜娟.核磁共振地下水探测仪科研样机调理电路设计[M].吉林大学.2010.
    [8] Walsh, D O,2006. Multi‐channel MRS instrumentation and software forenhanced noise mitigation and2D/3D imaging[J]. Proc.of the3rd MagneticResonance Sounding International Workshop, Madrid Spain,October2006:73‐76.
    [9] Walsh D O,2008,Multi‐channel surface NMR instrumentation and software for1D/2D groundwater investigations[J], Journal of Applied Geophysics,vol.66no.3‐4:140‐150.
    [10] Walsh D O,2009,Surface NMR: Recent Advances in the Technology and itsApplication to Aquifer Characterization in the USA[J],2009,FastTIMES,Vol.14,No.4:19‐25.
    [11] Goldman, M., Rabinovich, Schirov, M.,et al.,1994, Application of theintegrated NMR‐TDEM method in ground water exploration in Israel[J], J. ofApplied Geophysics:31,27‐52.
    [12] Shushakov O.A. Groundwater NMR in conductive water[J], Geophysics, vol.61,No4,1996:998‐1006.
    [13] Legchenko A.V., Shushakov O.A. Inversion of surface NMR data[J],Geophysics,1998, v.63, No1:75‐84.
    [14] Roy J, Rouleau A, Chouteau M,2008, Widespread occurrence of aquiferscurrently undetectable with the MRS technique in the Grenville geologicalprovince[J], Canada, Journal of Applied Geophysics, Volume66, Issues3‐4:82‐93.
    [15]张昌达,李振宇,潘玉玲.磁共振测深技术发展现状.[J].工程地球物理学报.2011.6:314‐320.
    [16]林君段清明王应吉等著,核磁共振找水仪原理与应用[M],北京:科学出版社,2011.
    [17]张建中,孙存谱,磁共振教程[M].中国科学技术大学出版社,1996,10.
    [18]潘玉玲张昌达等编著,地面核磁共振找水理论与方法[M],武汉:中国地质大学出版社,2000
    [19]王鹏.均匀地电条件下地面核磁共振三维正演[J].武汉:中国地质大学.2007年.
    [20]荣亮亮.多匝线圈核磁共振找水技术研究[D].长春:吉林大学,2009.
    [21] Weichman, P.B., Lavely, E.M., Ritzwoller, M.H., Theory of surface nuclearmagnetic resonance with applications to geophysical imaging problems[J].Physical Review E,2000,62(1, Part B):1290–1312.
    [22] Anatoly Legchenko, Pierre Valla, A review of the basic principles for protonmagnetic resonance sounding measurements[J]. Journal of Applied Geophysics,2002,50(1‐2):3‐19.
    [23]王中兴.核磁共振地下水探测仪关键技术研究[D].长春:吉林大学,2010.
    [24]顾诚甦.基于多处理器的电力谐波检测系统研究[D].南京:南京理工大学,2010.
    [25]张国香.有源电力滤波器控制方法及仿真研究[D].天津:天津大学,2004.
    [26]崔虎宝.基于空间矢量预测电流滞环控制的并联型有源电力滤波器[D].天津:天津大学,2006.
    [27]尹发根,彭泽州.电力谐波的产生原因、危害及检测与抑制方法[J].科技信息(学术研究).2008.12.
    [28]刘洪福,王江英.电力谐波的危害与治理[J].高科技与产业化.2010.5.
    [29]胡子侯.电力谐波的治理措施[J].沿海企业与科技.2008.4:28‐29.
    [30]惠锦,杨洪耕.一种新的电力系统谐波间谐波两步检测法[J].电力系统保护与控制.2009.12:28‐33.
    [31]熊杰锋,王柏林,孙艳.电力系统间谐波和谐波分析的海宁窗插值算法[J].自动化仪表.2010.4:25‐26.
    [32]蔡教武,钟娟.一种基于等精度测频原理的频率计[M].电子测试.2007,11:74‐76.
    [33]习晓红,段清明,林君,尚新磊.核磁共振信号频率测量系统的设计与实现[J].吉林大学学报(信息科学版).2008,5:448‐452.
    [34]童诗白,华成英.模拟电子技术基础(第四版)[M].高等教育出版社.2006.
    [35]李宁.基于MDK的STM32处理器开发应用[M].北京航空航天大学出版社.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700