用户名: 密码: 验证码:
澜沧江乌弄龙水电站坝址右岸大型倾倒体变形特征、成因机制及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部环青藏高原的广大地区河谷深切,地形坡度大、地质构造复杂、地震活动频繁,众多高陡斜坡(边坡)是孕育大型地质灾害、工程边坡大规模失稳的主要区域,尤其是分布面积较广的层状岩体地区,岸坡岩体倾倒变形,孕灾、成灾的问题更为突出。近年来,国内外对倾倒体的研究成果较多,但多数研究对象为纵向河谷岸坡倾倒体。本文研究的澜沧江乌弄龙水电站坝址右岸大型倾倒体(Qd1),属横向谷岸坡上部发育的倾倒变形岩体,位于右岸坝顶以上部位,是威胁工程建设安全、运行正常的重要工程地质问题,研究其稳定性具有非常重要的工程实践意义。本文从倾倒体工程地质勘察技术应用及创新、岩坡初始结构、倾倒体变形的时空特征、成因、倾倒体的力学特征与稳定性评价等多个方面,系统地开展了研究:
     (1)由于倾倒体发育在横向谷,且分布于工程拟开挖区域的外部,在普通测绘中容易忽略,作者通过多层次不同精度的测绘获得了倾倒体的分布特征及分布范围;并在此基础上进行了钻孔、平硐的综合勘探布置,从立体形态上查明了倾倒体的边界。
     (2)采用了SM植物胶护壁钻探技术,并对钻进参数和SM植物胶的配比进行了试验性调整,得到了适合倾倒体呈砌块状、碎屑状的原状岩体取样方法和技术;运用新技术-“缩封固定技术”,解决了倾倒岩体岩样难加工、难固定、难搬运等问题,基本上采集到了原状试样;并在MTS岩石试验机上进行了力学试验,获取了大量的力学试验数据。
     (3)以谷德振先生岩体结构理论及划分指标为依据,采用精细的层位测量、调查方法,在获得详细的资料基础上,针对该地层岩性、岩相复杂的特性,先开展岩组划分,再进行精细的岩体结构划分,较深入地剖析了倾倒体部位岩体结构为薄-互层状结构,坡体结构为横向斜坡,若考虑岩层倾向方面的地形坡度,在此方向有顺层结构特征。
     (4)根据右岸坝肩主要平硐揭露倾倒体结构面拉张的方位、开度等大量资料,分析了倾倒体拉裂变形对既有结构面的追踪特征,以较多的统计数据及相关资料研究了倾倒体的变形方向、变形程度、变形类型,以及变形深度和边界条件。
     (5)从地形地貌条件、岩体结构特征、岩性变化规律、断裂发育情况、河谷应力场特征等多种因素综合分析倾倒体的成因机制,并用数值分析方法研究了顺层高倾斜坡的倾倒变形。
     (6)作者在分析倾倒岩体形成持续时间和成因机制及乌弄龙倾倒体严重变形典型特征的基础上,利用倾倒体原始层状地层与倾倒后地层“质点”的位移量值,提出分析倾倒体位移量值的新方法和利用地质年代初步获得倾倒体流变速率(含可能的少量突变)的新方法。采用FLAC3D程序进行反演分析,得出倾倒弯曲变形的总位移量与地层质点位移分析法基本一致。地层质点位移分析法的应用是对岩体流变参数选取方法的丰富,也是对倾倒体研究方法的创新。
     (7)选择代表性剖面和合理的强度参数,利用极限平衡法、有限元法、强度系数折减法对倾倒体整体稳定性进行计算分析,特别是对强度系数折减法的应用,取得了较好的效果。并对倾倒岩体参数进行了敏感性分析,以便于后期针对各个参数影响的敏感程度,设计合理的治理方案。在计算分析的基础上,作者提出了工程处理建议。
Over the vast areas surrounding Qinghai-Tibet Plateau of China, deep valley develops, theslope of topography is steep, Complex regional geological tectonic develops and theearthquake is frequent; High and steep slope and Engineering Slope are the main area whichgenerate Large geological disasters and massive damage of Engineering Slope, On the regionswhere sedimentary rocks or layered rocks are widely distributed, especially, problems ofdamage of bank slope toppling rockmass and disaster's inoculation、formation are moreserious. A large amount of research achievements are obtained in recent years in both Chinaand abroad, but most objects are paralelel valley bank slope toppling rockmass. In thisarticle, the research of object, named the right rank of damsite of Lancang River Wunonglonghydropower station(Qd1), which belongs to transverse valley bank slope toppling rockmass,locates over the right bank of damsite. The toppling rockmass is a threat to project safeconstruction and normal operation, and the research of its stability will be important toEngineering practice. A systematic study is carried out in this article in many aspects on theapplication and innovation of geological exploration technology of toppling rockmass、initialstructure of rock slope、the spce-time characteristics and causes of toppling rockmass、mechanics characteristic and the safety evaluation of toppling rockmass:
     (1) Distribution characteristics and range of toppling rockmass is obtained by differentprecision of the geological mapping in prevent of ignoring in normal mapping because thetoppling rockmass is developed on transvers valley and distributed outside of the expectedexcavation areas; and integrated exploration of drill and tunnels is arranged on the basis of itso as to determing the scope of the toppling rockmass in three-dimensional form.
     (2) Undisturbed sampling method and technique which is suitable for making topplingrockmass into block and massive debris is achieved through SM plant gum Wall drillingtechnology and experimental adjustment of drilling factors and SM plant ration; Problemsof the processing、fix、transport of the rock sample of toppling rockmass is resolved throughthe new method—-"Shrink seal fixed technology" and undisturbed samples are mainly gained;A large amount of Mechanics experimental data is gained through the mechanics test on theadvanced MTS testing machine.
     (3) According to the rock structure theory an classification of index of Zhende Gu, accuratelayer measurement and survey method are adopted; On the basis of very accurate data, rockdivision is first carried and then rock structure division is taken for the characteristics of thisset of lithology and rockmass structure; Then, result that the structure of the rock of topplingrockmass is Thin Interbeds, slope structure is transverse slope and it has characteristics ofparallel bedding structure if the topographic slope in the direction of the tendency of the rockis considered;
     (4) According to a large amount of data of the position、aperture of structure planes of toppling rockmass which is disclosed by the main tunnels on the right dam abutment, trackingfeature of pull fission shape of the toppling rockmass to the structure of surface is analysed.On basis of a large amount of statistical data and related data, the direction、degree、type、depth of the deformation and the boundary conditions of toppling rockmass is studied.
     (5) Deformation mechanism of toppling rockmass is comprehensively analysed through manyaspects on Topography condition, structural characteristics of rock mass, lithology changerule, fracture development situation, valley stress field and so on; toppling deformation of thetilted high slope is studied by numerical analysis method.
     (6) On the basis of the analysis of the duration and formation mechanism of topplingrockmass and the deformation characteristics of Wunonglong toppling rockmass, newmethods of analying displacement value of toppling rockmass by using the displacementbetween original shape strata and toppled strata "particles" of toppling rockmass andpreliminarily getting flow rate of toppling rockmass by using geologic age are put forward;Through the inversion of program of FLAC3D, the displacement of toppling deformation is inaccordance with strata particle displacement analysis. The application of strata particledisplacement analysis is supplement for the method of rheological parameters of rock massselection.
     (7) We utilize limit equilibrium method, the finite element method, the coefficient of theintensity of reduction to compute and analyse the toppling rockmass by selectingrepresentative profiles and the reasonable strength parameters, and we get very encouragingresults especially using the coefficient of the intensity of reduction. We also make sensitivityanalysis for toppling rockmass, so as to the reasonable management plan according to eachfactor's sensitive degree later. On the basis of computation and analysis, we put forward ourengineering treatment suggestion.
引文
[1] TALOBRA J, La mecanique des rockes appliquée auxtravaux publics[R]. Paris, Dunod,1957.
    [2] Muller, L. New considerations on the Vajont slide[J]. Fels mechanikund Ingenieur geologie,1968,6(1):1-91.
    [3] Frettas D M H, Watters R J. Some field examples of toppling failure[J]. Geotechnique,1973,23(4):495-514.
    [4] Goodman, R.E., Bray, J.W. Toppling of rock slopes[C]. In Rock Engineering: AmericanSociety of Civil Engineers, Geotechnical Engineering Division Conference, Boulder, Colorado,1976,2:201-234.
    [5] Bukovansky, M., Rodriguez, M. A., Cedrun, G. Three rock slides in stratified and jointedrocks[C]. Proc.,3rd Congress Int. Soc. of Rock Mech, Denver, Colorado,1976,vol.IIB:854-858.
    [6] Wyllie, D. C. Toppling rock slope failures examples of analysis and stabilization[J]. RockMech.1980,13(2),89-98.
    [7] Evans, R. S. An analysis of secondary toppling rock failures-the stress redistributionmethod[D]. J. Engng. Geol., The Geological Society,1981, pp.77-86.
    [8] Sijing, W. On the mechanism and process of slope deformation in an open pit mine[J]. RockMech,1981,14(3),145-156.
    [9] Teme, C. S., West, T. R. Some secondary toppling failure mechanisms in discontinuous rockslopes[C].24th US Symposium on Rock Mech.,1983, pp.193-204.
    [10] BURMAN B C. Developments of a numerical model for discontinua[J]. AustralianGeomechanics Journal,1974:1-10.
    [11] BYRNE R J. Physical and numerical models in rock and soil slope stability[D]. NorthQueensland, Australia:James Cook University,1974.
    [12] HAMMETT R D. A study of the behavior of discontinuous rock masses[D]. NorthQueensland, Australia: James Cook University,1974.
    [13] HSU S C, NELSON P P. Analyses of slopes in jointed weak rock masses using distinctelement method[C]. Proceedings of Mechanics of Jointed and Faulted Rock,Vienna,Austria:[s.n.],1995:589-594.
    [14] COGGAN J S, and PINE R J. Application of distinct-element modelling to assess slopestability at Delabole slate quarry, Cornwall, England. Trans. Inst. Min. Metall(Sec. A: MiningIndustry),1996:22-30.
    [15] ORR M Ch, SWINDELLS Ch F. Open pit toppling failures: Experience versusanalysis[C]//Proceedings of the7th International Congress on Computer Method andAdvance in Geomechanics, Cairus:[s. n.],1991,1:505-510.
    [16] PRITCHARD, M. A., SAVIGNY, K. W. Numerical modelling of toppling[J]. CanadianGeotechnical Journal,1990,(27):823-834.
    [17] PRITCHARD, M. A., SAVIGNY, K. W. The Heather Hill Landslide, an example of a largescale toppling failure in a natural slope[J]. Canadian Geotechnical Journal,1991,(28):410-422.
    [18] RADKO BUCEK. Toppling failure in rock slopes[D]. Edmonton Canada: University ofAlbert,1995.
    [19] Adhikary, D. P. The modelling of flexural toppling of foliated rock slopes[D]. Ph.D.thesis,Department of Civil Engineering, University of Western Australia,1995.
    [20] Adhikary, D. P., Dyskin, A. V., Jewell, R. J. Numerical modelling of the flexural deformationof foliated rock slopes[J]. Int. J. Rock Mech. Min. Sci. and Min. Abstr.,1996,33(6),595-606.
    [21] Adhikary, D. P., Dyskin, A. V., Jewell, R. J., et al.,A study of the mechanism of flexuraltoppling failure of rock slopes[J].Rock Mechanics and Rock Engineering,1997,30(2):75-93.
    [22] Susan L. Nichol, Oldrich Hungr,S.G. Evans. Large-scale brittle and ductile toppling of rockslopes[J].Canadian Geotechnical Journal,2002,39(4):773-788.
    [23] Leandro R. Alejano, Iván Gómez-Márquez, Roberto Martínez-Alegría.Analysis of a complextoppling-circular slope failure[J].Engineering Geology,2010,114(1):93-104.
    [24]杜永廉.岩石边坡弯曲倾倒变形和稳定分析[C].岩体工程地质力学问题:首届全国工程地质大会论文专辑.北京:中科院地质所,1979.
    [25]许兵,李毓瑞.金川露天矿一区边坡倾倒-滑坡破坏的岩体结构分析[M].岩体工程地质力学问题,科学出版社,北京:1979.
    [26]张倬元,王士天,王兰生编著.工程地质分析原理(第1版)[M].北京:地质出版社,1981.
    [27]王思敬.金川露天矿边坡变形机制及过程[J].岩土工程学报,1982,4(1):76-83.
    [28]孙玉科,姚宝魁.我国岩质边坡变形破坏的主要地质模式[J].岩石力学与工程学报,1983,(1):67-76.
    [29]庆祖荫.对倾倒体成因及工程地质性质的初步认识[C].全国首届工程地质学术会议论文选集.北京:科学出版社,1983,240-245.
    [30]孙玉科,牟会宠.层状边坡变形与时间效应[M].岩体工程地质力学问题(五).北京:科学出版社,1984,67-77.
    [31]王兰生,张倬元.斜坡岩体变形破坏的基本地质力学模式[J].水文工程地质论丛,1985.
    [32]黄建安,王思敬.多块体倾倒分析[J].地质科学,1986,(1):64-73.
    [33]洪玉辉.白龙江水电建设中的主要工程地质问题[J].西北水电,1987,(2):1-6.
    [34]王根夫.敷溪口水电站坝址右岸蠕变倾倒松动边坡变形的特征及其成因机制分析[J].水利水电技术,1987,(3):24-28.
    [35]卢世宗.红旗岭露天矿边坡倾倒一滑移体的特征[A].中国典型滑坡[C].北京:科学出版社,1988.
    [36]陈志坚.黄河小浪底坝段倾倒滑移体变形破坏特征及其形成机制探讨[J].水利水电技术,1991,(9):44-50.
    [37]王思敬,肖远,杜永廉.广西红水河龙滩水电站坝址左岸边坡层状岩体弯曲蠕变机理分析[J].地质科学,1992,增刊:342-352.
    [38]洪玉辉.碧口水电站右岸倾倒体高边坡稳定性分析与评价[J].西北水电.1994,(01):
    [39]王士天,黄润秋,李渝生.雅砻江锦屏水电站重大工程地质问题研究[M].成都:成都科技大学出版社,1995.
    [40]赵红敏.五强溪水电站左岸船闸高边坡倾倒破坏分析及治理[J].中南水力发电,1996,(3):1-5.
    [41]伍法权.云母石英片岩斜坡弯曲倾倒变形的理论分析[J].工程地质学报,1997(4),306-311.
    [42]常祖峰,谢阳,梁海华.小浪底工程库区岸坡倾倒变形研究[J].中国地质灾害与防治学报,1999,10(1):28-31.
    [43]谢阳,梁海华.小浪底工程库区岸坡倾倒变形研究[J].中国地质灾害与防治学报,1999(1),28-31.
    [44]王士天.四川某水库大坝左坝肩边坡变形破坏机制及整治对策探讨[J].地质灾害与环境保护,1999,10(3):1-5.
    [45]李国柱.布昭坝露天矿西帮边坡变形特征及失稳控制[J].露天采煤技术,2000,(2):l1-13.
    [46]申力,刘晶辉,江智明.倾倒滑移变性体的基本特征及力学模型研究[J].水文地质工程地质,2000,(2):20-22.
    [47]齐典涛.昌马水库倾倒变形边坡特征形成机制及发育深度[J].西部探矿工程,2001,(6):47-49.
    [48]徐佩华,陈剑平,黄润秋,严明.锦屏水电站解放沟反倾高边坡变形机制的探讨[J].工程地质学报,2004,12(3):247-252.
    [49]严明,黄润秋徐佩华.某水电站坝前左岸高边坡深部破裂形成机制分析[J].成都理工大学学报(自然科学版),2005,32(6):605-613.
    [50]邓辉,巨能攀,涂国祥.某高边坡变形破坏机制及整治对策探讨[J].地球与环境,2005,3(增刊):417-422.
    [51]鲁地景,钟辉亚,李幸福.凤滩水电站扩建工程进水口反倾层状结构边坡岩体特征与加固处理[J].工程地质学报,2005,(4):557-562
    [52]宋彦辉,黄民奇,陈新建.班多水电站左岸工号倾倒体破坏机制分析[J].水利水电科技进展,2007,27(5):50-52.
    [53]杨根兰,黄润秋,严明,刘明.小湾水电站饮水沟大规模倾倒破坏现象的工程地质研究[J].工程地质学报,2006,14(2):165-171.
    [54]李玉倩,李渝生,杨晓芳.某水电站边坡倾倒变形破坏模式及形成机制探讨[J].水利与建筑工程学报,2008,6(3):39-41.
    [55]伍保祥,沈军辉,沈中超,崔杰,王兰生.四川省华蓥市赵子秀山变形体的成因机制研究[J].水文地质工程地质,2008,(3),23-27.
    [56]白彦波,张良,李渝生.苗尾水电站坝肩岩体倾倒变形程度分级体系[J].科技信息,2009,(6):417-418.
    [57]白彦波,李湘军,余鹏程,李渝生.苗尾水电站坝肩岩体倾倒变形的力学机制与发展过程[J].科技信息,2009,(22):689-690.
    [58]宋彦辉,黄民奇,聂德新,陈新建.茨哈峡水电站消能池高边坡变形特征及其稳定性研究[J].地质与勘探,2009,45(2):107-110.
    [59]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3):433-454.
    [60]张倬元,王士天,王兰生编著.工程地质分析原理(第2版)[M].地质出版社,1994.
    [61]李强.鄂西山区地下采掘与山体稳定性岩体力学研究[D].成都:成都地质学院,1990.
    [62]崔政权.系统工程地质学导论[M].水利电力出版社.1992.
    [63]许强,黄润秋,秦四清.弯曲拉裂型斜坡的尖点突变模型[C]//工程地质-传统与未来,第三届全国青年工程地质大会论文集.成都:成都科技大学出版社,1993.
    [64]许强,黄润秋,王士天.反倾岩层弯曲拉裂变形的CUSP型突变分析[M]//工程地质研究进展.成都:西南交通大学出版社,1993.
    [65]陈红旗,黄润秋.反倾层状边坡弯曲折断的应力及挠度判据[J].工程地质学报,2004,12(3):243-246.
    [66]蒋良潍,黄润秋.反倾层状岩体斜坡弯曲-拉裂两种失稳破坏之判据探讨[J].工程地质学报,2006,14(3):289-294.
    [67]韩贝传,王士敬.边坡倾倒变形的形成机制与影响因素[J].工程地质学报,1999,7(3):213-217.
    [68]程东幸,刘大安,丁恩保,等.层状反倾岩质边坡影响因素及反倾条件分析[J].岩土工程学报,2005,27(11):1362-1366.
    [69]中国水利水电科学研究院,电力部中南勘测设计研究院.岩质高边坡失稳破坏机理及分析方法的研究(第二分册)[R].北京:中国水利水电科学研究院,1995.
    [70]徐佩华,陈剑平,黄润秋,严明.锦屏I级水电站解放沟左岸边坡倾倒变形机制的3D数值模拟[J].煤田地质与勘探,2004,32(4):40-43.
    [71]芮勇勤,贺春宁,王惠勇,等.开挖引起大规模倾倒滑移边坡变形破坏分析[J].长沙交通学院学报,2001,17(4):8-12.
    [72]任光明,宋彦辉,聂德新,等.软弱基座型斜坡变形破坏过程研究[J].岩石力学与工程学报,2003,22(9):1510-1513.
    [73]金仁祥,任光明.陡倾角反倾层状岩质边坡变形特征数值模拟验证[J].中国地质灾害与防治学报,2003,14(2):35-38.
    [74]纪玉石,申力,刘晶辉.采矿引起的倾倒滑移变形机理及其控制[J].岩石力学与工程学报,2005,24(19):3594-3598.
    [75]程东幸,刘大安,丁恩保,等.反倾岩质边坡变形特征的三维数值模拟研究[J].工程地质学报,2005,13(2):222-226.
    [76]赵小平,李渝生,陈孝兵,林富财.澜沧江某水电站右坝肩工程边坡倾倒变形问题的数值模拟研究.工程地质学报.2008,16(3):299-303.
    [77]孙东亚,彭一江,王兴珍. DDA数值方法在岩质边坡倾倒破坏分析中的应用[J].岩石力学与工程学报,2002,21(1):39-42.
    [78]王承群.岩质边坡倾倒变形破坏的块体单元分析法[R].上海:同济大学,1985.
    [79]汪小刚,张建红,赵毓芝,等.用离心模型研究岩石边坡的倾倒破坏[J].岩土工程学报,1996.18(5):14-21.
    [80]左保成,陈从新,刘小巍,等.反倾岩质边坡破坏机理物理模型研究[J].岩石力学与工程学报,2005,24(19):3505-3511.
    [81]邹丽芳,徐卫亚,宁宇,郑文棠.反倾层状岩质边坡倾倒变形破坏机理综述[J].长江科学院院报,2009,26(5):25-30.
    [82]谭儒蛟,杨旭朝,胡瑞林.反倾岩体边坡变形机制与稳定性评价研究综述[J].岩土力学.2009,30(S2):479-480.
    [83] CRUDEN D M, HU X Q. Topples on underdip slopes in the Highwood Pass, Alberta,Canada[J]. Quarterly Journal of Engineering Geology,1994,27:57-58.
    [84]任光明,夏敏,李果,刘昌,张富荣.陡倾顺层岩质斜坡倾倒变形破坏特征研究[J].岩石力学与工程学报,2009,28(增1),3193-3200.
    [85]孙玉科等.边坡岩体稳定性分析[M].科学出版社.1988.
    [86] GOODMAN R E, BRAY J W. Toppling of rock slopes [C]//Proceedings of ASCE SpecialtyConference, Rock Engineering for Foundations and Slopes, Vol.2. Colorado:Boulder,1976:201-234.
    [87] WYLLIE D C. Toppling rock slope failures: examples of analysis and stabilization[J]. RockMechanics,1980,(13):89-98.
    [88] ZANBAK C. Design charts for rock slopes susceptible to toppling[J]. Journal of GeotechnicalEngineering, ASCE,1983,109(8):1039-1062.
    [89] PRITCHARD M A. Numerical modeling of large scale toppling[M]. Vancouver, B. C: TheUniversity of British Columbia,1989.
    [90] AYDAN O, KAWAMOTO T. The stability of slopes and underground opening againstflexural toppling and their stabilization[J]. Rock Mechanics and Rock Engineering,1992,25(3):143-165.
    [91] SCAVIA C,BARLA G,BERNAUDO V. Probabilistic stability analysis of block topplingfailure in rock slopes[J]. International Journal of Rock Mechanics and Mining Sciences,1990,27(6):465-478.
    [92]陈祖煜,张建红,汪小刚.岩石边坡倾倒破坏稳定分析的简化方法[J].岩土工程学报,1996,18(6):92-95.
    [93]汪小刚,贾志欣,陈祖煜.岩石边坡的倾倒破坏的稳定分析方法[J].水利学报,1996,(3):7-12.
    [94] BOBET A. Analytical solutions for toppling failure[J].International Journal of RockMechanics and Mining Sciences,1999,36(7):971-980.
    [95] SAGASETA C, SáNCHEZ J M, CA IZAL J. A general analytical solution for the requiredanchor force in rock slopes with toppling failure[J]. International Journal of Rock Mechanicsand Mining Sciences,2001,38(3):421–435.
    [96]王建锋,WILSON H T,崔政权.块状岩体边坡倾倒破坏稳定性分析[J].中国地质灾害与防治学报,2001,12(4):1–8.
    [97] LIU C H, JAKSA M B, MEYERS A G. Improved analytical solution for toppling stabilityanalysis of rock slopes[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1361-1372.
    [98] LIU C H, JAKSA M B, MEYERS A G. A transfer coefficient method for rock slopetoppling[J]. Canadian Geotechnical Journal,2009,46(1):1-9.
    [99] Amini Mehdi, Majdi Abbas, Veshadi Mohammad Amin. Stability Analysis of Rock SlopesAgainst Block-Flexure Toppling Failure[J].Rock Mechanics and RockEngineering,2012,(1):1-14.
    [100]孙广忠著.岩体结构力学[M].科学出版社.1988.
    [101]肖远.边坡层状岩体弯曲蠕变机理及分析方法[D].北京:中国科学院地质研究所,1989.
    [102] Ishida T, Chigira M, Hibino S. Application of the distinctelement method for analysis oftoppling observed on afissured slope. Rock Mech RockEng1987;20(4):277–83.
    [103] Cruden D M.Limits to common toppling.CanGeotechJ1989;26:737–42.
    [104] AydanO¨, Kawamoto T. The stability of slopes and underground openings against flexuraltoppling and their stabilisation. RockMech Rock Eng1992;25(3):143–65.
    [105] AydanO¨, ShimizuY, Ichikawa Y. The effective failure modes and stability of slopes inrockmass with two discontinuitysets. Rock Mech RockEng1989;22(3):163–88.
    [106] LanaroF,JingL,StephanssonO,BarlaG. DEM modeling of laboratory tests of block toppling.Int J Rock Mech Min Sci1997,(34):209–18.
    [107]王勖成,邵敏.有限元法基本原理和数值方法[M].北京:清华大学出版社,1995.
    [108]陈祖煜.土质边坡稳定分析——原理·方法·程序[M].北京:中国水利水电出版社,2003.
    [109] Griffith D V, Lane P A. Slope stability analysis by finite elements[J].Geotechnique,1999,49(3):387-403.
    [110] Brebbia C A, Telles J C F,W robel L C. Boundary element tech iniques[M].Berlin: Spring2Verlage,1994.
    [111] Heinz Antes. A boundary element procedure for transient ware propagation intwo-dimensional isotropic elastic media, finite element in analysis and design[M]. N Y:JoneWiley&SonInc.,1995.
    [112]李瑞暇.有限元法与边界元法[M]上海:上海科技教育出版社,1993.
    [113]杨德全,赵忠生.边界元理论及应用[M].北京:北京理工大学出版社,2002.
    [114]许瑾,郑书英.边界元法分析边坡动态稳定性[J].西北建筑工程学院学报(自然科学版),2000,17(4):72-75.
    [115]邓琴,郭明伟,李春光,葛修润.基于边界元法的边坡矢量和稳定分析[J].岩土力学,2010,31(6):1971-197.
    [116]郭明伟,李春光,葛修润.基于矢量和分析方法的边坡滑面搜索[J].岩土力学,2009,30(6):1775-1781.
    [117] CUNDALL P A. A computer model for simulating progressive large scale movements inblocky rock systems[C]//Rock fracture, Proceedings of international Symposium. Nancy,France:[s. n.], N1971:2-8.
    [118] BURMAN B C. Developments of a numerical model for discontinua[J]. AustralianGeomechanics Journal,1974:1-10.
    [119] HAMMETT R D. A study of the behavior of discontinuous rock masses[D]. NorthQueensland, Australia: James Cook University,1974.
    [120] BYRNE R J. Physical and numerical models in rock and soil slope stability[D]. NorthQueensland, Australia: James Cook University,1974.
    [121] CUNDALL P A,STACK O D L. A discrete numerical model granular assemblies[J].Geotechnique,1979,29(1):47–65.
    [122] PRITCHARD M A, SAVIGNY K W. The Heather Hill Landslide, an example of a largescale toppling failure in a natural slope[J]. Canadian Geotechnical Journal,1991,28:410-422.
    [123] ADACHI T, OHNISHI Y, ARAI K. Investigation of toppling slope failure at Route305inJapan[C]//Proceedings of International Congress of Rock Mechanics. Aachen, Germany: A.A. Balkema,1991:843-846.
    [124] HSU S C, NELSON P P. Analyses of slopes in jointed weak rock masses using distinctelement method[C]//Proceedings of Mechanics of Jointed and Faulted Rock,Vienna,Austria:[s.n.],1995:589-594.
    [125] COGGAN J S, and PINE R J. Application of distinct-element modelling to assess slopestability at Delabole slate quarry, Cornwall, England. Trans. Inst.Min. Metall(Sec. A:Mining Industry),1996:22-30.
    [126] Itasca Consulting Group, Inc. Universal Distinct Element Code Theory and Background [M].MillPlace,2005.
    [127]沈宝堂,王泳嘉.边坡破坏机制的离散单元法研究[J].东北工学院学报,1989,10(4):351-354.
    [128]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991.
    [129] LANAR F, JING L, STEPHANSSON O, et al. D. E. M. Modeling of Laboratory Tests ofBlock Toppling[J].Rock Mechanics and Mining Sciences,1997,34(3-4):173. el-173. e15.
    [130] NICHOL S L, HUNGR O, EVANS S G. Lar ge scale Br ittle and Ductile Toppling of RockSlopes[J]. Canadian Geotechnical Journal,2002,39(4):773-787.
    [131]张丙印,师瑞锋,侯瑜京.昌马水库枢纽工程右岸岩石边坡稳定性的离散元法分析[J].水利发电学报,2002,(1):73-81.
    [132]王卫华,李夕兵.离散元法及其在岩土工程中的应用综述[J].岩土工程技术,2005,19(4):177-181.
    [133]石根华.裴觉民(译).数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997.
    [134]王发路,陈乃明,刘宝琛.三维块体不连续变形分析理论简析[J].岩石力学与工程学报,1996,15(3):219-224
    [135]张勇慧,郑榕明. DDA方法中的块体旋转及其在滚石问题中的应用[J].岩石力学与工程学报,1998,17(增):834-839
    [136]张勇慧,邱祥波,朱维申等. DDA方法在溪洛渡地下厂房群开挖中的应用[J].岩石力学与工程学报,1999,18(增):945-947
    [137]姜清辉,丰定祥.三维非连续变形方法中角-面接触模型的研究[J].岩石力学与工程学报,2000,19(增):930-935
    [138]周少怀,杨家岭. DDA数值方法及工程应用研究[J].岩土力学,2000,21(2):123-125
    [139]栾茂田,黎勇,杨庆.非连续变形计算力学模型基本原理及在边坡岩体稳定性分析中的应用[J].岩石力学与工程学报,2000,19(3):289-294.
    [140]邬爱清,丁秀丽,李会中等.非连续变形分析方法模拟千将坪滑坡启动与滑坡全过程[J].岩石力学与工程学报,2006,25(7):1297–1303.
    [141]任青文.块体单元法及其在岩体稳定分析中的应用[J].河海大学学报,1995,(01):1-7.
    [142]任青文,余天堂.块体单元法的理论和计算模型[J].工程力学,1999,(01):67-77.
    [143]任青文,余天堂.边坡稳定的块体单元法分析[J].岩石力学与工程学报,2001,20(1):20-24.
    [144]陈胜宏.高坝复杂岩石地基及岩石高边坡稳定分析[M].北京:中国水利水电出版社,2002.
    [145]陆晓敏.基于块体单元法的裂隙岩体数值模拟及其应用[D].河海大学,2006.
    [146]郑惠峰,汪卫明,陈胜宏.弹粘塑性块体单元法在龙滩水电站右坝肩边坡稳定分析中的应用[J].岩土力学,2006,27(1):107-111.
    [147]郑惠峰,汪卫明,陈胜宏.块体单元法动力分析研究[J].岩石力学与工程学报,2007,26(3):608-613.
    [148]张国新,彭静.二阶流形元与结构变形分析[J].力学学报,2002,34(2):261–269.
    [149] ZHANG G X, SUGIURA Y, et al. The second order manifold with six node triangle mesh[J].J Struct Mech Earthquake Eng, JSCE,2002,696/Ⅰ-58:1–9.
    [150]张国新,王光纶,裴觉民.基于流形元方法的结构体破坏分析[J].岩石力学与工程学报,2001,20(3):281–287.
    [151]张国新.流形元法与结构模拟分析[J].中国水利水电科学研究院学报,2003,1(1):63-69.
    [152] ZHANG G X, YASUHITO Sugiura, KOZO Saito. Failure simulation of foundation bymanifold method and comparison with experiment[J]. Journal of Applied Mechaics,JSCE,1998,1:427–436.
    [153]刘红岩,秦四清.层状岩石边坡倾倒破坏过程的数值流形方法模拟[J].水文地质工程地,2006,(5):22-25.
    [154]张国新,赵妍,石根华,彭校初.模拟岩石边坡倾倒破坏的数值流形法[J].岩土工程学报,2007,29(6):800-805.
    [155]张国新,赵妍,彭校初.考虑岩桥断裂的岩质边坡倾倒破坏的流形元模拟[J].岩石力学与工程学报,2007,26(9):1773-1780.
    [156] Belytschko T, Krongaus Y, Organ D, et al. Meshless methods: an overview and recentdevelopments. Comput Method Appl Mech Engin,1996,139:3-47.
    [157] Li S, Liu W K. Meshfree particle methods and their application. Appl Mech Rev,2002,54:1-34.
    [158] Nayroles B, Touzot G, Villon P. Generalizing the finite element method diffuseapproximation and diffuse elements [J]. Computational Mechanics,1992,10:307-318.
    [159] Belyt Schko T, Lu Y Y, Gu L. Element free Galerkin methods [J]. International Journal forNumerical Methods in Engineering,1994,37:229-256.
    [160] Liu W K, Jun S, Zhang Y. Reproducing kernel particle methods [J]. International Journalfor Numerical Methods in Engineering,1995,20:1081-1106.
    [161] Duarte C A, Oden J T. An H-P adaptive method using clouds [J]. Computer Methods inApplied Mechanics Engineering,1996,139:237-262.
    [162] Melenk J M, Babuska I. The partition of unity finite element methods: Basic theory andapplication [J].Computer Methods in Applied Mechanics Engineering,1996,139:263-288.
    [163] Franke C, Schaback R. Solving partial differential equations by collocation using radialbasis functions [J].Applied Mathematics and Computation,1997,93:73-82.
    [164] Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach incomputational mechanics [J]. Computational Mechanics,1998,22:117-127.
    [165] Sukumar N, Moran B, Belytschko T. The natural element method in solid mechanics[J].International Journal for Numerical Methods in Engineering,1998,43:839-887.
    [166] Liu G R, Gu Y T. A point interpolation method for twodimensional solids [J]. InternationalJournal for Numerical Methods in Engineering,2001,50:937-951.
    [167] Gu Y T, Liu G R. A local point interpolation method for static and dynamic analysis of thinbeams [J]. Computer Methods in Applied Mechanics Engineering,2001,190:5515-5528.
    [168] Liu G R, Gu Y T. A local radial point interpolation method (LRPIM) for free vibrationanalyses of2-D solids [J]. Journal of Sound and Vibration,2001,246:29-46.
    [169] Wang J G, Liu G R. A point interpolation meshless method based on radial basis function [J].International Journal for Numerical Methods in Engineering,2002,54:1623-1648.
    [170] Liu G R, Gu Y T. An introduction to meshfree methods and their programming [M].Netherlands: Springer,2005.
    [171]郭小虎,秦洪.适用于可变形体物理建模与模拟的无网格方法[J].中国科学F辑:信息科学,2009,39(1):47-60.
    [172]程玉民.科学和工程计算的新方法——无网格方法[J].计算机辅助工程2009,(1):1-2.
    [173]李顶河,徐建新,卿光辉.Hamilton体系下含弱粘接复合材料层合板的无网格求解方法[J].工程力学,2012,29(2):9-15.
    [174]马福祥,王林维,陈奇珠.倾倒变形体底滑面综合强度参数的选取[J].西北水电,2002,(2):22-24.
    [175]白彦波.澜沧江苗尾水电站坝肩倾倒变形岩体的质量分类评价及其工程效应分析[D].成都理工大学硕士论文,2007.
    [178]万宗礼,刘昌,聂德新,等.水电站工程滑坡及特殊边坡研究与治理[M].西北勘测设计研究院,2009.
    [179]陈礼仪,牛文林,朱宗培.植物胶冲洗液在岩土工程勘察中的应用[J].探矿工程,2005,增:314-316.
    [180]孙维丽,陈征宙,邓立立,等.岩质高边坡的稳定性有限元分析[J].东华理工学院学报,2004,27(1):65-68.
    [181]尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346.
    [182]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [183]郑颖人,赵尚毅.有限元强度折减法在十坡与岩坡中的应用[J].岩石力学与工程学报,(2004)23,3381~3388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700