用户名: 密码: 验证码:
小麦小花发育差异性的生理基础及栽培措施调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上重要的粮食作物之一,其产量水平的高低直接影响着全球粮食安全。提高穗粒数是小麦产量超高产栽培的重要途径之一。因此研究小麦小花发育及穗粒数的形成机理及栽培调控措施对提高小麦单产具有重要的理论和实践意义。本研究选用不同穗型小麦品种为试验材料,通过设置不同的种植密度、氮素水平和外源激素等栽培措施,系统研究不同穗型小麦品种小花发育过程中,穗花及其功能叶内源激素变化,探讨内源激素含量及其平衡状况与小花发育结实的关系,明确内源激素对小花发育的调控机制,阐明种植密度、氮素水平及外源化学调控措施对小麦小花生长发育的调节效应及机制,在理论和技术上探讨了增加小花结实率,提高结实整齐度的途径。主要研究结果如下:
     1不同穗型小麦品种小花发育差异性的生理基础的研究
     大穗型小麦品种小花分化速率较快,每穗总小花数多,形成的可孕小花数和结实粒数显著高于多穗型小麦品种。大穗型品种与多穗型品种在强势位小花的结实率差异较小,但大穗型品种弱势位小花的结实率显著高于多穗型品种。在小花分化后期,大穗型品种穗/茎干物重比值显著高于多穗型品种,相关分析表明,开花期穗干物重与结实粒数之间存在显著正相关关系。说明,大穗型品种有更多的同化物转运到穗中,为更多结实粒数的形成提供有利条件。
     大穗型小麦品种功能叶中蔗糖含量、穗内可溶性总糖含量、蔗糖含量以及可溶性蛋白质含量均显著高于多穗型小麦品种。在药隔形成期以后,大穗型品种穗内C/N比值显著高于多穗型品种。小麦穗内N代谢有利于小花原基分化,C代谢则促进小花发育,穗内较高的C/N比值有利于大穗的形成和小花的结实。
     随小花发育进程,大穗型和多穗型小麦品种穗内GA3含量均呈“W”曲线变化。与多穗型小麦品种相比,大穗型品种穗内GA3含量高峰期出现延迟;在药隔形成期,大穗型品种穗内GA3含量显著高于多穗型品种。穗内IAA含量随小花发育进程呈“S”型曲线变化;在药隔形成期,大穗型品种穗内IAA含量显著高于多穗型品种。大穗型品种穗内ZR含量随小花发育呈“W”型变化模式,而多穗型品种则呈“V”型变化;在药隔形成期,大穗型品种穗内ZR含量显著高于多穗型品种。这说明,药隔形成期穗内较高的GA3、IAA和ZR含量有利于大穗的形成。随小花发育进程,大穗型和多穗型小麦品种穗内ABA含量呈先升高后降低然后趋于平稳的变化趋势。药隔形成期,大穗型小麦穗内ABA含量迅速下降,而多穗型下降速度较为缓慢,这说明,药隔形成期至四分体形成期,穗内ABA含量的迅速下降,有利于大穗的形成。相关分析表明,结实粒数与药隔形成期穗内GA3含量和穗/叶GA3比值呈极显著正相关关系(P<0.01),与药隔形成期穗内IAA含量呈极显著正相关关系(P<0.01),与药隔形成期和四分体形成期穗内ABA含量呈极显著负相关关系(P<0.01),这表明,药隔形成期,穗内GA3和IAA含量越高,ABA含量越低,结实粒数越多。穗内较高的GA3、IAA和ZR含量是形成较多结实粒数的重要生理基础。
     小穗上各小花鲜重、可溶性糖含量、蔗糖含量、果聚糖含量、可溶性蛋白质含量均随小花位升高而降低,并且大穗型品种小花高于多穗型品种小花。在开花前18天开始,不结实小花鲜重、可溶性糖含量、蔗糖含量、果聚糖含量、可溶性蛋白质含量出现显著下降,表明不结实小花已经开始进入退化期。结实小花内源GA3和ABA含量随小花发育表现为先降低后升高的变化趋势,结实小花中IAA含量则保持相对较低的水平,并且保持相对稳定状态。而不结实小花中IAA含量在小花退化开始时就处于较高的水平,显著高于结实小花;不结实小花中ABA含量随小花退化出现大幅度上升。小花退化开始时,不结实小花中GA3/ABA、IAA/ABA和ZR/ABA比值均显著高于结实小花,随后出现大幅度下降。说明不结实小花中较高的IAA含量和GA3/ABA、IAA/ABA和ZR/ABA的快速下降可能是导致小花退化的原因。
     2栽培措施对小花生长发育及机理调控的研究
     2.1不同种植密度下,小花生长发育及机理的研究
     在小花发育过程中,功能叶蔗糖含量随种植密度增加而降低;穗内可溶性总糖含量、蔗糖含量和果聚糖含量随种植密度增加而降低,而穗内可溶性蛋白质含量则随种植密度增加而增加。这表明,低种植密度条件有利于穗内可溶性糖的合成,或者低种植密度条件有利于功能叶中蔗糖向穗内转运。穗内C/N比值随种植密度增加而降低,这说明,过高的种植密度有利于穗内氮代谢进程,不利于碳代谢进程,不利于大穗的形成。
     药隔形成期以后,随种植密度增加,两不同穗型小麦品种穗内GA3、IAA和ZR含量均表现为下降的趋势,而穗内ABA含量随种植密度增加而增加。功能叶中GA3、IAA和ABA含量均随种植密度增加而增加,但是功能叶中ZR含量在各种植密度处理之间无显著差异。这说明,低种植密度条件有利于小花发育后期穗内GA3、IAA和ZR的合成,但是不利于ABA的合成。
     随种植密度下降,穗部结实特性和粒重有优化的趋势,大穗型小麦品种对种植密度反应更为敏感,而多穗型小麦品种的小穗位和粒位对种植密度的调节效应较强。小麦穗的结实粒数、小穗重与单粒重在不同小穗位上均呈二次曲线分布,呈现籽粒的近中优势,主茎优于分蘖。随种植密度的增加,单穗结实小穗数、每小穗结实粒数和单粒重有降低的趋势,表明种植密度过大不利于产量的形成。
     2.2氮素水平对小花生长发育及机理的影响
     小花分化发育前期,总小花数随氮素水平增加而降低,这表明,低氮水平促进小花分化发育,高氮水平延缓小花发育进程。随氮素水平增加,穗粒数、小花分化数、可孕小花数目、分化速率和开花期穗干物重均表现为先升高后降低的变化趋势,在氮素水平240N kg·hm~(-2)处理条件下达到最大值。这表明,氮素水平240N kg·hm~(-2)栽培措施最有利于穗粒数的形成。
     在氮素水平低于240N kg·hm~(-2)时,穗内可溶性总糖含量和蔗糖含量随着氮素水平提高呈上升趋势,但氮素水平再提高,蔗糖含量又开始下降,表明施氮有利于穗内蔗糖的积累,但过量施氮不利于穗中蔗糖的形成,或者不利于叶中蔗糖向穗内转运。穗内可溶性蛋白质含量随氮素水平增加而增加,这表明增施氮肥有利于穗内可溶性蛋白质的合成。穗内C/N比值随氮肥增加呈上升趋势,在氮素水平240N kg·hm~(-2)处理条件下达到最大值,说明增施氮肥有利于穗内C/N比值的提高,但是过多施氮反而降低穗内C/N比值。
     药隔形成期以后,随氮素水平增加,穗内源激素GA3、IAA、ZR和ABA含量均表现为升高的趋势。穗内GA3/ABA、IAA/ABA和ZR/ABA比值均随氮素水平增加呈先上升后下降的趋势,在氮素水平240N kg·hm~(-2)条件下达到最大值。这说明,增施氮肥有利于穗内GA3/ABA、IAA/ABA和ZR/ABA比值的提高。增施氮肥显著提高小花发育后期大穗型品种穗/叶GA3、穗/叶IAA和穗/叶ABA比值。与不施氮肥相比,增施氮肥抑制了药隔形成期以后穗内细胞分裂素氧化酶活性的提高。穗内细胞分裂素氧化酶活性在氮素水平240N kg·hm~(-2)时达到最小值,氮素水平再提高(360N kg·hm~(-2)),其活性与240Nkg·hm~(-2)条件下无显著差异。与不施氮处理相比,施氮处理(240N kg·hm~(-2))显著提高了小麦穗内TaCKX3基因表达量,说明氮素可调控小花发育后期穗内细胞分裂素氧化酶基因的表达。
     2.3外源激素ZT或ABA对小花发育与结实的调控
     外源ZT和ABA对小花发育具有显著的调控效应。外源ZT主要通过增加弱势位小花结实率来提高穗粒数。外源ZT显著提高了穗内可溶性糖含量和C/N比值,从而为大穗的形成提供有利条件。外源ZT显著降低了穗内ABA含量,提高了穗内GA3、IAA和ZR含量,尤其以药隔形成期的外源ZT处理效果最为显著。外源ABA降低了弱势位小花结实率,显著降低了穗粒数。外源ABA降低了穗内可溶性糖含量和C/N比值,降低了穗内GA3、IAA和ZR含量,但增加了穗内ABA含量。
Wheat (Triticum aestivum L.) production is considered vital to ensure global food security.It has been recently agreed that the grain number per spike is still the main factor limitingwheat super high yield potential. Physiological basis of floret development and grain numberper spike and its regulation in wheat play a major role in the remarkable grain yield in wheat.In this study, wheat cultivars differing in spike-types were grown at Tai’an ExperimentalStation of Shandong Agricultural University during the2010-2011and2011-2012growingseasons. The studies were focused on the changes endogenous hormones in spike, floret andleaf. The result elucidated the relationship between endogenous hormones and floretdevelopment and grain set, discussed the regulatory mechanism of endogenous hormones onfloret development, and physiological and chemical mechanism of plant densities, nitrogenapplication rates and exogenous hormone effect on floret development in wheat. Informationobtained will help to provide a theoretical basis for obtaining higher floret setting rate andimproving floret setting uniformity. The main results were as follows.
     1Physiological Basis of Floret Development in different spike type wheat
     Large-spike cultivars had the faster floret differentiation rate, more floret number, fertilefloret number and grain number per spike than medium-spike cultivars. There were littledifferences in superior floret setting rate between large-spike cultivars and medium-spikecultivars, but a large difference in inferior floret setting rate between them. Analyzing fromthe photosynthate, at the later floret development stage, the rates of photosynthate ofspike/culm in large-spike cultivars were significantly larger than that in medium-spikecultivars. Correlation analysis showed that there was a significantly positive relationshipbetween spike dry weight at anthesis and grain number per spike. It was showed that more photosynthate to spike was favored for more grain number.
     Sucrose content in leaves, total soluble sugar content, sucrose content and soluble proteincontent in spike were more in large-spike cultivars than in medium-spike cultivars. After theanther formation, the C/N ratio in spike in large-spike cultivars was larger than that inmedium-spike cultivars. It was showed that N metabolism in spike was advantageous to thefloret primordium differentiating, and C metabolism was in favour of floret development, andthe higher C/N ratio was beneficial to grain number per spike.
     During floret development stage, the changes of GA3content in spike showed the ‘W’model with the two lowest contents at stamen and pistil initiation and floret degeneration. AndIAA content in spike showed the ‘S’ model during floret development stage. Compared withthe medium-spike cultivars, the GA3and IAA peak levels of spike were delayed in thelarge-spike cultivars. Furthermore, the GA3and IAA content in spike of large-spike cultivarsat anther formation were much higher than that in the medium-spike cultivars. However, ZRcontent in spike of large-spike cultivars showed the ‘W’ model, but the ‘V’ model ofmedium-spike cultivars. And at anther formation, the ZR content in spike of the large-spikecultivars was much higher than that in the medium-spike cultivars. It was suggested thathigher GA3, IAA and ZR contents at anther formation were useful for the formation of lagerspike. At anther formation, ABA content in spike was dropped rapidly in large-spike cultivars,but slowly in medium-spike cultivars. It indicated that ABA content from anther formation tomeiosis dropped rapidly was beneficial for the formation of lager spike. The grain number perspike was highly positively correlated with GA3in spike and in spike/leaf at anther formation,and the IAA content in spike anther formation (P<0.01). There was a negative relationshipbetween grain number per spike and ABA content at anther formation and meiosis (P<0.01).
     During the floret development and degeneration stage, GA3and ABA in fertile floretsshowed ‘V’ model, but IAA content in fertile florets remained a relative stable and low level.But there was a much higher IAA content in stertile florets at the beginning of the floretdevelopment and degeneration stage. ABA content in stertile florets was significantlyincreased during the floret development and degeneration stage. However, GA3/ABA,IAA/ABA and ZR/ABA in stertile florets was much higher than that in fertile florets, but thendecimated. It was showed that the higher IAA content and the decimated of GA3/ABA,IAA/ABA, ZR/ABA in stertile florets may be one of the cases of floret degeneration.
     2The study of regulation of cultivation measures on floret development and mechanism
     2.1The study of floret development and mechanism under different plant densities
     During floret development stage, the sucrose content in leaves, the total soluble sugarcontent and the sucrose content in spike was decreased as increased plant densities. Butsoluble protein content in spike was increased with the increasing plant densities. The resultsuggested that low plant density was in favor of the accumulation of total soluble sugar inspike, or low plant density was beneficial to sucrose to spike within the leaf. The C/N ratio inspike was decreased as increased plant densities, and it was showed that higher plant densitywas not conducive to carbon metabolism, then to large spike formation.
     After anther formation, the GA3, IAA and ZR contents in spike were decreased with theincreasing plant densities, but ABA content in spike was increased. The result suggested thatlow plant density was in favor of the accumulation of GA3, IAA and ZR in spike at later floretdevelopment stage, but high plant density was in favor of the accumulation of ABA.
     The results showed that the grain number, spikelet weight, and grain weight with thespikelet positions from the bottom to the top increased first and then decreased, showedparabolic change. Meanwhile, grain setting traits of main spike were superior to that oftillering spike. Under low plant density, the grain setting characteristics and grain weight inlarge-spike cultivars were more superior to those in medium-spike cultivars, and those ofmain stem spike were more superior to those of tillering spike. In fact, high plant density isnot conducive to high yield.
     2.2Effect of nitrogen application rate on floret development and mechanism
     At the early floret development stage, total floret number was decreased with increasingnitrogen (N) levels. The result suggested that low N level promoted the floret development,but the floret development was delayed under high N level. With the increaseing N levels, thegrain number per spike, total floret number, fertile floret, differentiation rate and spike dryweight was increased first, then decreased, and showed the largest increased at N level of240kg N ha-1. It was indicated that N level of240kg N ha-1was in favor of grain number.
     Nitrogen increased the sucrose content and the total soluble sugar content in spike of wheat.Sucrose content in wheat spike under240kg N ha-1treatments were significantly higher thanthat under N0treatment. However, the excess360kg N ha-1treatment led to a significantdecline in sucrose content in spike of the cultivars. These indicated that appropriate nitrogencould increase the sucrose, and excess nitrogen could decrease the transfer of the sucrose fromleaves to spike. The soluble protein content in spike was increased with the increasing Napplications, and it was suggested that N fertilizer was in favor of the accumulation of solubleprotein. N fertilizer generally increased the C/N ratio in spike as N rate was increased from0 to240kg N ha-1, and then decreased the C/N ratio in spike as N rate was further increased to360kg N ha-1. This indicated that N generally favored C/N in spike up to the N level of240kg N ha-1, while excessive N (360kg N ha-1) decreased the C/N ratio in spike.
     After anther formation, the GA3, IAA and ZR contents in spike were increased with theincreasing nitrogen applications, but the ABA content in spike was increased. The resultsuggested that low plant density was in favor of the accumulation of GA3, IAA and ZR inspike at later floret development stage, but high plant density was in favor of theaccumulation of ABA. GA3/ABA, IAA/ABA and ZR/ABA in spike were increased withincreasing0-240kg N ha-1levels, but decreased at360kg N ha-1level. It was showed thatnitrogen application was in favor in increasing GA3/ABA, IAA/ABA and ZR/ABA. Nitrogenapplication increased spike/leaf GA3, IAA and ABA during the later floret development stage.Cytokinin oxidase activity in spike was decreased with the increasing nitrogen treatment, andthe least level was under the240kg N ha-1treatment. However, there was no significantdifference of Cytokinin oxidase activity between the240kg N ha-1treatment and the360kg Nha-1treatment. Transcript levels for TaCKX3in spike under nitrogen treatment (240kg N ha-1)were significantly higher than that under nitrogen treatment (0kg N ha-1) from meiosis toanthesis, which indicating that nitrogen could increase the expression of TaCKX3genes inspike, and it is possible that nitrogen could regulate Cytokinin oxidase expression in transcriptlevels.
     2.3Effect of exogenous ZT or ABA on the floret development and the grain in wheat
     Floret development was obviously effected by exogenous hormone ZT and ABA.Exogenous hormone ZT increased the grain number by increasing the setting rate of inferiorfloret, especially for ZT application at anther formation. Exogenous ZT significantlyincreased sucrose content and C/N in spike, that provide much more photosynthate forlarge–spike cultivars. But Exogenous ZT increased the GA3, IAA and ZR content in spike,especially for ZT application at anther formation. Exogenous hormone ABA inhibited floretdevelopment, and decreased the fertile florets and grain set almost at all floret developmentstage. But at anther formation, the spike was more tolerant to ABA without significant lose offertile florets. The inhibition effect of ABA was mainly on inferior floret on a spikelet.
引文
曹承富,汪芝寿,孔令聪等.氮素与密度对优质小麦产量和品质的影响.安徽农业科学,1997,25(2):115-117
    常成,张海萍,张秀英,闫长生,肖世和.小麦细胞分裂素氧化酶基因TaCKX3参与穗粒数的形成.分子植物育种,2009,7(2):303-306
    戴忠民.喷施6-BA和ABA对小麦籽粒胚乳细胞增殖及淀粉积累动态的影响.麦类作物学报,2008,28(3):484-489
    封超年,郭文善,施劲松,彭永欣,朱新开.小麦花后高温对籽粒胚乳细胞发育及粒重的影响.作物学报,2000,26(4):399-405
    郭文善,彭永欣,封超年,严六零,高年春.小麦不同花位籽粒粒重差异及其原因分析.江苏农学院学报,1992,13(3):1-7
    海江波,由海霞,张保军.不同播量对面条专用小麦品种小偃503生长发育、产量及品质的影响.麦类作物学报,2002,22(3):92-94
    胡延吉,赵檀方.小麦高产育种中粒重作用的研究.作物学报,1995,21(6):671-678
    胡延吉.山东省小麦高产新品种的现状及进一步提高产量潜力的途径.作物研究,1996, l:34-36
    黄琴,王志敏,王树安.小麦穗粒数的调节. ABA对离体培养穗结实的影响.中国农业大学学报,1998,3(5):7-12
    康华,梁振兴.小麦穗粒发育过程的内源激素调控.梁振兴主编:小麦产量形成的栽培技术原理.北京:北京农业大学出版社,1994,222-237
    李春喜,姜丽娜,代西梅等.小麦氮素营养与后期衰老关系的研究.麦类作物学报,1999,20(2):39-41
    李存东,曹卫星,戴廷波,严春美,王兆龙.小麦小花原基分化和退化的动态模式与特征.中国农业科学,1999,32(5):98-100
    李存东,曹卫星,张月晨,戴廷波.不同播期和品种小麦小花结实的粒位差异.华北农学报,2001,16(2):1-7
    李合生.现代植物生理学.高等教育出版社,北京,2006:71-75
    李文雄.小麦研究四十年回顾.第五次全国作物栽培生理研讨会.1995,14-20
    梁雪莲,王引斌.小麦生长发育进程中ABA等内源激素的变化与调节研究.种子,2004,7:49-52
    马元喜等.协调小麦幼穗发育三个两极分化过程增加穗粒数.中国小麦栽培研究新进展,农业出版社,1993,119-126
    潘洁,姜东,曹卫星,孙传范.小麦穗籽粒数、单粒重及单粒蛋白质含量的小穗位和粒位效应.作物学报,2005,31(4):431-437
    裴雪霞,王姣爱,党建友,王秀斌,张定一.小麦结实粒数、粒重与品质的小穗位和粒位效应.中国农业科学,2008,41(2):381-390
    彭永欣,郭文善,封超年,严六零,周振兴.小麦籽粒生长特性分析.江苏农学院学报,1992,13(3):9-15
    屈会娟,李金才,沈学善.播种密度对冬小麦不同穗位与粒位结实粒数和粒重的影响.作物学报,2009,35(10):1875-1883
    茹振钢,李淦,胡铁柱,栗利波.强筋小麦不同穗位及花位籽粒粒重及品质的变化.麦类作物学报,2006,26(5):134-136
    沈其荣主编.土壤肥料学通论.高教出版社,2001,104
    石岩,位东斌,于振文等.两种旱地高产小麦品种花后衰老过程中脱落酸和ZRs的含量变化.植物生理学通讯,2000,36(5):417-419
    孙振元,韩碧文,刘淑兰等.小麦籽粒充实期氮素的吸收和再分配及6-苄氨基嘌呤的调节作用.植物生理学报,1996,22(3):258-264
    田笑明.新疆冬小麦品种更替中农艺性状演变和发展方向的研究.作物学报,1991,17(4):297-307
    王长年.高肥条件下密度对济南17小麦群体质量和产量的影响.江苏农业科学,2002,1:18-19
    王沉等.小麦小花发育不同时期土壤干早对成花与成粒的影响.作物学报,1982,8(4):229-236
    王纪华,王树安,吴庚勇.小麦籽粒建成过程的光合特性及内源激素的研究.北京农业大学学报,1992,18:29-35
    王树安等.玉米、小麦的花粒发育及穗粒数调控.第五次全国作物栽培生理研讨会,1995,10-13
    王桂林.小麦粒重形成过程中内源ABA和GAs的变化及其调节.北京农业大学学报,1991,17:25-29
    王蔚华,郭文善,方明奎,封超年,朱新开,彭永欣.小麦籽粒胚乳细胞增殖及布置充实动态.作物学报,2003,29(5):779-784
    王夏雯,王绍华,李刚华,王强盛,刘正辉.氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系.作物学报,2008,34(12):2184-2189
    王兆龙.小麦小花发育的生理基础及调控研究.博士毕业论文,2000
    王振林编译.麦类作物产量的形成与激素的关系.国外农学-麦类作物,1989,6:35-38
    王志敏.小麦穗粒数的调节.北京:北京农业大学,1994
    王志敏等.小麦穗粒数的调节-开花前遮光对穗碳水化合物代谢和内源激素水平的影响.华北农学报,1997,12(4):42-47
    魏育明,郑有良.内源激素对小麦可育小花数的调控.四川农业大学学报,1998,16(3):290-293
    魏育明,郑有良.内源激素与多小穗小麦幼穗分化持续时间的关系.麦类作物学报,2000,20(2):35-38
    武文明,李金才,陈洪俭,魏凤珍,王世济.肥料运筹方式对孕穗期受渍冬小麦穗部结实特性与产量的影响.作物学报,2011,37(10):1888-1896
    吴兆苏,魏燮中.长江下游地区小麦品种更替中产量及有关性状的演变与发展方向.中国农业科学,1984,17(3):14-22
    杨建昌,王志琴,朱庆森,苏宝林. ABA与GA对水稻籽粒灌浆的调控.作物学报,1999,25(3):343-348
    叶优良,韩燕来,谭金芳等.中国小麦生产与化肥施用状况研究.麦类作物学报,2007,27(1):127-133
    于振文.不同密度条件对冬小麦小花发育的影响.作物学报,1984,10(3):185-194
    于振文.作物栽培学.中国农业出版社,1995, pp49
    于振文.作物栽培学各论(北方本).中国农业出版社,2003
    余松烈主编.山东小麦.农业出版社,1990
    张国泰.小麦顶小穗形成特点及其与大穗形成的关系.作物学报,1989,11:349-354
    张起刚,王化国,杨合法,魏相群.细质沙土增施磷肥对小麦生长及氮素吸收的影响.核农学报,1994,8(3):159-166
    张晓融,王世之.小麦穗小穗及粒位差异的解剖结构及生理原因的研究.作物学报,1993,19(2):103-109.
    张小燕.关中小麦品种产量构成因素的相互关系和产量育种目标.西北植物学报,1996,1:81-87
    赵春江,郭晓维,李鸿祥,康书江,杨宝祝.不同水分条件下小麦各类茎蘖小花发育进程.华北农学报,1998,13(2):1-5
    赵会杰,邹琦,郭天财,于振文,王永华.种植密度和追肥时期对重穗型冬小麦品种L906群体辐射和光合特性的调控效应.作物学报,2002,28(2):270-277
    赵微平.小麦生理学与分子生物学.北京农业大学出版社,1993
    郑丕尧主编.作物生理学导论.北京:北京农业大学出版社,1992,5:198
    周睿,杨洪强,束怀瑞.脱落酸对植物库强度的调节作用.植物生理学通讯,1996,32(3):223-228
    朱新开,郭文善,王永吉,封超年,彭永欣.大穗型小麦穗粒重分布规律及相互关系探讨.种子,2004,23(11):67-71
    朱云集,崔金梅,王晨阳,郭天财,夏国军,刘万代,王永华.小麦不同生育时期施氮对穗花发育和产量的影响.中国农业科学,2002,35(11):1325-1329
    朱云集,崔金梅,郭天财等.河南省小麦超高产品种选用及其关键栽培技术.作物杂志,2005,1:39-41
    Abbate P. E., Andrade F. H., Lazaro L., Bariffi J. H., Berardocco H. G., Inza V. H. andMarturano F.. Grain yield increase in recent Argentine wheat cultivars. Crop Sci,1998,38:1203-1209
    Acreche M. M., Briceno F. G., Sanchez J. A. and Slafer G. A.. Physiological bases of geneticgrains in Mediterranean bread wheat yield in Spain. Eur. I. Agron,2008,28:162-170
    Ahmadi A. Effects of abscisic acid on grain filling processes in wheat, Plant Growth Regul,1999,28:187-197
    Aldesuquy H. S. Effect of sea water salinity and gibberellic acid on abscisic acid, amino acidsand water efficiency by wheat Plants. Agrochimica,1998,42:147-157
    Appleford N. E. J. and Lenton J. R.. Hormonal regulation of alpha-amylase gene expressionin germinationg wheat grain. Plant Physiol,1997,100:534-542
    Ashikari M., Sakakibara H., Lin S. Y., Yamamoto T., TakashiT., Nishimura A., Angeles E. R.,Qian Q., Kimno H. and Matsuoka M.. Cytokinin oxidase regulates rice grain production.Science,2005,309:741-745
    Austin R. B., Bingham J., Blackwell R. D., Evans R. T., Ford M. A., Morgan C. L. and TaylorM.. Genetic improvement in winter wheat yield since1900and associated physiologicalchanges. J. Agric Sci,1980,94:675-689
    Bangerth F. Dominance among fruits/sinks and the search for a correlative signal. PlantPhysiol,1989,76:608-614
    Batten G. B. and Wardlaw I. F.. Senescence and grain development in wheat plants grownwith contrasting phosphorus regimes. Aus J. Plant Physiol,1987,14:253-265
    Batten G. D., Khan M. A. and Cullis B. R.. Yield responses by moderate wheat genotypes tophosphate fertilizer and their implications for breeding. Euphytica,1984,33:81-89
    Beltrano J. Emission of water stress ethylene in wheat ears: effect of re-watering. PlantGrowth Regul,1997,21:121-126
    Borkovee V. and Prochazka S.. Pre-anthesis interaction of cytokinins and ABA in thetransport of14C-sucrose to the Ear of winter wheat (Triticum aestivum L). J. Agronomyand Crop Sci,1992,169:229-235
    Brokovee V., et al. Transport of14C-Suerose and14C-benxyl adenine in winter wheat in thepre-anthesis period. J. Agronomy and Crop Sci,1990,165:217-223
    Brooking I. R. and Kirby E. J. M.. Interrelationships between stem and ear development inwinter wheat: the effects of a Norin10dwarfing gene Gai/Rht2. J. Agric Sci,1981,97:373-381
    Chand R. Challenges to ensuring food security through wheat. CAB Rev.2009,4:065(verified12Mar.2011)
    Cheikh N. and Brenner M. L.. Regulation of key enzymes of sucrose biosynthesis in soybeanleaves. Effect of dark and light conditions and role of gibberellins and abscisic acid. PlantPhysiol,1992,100:1230-1237
    Chen Y, Yuan L P, Wang X H, Zhang D Y, Chen J, Deng Q Y, Zhao B R, Xu D Q.Relationship between grain yield and leaf photosynthetic rate in super hybid rice. J. PlantPhysiol and Molecular Biology,2007,33:235-243
    Corbesier L., Prinsen E., Jacqmard A., Lejeune P. and Van Onckelen H.. Cytokinin levels inleaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floraltransition. J. Exp. Bot,2003,54:2511-2517
    Cottrell J. E., et al. Early growth at the development ear of spring barley. Ann. Bot.,1985,55:827-833
    Daniel J M. and Guatavo A S.. Individual grain weight responses to genetic reduction in culmlength in wheat as affected by source-sink manipulations. Field Crops Res, l995,43:55-66
    Darussalam C. M. A. and Patrick J. W.. Auxin control of photoassimilate transport to and within developing grains of wheat. Plant Physiol,1998,25:69-77
    Davies P. J. The plant hormones: Their nature, occurrence, and functions. In: P J Davies, ed.Plant Hormones and Their Role in Plant Growth and Development. The Netherlands:Martinus Nijhoff Publishers,1987,1-11
    Demotes-Mainard S. and Jeuffroy M. H.. Partitioning of dry matter and nitrogen to spikethroughout the spike growth period in wheat crops subjected to nitrogen deficiency. FieldCrops Res,2001,70:135-165
    Demotes-Mainard S. and Jeuffroy M. H.. Effects of nitrogen and radiation on dry matter andnitrogen accumulation in the spike of winter wheat. Field Crops Res,2004,87:221-233
    Dominov J. A., Stenzler L. and Lee S.. Cytokinins and auxins control the expression of a genein Nicotoana plumbaginfolia cells by feedback regulation. Plant Cell,1992,4:451-461
    Doorn, Van W. G. Abscission of flowers and floral parts. J. Exp. Bot,1997,48:821-837
    Ellen J. Effects of nitrogen and plant density on growth, yield and chemical composition oftwo winter wheat cultivars. J. Agron and Crop Sci,1990,164:174-183
    Elliot D. E., Reuter D. J., Reddy G. D. and Abbott R. J.. Phosphorus nutrition of spring wheat(Triticum aestivum L.). Effects of phosphorus supply on plant symptoms, yield,components of yield, and plant phosphorus uptake. Aust. J. Agric. Res,1997,48:855-867
    Ewert F. and Honermeier B.. Spikelet initiation of winter triticale and winter wheat inresponse to nitrogen fertilization. Eur. J. Agron,1999,11:107-113
    FAO, Rome. Food and Agriculture Organization of the United Nations (FAO), State of FoodInsecurity in the World,2009
    Feng C. N., Guo W. S., Shi J. S., Peng Y. X. and Zhu X. K.. Effect of high temperature afteranthesis on endosperm cell development and grain weight in wheat. Scientia Agric Sinica,2000,26(4):398-405
    Fischer R. A. Number of kernels in wheat crops and the influence of solar radiation andtemperature. J. Agric Sci,1985,100:447-461
    Fischer R. A. Irrigated spring wheat and timing and amount of nitrogen fertilizer. II.Physiology of grain yield response. Field Crops Res,1993,33:57-80
    Fischer R.A. Selection traits for improving yield potential. In M.P. Reynolds et al.(ed.)Application of physiology in wheat breeding. CIMMYT, Mexico, DF.2001,148-159
    Fischer R. A. The importance of grain or kernel number in wheat: A reply to Sinclair andJamieson. Field Crops Res,2008,105:15-21
    Fischer R. A. Wheat. In Smith W. H., Banta S. J.(ed.) Symposium on potential productivityof field crops under different environments. IRRI, Los Banos, Philippines,1983,129-153
    Fischer R. A. Wheat. In W. H. Smith and S. J. Banta (ed.) Symposium on potentialproductivity of field crops under different environments. IRRI, Los Banos, Philippines.Field Crops Res,1984,59:21-30
    Galuszka P., Frebort I., Sebela M., Jacobsen S. and Pavel P.. Degradation of cytokinins bycytokinin oxidases in plants. Plant Growth Regul,2000,32(2-3):315-327
    González F. G., Slafer G. A. and Miralles D. J.. Grain and floret number in response tophotoperiod during stem elongation in fully and slightly vernalized wheats. Field CropsRes,2003,81:17-27
    González F. G., Slafer G. A. and Miralles D. J.. Vernalization and photoperiod responsesduring wheat pre-flowering reproductive phase. Field Crops Res,2002,74:183-195
    González F. G., Terrile I. I. and Falcón M. O.. Spike Fertility and Duration of StemElongation as Promising Traits to Improve Potential Grain Number (and Yield): Variationin Modern Argentinean Wheats. Crop Sci,2011,51:1693-1702
    González F. G., Slafer G. A. and Miralles D. J.. Floret development and spike growth asaffected by photoperiod during stem elongation in wheat. Field Crops Res,2003,81:29-38
    González F. G., Slafer G. A. and Miralles D. J.. Preanthesis development and number offertile florets in wheat as affected by photoperiod sensitivity genes Ppd-D1and Ppd-B1.Euphytica,2005,146:253-269
    Grassini P., thorburn C. and Cassman K. G.. High-yield irrigated maize in the Weatern UScorn belt: On-ferm yield, yield potential, and impact of agronomic practices. Field CropsRes,2011,120:142-150
    Gruber J. and Bangerth F.. Diffusible and dominance phnomena in fruits if apple and tomato.Plant Physiol,1990,79:354
    Hay R. K. M. and Ellis R. P.. The control of flowering in wheat and barley: what recentadvances in molecular genetics can reveal. Ann Bot,1998,82:541-554
    Hendrix J. E., et al. Relationship of pre-anthesis fructan metabolism to grain numbers inwinter wheat. J. Aust. Physiol Plant,1986,13:391-398
    Horst W. J., Abdouand M. and Wiesler F.. Genotypeic differences in phosphorus efficiency ofwheat. Plant and Soil,1993,155/156:293-296
    Huang S., Cerny R. E., Qi Y. L., Bhat D., Aydt C. M., Hanson D. D. and Ness L. A..Transgenic studies ontheinvolvement of cytokinin and gibberellin in male development.Plant Physiol,2003,131:1270-1282
    Jager A.K., Stirk W.A. and Van Staden J.. Cytokinin oxidase activity in habitated andnon-habitated soybean callus. Plant Growth Regul,1997,22:203-206
    Kato T., Sakurai N. and Kuraishi S.. The changes of endogenou abscisic acid in developinggrains of two rice cultivars with different grain size. Crop Sci,1993,62:456-461
    Kawakami N., Miyake Y. and Noda K.. ABA insensitivity and low ABA levels during seeddevelopment of non-dormant wheat mutants. J. Exp Bot,1997,48:1415-1421
    Kirby E. J. M. Analysis of leaf, stem and ear growth in wheat from terminal spikelet stage toanthesis. Field Crops Res,1988,18:127-140
    Kiseleva I. S., Sycheva N. M. and Kaminskaya O. A.. Relationship between growth, importedassimilates, and content of phytohormones in barley ears. Russ J. Plant Physiol,1998,45:465-471
    Kitsaki C. K., Drossopoulos J. B. and Aivalakis G.. Invitrostudies of ABA and ethephoninduced abscission in olive organs. J. Hort Sci and Biotech,1999,74(1):19-25
    Kleinhofs A. and Wamer R. L.. Advances in nitrogen assimilation in intermeediary nitrgenmetabolism, San Dieqo: Academic,1991:89-120
    Kobayashi Y., Murata M., Minami H., Yamamoto S., Kagaya Y. and Hobo T.. Abscisicacid-activated SNRK2protein kinases function in the gene-regulation pathway of ABAsignal transduc-tion by phosphorylating ABA response element-binding factors. Plant J.,2005,44:939-949
    Krumm M.. Influence of potassium nutrition on concentration of water soluble carbohydrates,potassium, caicium, and magnesium and the osmotic potential in sap extracted from wheatears during pre-anthesis development, Plant and Soil,1990,124:281-285
    Langer R. H. M. and Hanif M. A.. Study of floret development in wheat (Triticum aestivumL.). Ann. Bot,1973,37:743-751
    Lee B. T., Martin D. and Bangerth F.. The effect of sucrose on the levels of ABA, IAA andZ/ZR in wheat ears growing in liquid. Plant Physiol,1989,77:73-80
    Lee B. T. Phyto-hormone levels in the florets of a single wheat spikelet during pre-anthesisdevelopment and relationship to grain set. J. Exp. Bot.,1988,39:927-933
    Lejeune P., Prinsen E. and Onekelen H. V.. Hormonal control of ear abortion in astress-sensitive maize inbred. Aust. J. Plant Physiol,1998,25:481-488
    Liu M., Sartain J. B., Trenholm L. E. and Miller G. L.. Phosphorus Requirements of St.Augustine grass Grown in Sandy Soils. Crop Sci,2008,48:1178-1186.
    Long S. P. and Ort D. R.. More than taking the heat: crops and global change. Curr OpinPlant Biol,2010,13:1-8
    Lu J. L., Ertl J. R. and Chen C.. Transcriptional regulation of nitrate reductase mRNA levelsby cytokinin-abscisic acid interactions in etiolated barley leaves. Plant Physiol,1992,98:1255-1260
    Micheal G., et al. the role of hormones in yield formation, in physiological aspects of cropproductivity-Proc.15th. Coll. Intern. Potash. Institute, Wageningen,1980, pp85-116
    Miralles D. J., Katz S. D., Colloca A. and Slafer G. A.. Floret development in near isogenicwheat lines differing in plant height. Field Crops Res,1998,59:21-30
    Miralles D. J., Richards R. A. and Slafer G. A.. Duration of the stem elongation periodinfluences the number of fertile florets in wheat and barley. Aust. J. Plant Physiol,2000,27:931-940
    Mishra S. P. and Mohapatra P. K.. Soluble carbohydrates and floret fertility in wheat inrelation to population density stress. Ann. Bot,1987,60:269-277
    Miyawaki K., Matsumoto K. M. and Kakimoto T.. Expression of cytokinin biosyntheticisopentenyltransferase genes in Arabi-dopsis: Tissue specificity and regulation by auxin,cytokinin, and nitrate. Plant J.,2004,37:128-138
    Morgan J. M. Possible role of ABA in reducing seed set in water-stressed wheat plants.Nature,1980,285:855-856
    Pablo P., Roxana S. and Gustavo A. S.. Grain number and its relationship with dry matter, Nand P in spikes at heading in response to N×P fertilization in barley. Field Crops Res,2004,245-254
    Radley M. Effect of abscisic and gibberellic acid on grain set in wheat. Ann Appl Biol,1980,95:409-414
    Ranson H. M., et al. The pattern of grain growth within the ear of wheat, Aust. J. Biol. Sci,1970,23:753-764
    Rowe B. A. and Johnson, D. E.. Residual benefits of limestone and superphosphate on barelyyields and soil-water deficits on krasnozem in north-western Tasmania. Aust. J. Exp.Agric,1995,35:611-617
    Sage G. C. M., et al. Chemical induction of male sterility. Ann. Rep. Plant Breeding Instit,Cambridge UK,1977, pp76-77
    Saini H. S. and Aspinall D.. Sterility in wheat induced by water deficit of high temperature:possible mediation by ABA. Aust. J. Plant Physiol,1983,9:529-537
    Sanguneti M. C., Tuberosa R. and Landi P.. QLT analysis of drought related traits and grainyield in relation to genetic variation for leaf abscisic acid concentration in field-grownmaize. J. Exp Bot,1999,50:1289-1297
    Sakakibara H. Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plants.J. Plant Res,2003,116:253-257
    Serrago A. R., Miralles D. J. and Slafer G. A.. Floret fertility in wheat as affected byphotoperiod during stem elongation and removal of spikelets at booting. Eur. J. Agron,2008,28:301-308
    Sibony M. and Pinthus M. J.. Floret initiation and development in spring wheat (Triticumaestivum L.). Ann. Bot,1988,61:473-479
    Sinclair T. R. and Jamieson P. D.. Grain number, wheat yield, and bottling beer: An analysis.Field Crops Res,2006,98:60-67
    Slafer G.A. and Andrade, F. H.. Physiological attributes to the generation of grain yield inbread wheat cultivars released at different eras. Field Crops Res,1993,31:351-367
    Slafer G. A., Abeledo L. G., Miralles D. J., Gonzalez F. G. and White-church E. M..Photoperiod sensitivity during stem elongation as an avenue to raise potential yield inwheat. Euphytica,2001,119:191-197
    Slafer G. A., Calderini D. F. and Miralles D. J.. Yield components and compensation in wheat:Opporyunities for further increasing yield potential. In Reynolds M P, et al.(ed.)Increasing yield potential in wheat: Breaking the barriers. CIMMYT, Mexico, DF.1996,101-133
    Stelmakh A. F. Genetic system regulating flowering response in wheat. Euphytica,1998,100:359-369
    Sweeny D. W., Granade G. V., Evereyer M. G. and Whitney D. A.. Phosphorus, potassium,chloride and fungicide effects on wheat yield and leaf rust. J. Plant Nutrition,2000,23(9):1267-1281
    Van D. G. and Stead A. D. Abscission of flowers and floral parts. J. Exp Bot,1997,48(309):821-831
    Walpole P. R. and Morgan D. C.. The effect of floret sterilization on grain number and grainweight in wheat ears. Ann Bot,1973,37:1041-048
    Whingwiri E. E. Floret survival in wheat: significance of the time of floret initiation relativeto terminal spikelet formation, J. Agric Sci,1982,98:257-268
    Xu G. W., Zhang J. H., Lam H. M., Wang Z. Q. and Yang J. C.. Hormonal changes arerelated to the poor grain filling in the inferior spikelets of rice cultivated undernon-flooded and mulched condition. Field Crops Res,2007,101:53-61
    Youssefian S. Pleitropic effects of the GA-insensitive rht dwarfing gene in wheat. FieldCrops Res,1992,28:191-210
    Yang J., Zhang J., Wang Z., Zhu Q. and Wang W.. Hormonal changes in the grains of ricesubjected to water stress during grain filling. Plant Physiol,2001,127:315-323
    Zadoks J. C., Chang T. T. and Konzak C. F.. A decimal code for the growth stages of cereals.Weed Res,1974,14:415-421
    Zhang C., Peng S., Peng X., Chavez A. Q. and Bennett J.. Response of glutamine synthetaseisoforms to nitrogen sources in rice roots. Plant Sci,1997,125:163-170
    Zhang H. and Yang J. C.. Hormones in the grains and roots in relation to post-anthesisdevelopment of inferior and superior spikelets in japonica/indica hybrid rice. PlantPhysiol and Biochem,2009,47:195-204
    Zhang J. P., Liu W. H., Yang X. M., Gao A. N., Li X. Q., Wu X. Y., and Li L. H.. Isolation andcharacterization of two putative cytokinin oxidase genes related to grain number per spikephenotype in wheat. Mol Biol Rep,2011,38:2337-2347
    Zeng Z. R., Morgan J. M. and King R.W.. Regulation of grain number in wheat: genetypedifference and responses to applied ABA and to high temperature. Aust. J. Plant,1985,12:609-619

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700