用户名: 密码: 验证码:
高坝坝区硬脆性裂隙岩体的流变强度时效模型及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济建设的快速发展及水利水电资源不断的开发利用,岩石工程项目不仅越来越多,工程开挖规模也越来越大,由此引出的围岩稳定性问题日益突显。岩体工程稳定性评价的关键在于需要深入了解工程岩体的流变力学特性及其相应的岩体力学参数取值方法,并在理论上深入地对工程岩体长期运行稳定性进行分析,其中的关键就是需要分析得出材料力学参数随应力和时间不断弱化的时效演化模型,特别是建立考虑时间效应的流变强度时效模型。本文以大岗山水电站坝区的硬脆性辉绿岩为研究对象,基于对硬脆性辉绿岩在不同应力状态下的室内三轴流变试验结果,确定出了硬脆性岩体的力学参数随时间和应力水平的变化规律,继而建立了硬脆性岩体的流变时效强度模型,并将其应用到了实际工程的数值分析中。本文的研究工作主要是以下几个方面:
     (1)采用全自动岩石三轴流变伺服仪开展了大岗山水电站坝区硬脆性辉绿岩的室内三轴流变力学特性试验,分别从轴向、侧向和体积变形等三个方面分析了不同围压、不同应力水平下硬脆性岩石变形随时间的变化规律,研究了硬脆性辉绿岩在三轴流变过程中的变形特性,探讨了岩石的等时应力~应变曲线特征、变形速率特征、蠕变对变形和强度的影响,分析了岩石的蠕变损伤阀值,并从细观和宏观力学两个方面解释了硬脆性辉绿岩的蠕变过程曲线,初步掌握了硬脆性辉绿岩流变特性的基本规律,明确了硬脆性岩石的流变破裂机理。
     (2)依据中水顾成都勘测设计研究院在坝区现场做的大型直剪试验和大型剪切蠕变试验的资料,研究了考虑加载历史影响的剪切蠕变变形规律和剪切蠕变速率特性,通过模型辨识和参数反演得到了硬脆性辉绿岩体的剪切蠕变参数。分别采用等时应力~应变曲线法、非稳定蠕变判别法和稳态蠕变速率法计算获得了坝区硬脆性辉绿岩体的长期剪切流变强度,并将各结果进行了对比分析,最终确定出了硬脆性辉绿岩体的长期剪切流变强度。将岩体的长期抗剪指标与瞬时抗剪指标进行了对比,得到了岩体在长期恒定荷载作用下强度参数的衰减百分率。
     (3)通过分析硬脆性辉绿岩蠕变过程中力学参数的弱化规律,建立了岩体弹性模量E、粘聚力C、内摩擦角φ与应力及时间的时效演化模型,从定量的角度描述了硬脆性辉绿岩在蠕变过程中的损伤演化过程,并基于蠕变破坏时岩体的强度变化验证了时效演化模型的合理性与正确性。
     (4)基于硬脆性辉绿岩单轴、三轴压缩试验的结果,从变形、强度、能量及破坏等不同角度对硬脆性辉绿岩在不同应力状态下的变形特征、强度特征及能量耗散特征等进行了较为系统的分析,获得了硬脆性辉绿岩的基本力学特性和变形破坏规律。利用裂纹应变模型,明确了岩体内部裂纹发展演化的规律以及强度破坏机理。
     (5)将硬脆性岩体力学参数的时效演化模型引入到八面体应变能强度模型中,建立硬脆性岩体的流变强度时效模型,并通过三轴试验结果验证了该流变时效强度模型的正确性。
     (6)通过C++与Fish编程对有限差分软件Flac3D进行二次开发,实现力学参数时效演化模型的程序化和强度准则的非线性化,并将其应用于大岗山水电站坝区边坡的长期稳定性分析中,系统地对位移矢量场、应力矢量场以及塑性屈服区等进行综合分析,总结了围岩体力学响应的时空演化规律和特征,对坝区岩体的施工开挖和长期运行稳定性提出合理的工程建议。这些问题的研究为下一步渗流对岩石强度的影响的研究提供了基础信息和理论依据。
With the increasing development of China's economic construction and water conservancy and hydropower resources development, not only the number of rock projects are rising, but also the excavation scope are extending, which leads to highlight problems associated with the stability of rock mass. The key factor with respect to rock engineering stability evaluation is to acquire comprehensive and deep perception of rheological and mechanical characteristics and the corresponding determination of mechanical parameters in rock engineering. Moreover, in-depth analysis of long-term operational stability of engineering rock is required. Therefore, discovering the functional relationship of weakened material parameters affected by stress and time variation, especially proposing rheological strength damage model concerned with the time effect, plays a crucial role in these topics. In this thesis, based on precious literatures, large-scale in situ shear creep test results in Dagangshan Hydropower Station Dam, and triaxial laboratory tests on rheological properties of fragile diabase, variation principles of mechanical parameters of diabase under different time and stress conditions, were determined. Then, a rheological strength damage model was proposed, and its verification was proved by situ engineering. The main contents of this thesis were listed as following:
     1. With the help of automatic triaxial rock rheology servo instrument, triaxial laboratory tests on rheological properties of fragile diabase in Dagangshan Hydropower Station Dam were carried out. The variation mechanism of brittle rock over time under different confining pressure and stress levels was discussed, regarding axial, lateral and volumetric deformation respectively. Meanwhile, deformation characteristics of diabase under triaxial rheology, stress-strain curves characteristics, strain rate characteristics, and influence of creep on the deformation and strength of brittle rock, were studied. The creep damage threshold of diabase was analysed as well. This thesis demonstrates the creep process curve of diabase from both micro-mechanics and macro-mechanics views. Initially basic principle of the diabase rheological properties was acquired, and rheological fracture mechanism of brittle rock was indicated.
     2. Based on the shear creep test results in Dagangshan Hydropower Station Dam, the thesis discussed shear creep deformation laws concerning load history, distinguished the shear creep models of diabase, and obtained the shear creep parameters of the diabase in the dam site by inversion. By utilizing the isochronous stress-strain curves method, non-steady creep discriminance, steady creep velocity method respectively, and long-term shear rheological strength of the diabase were obtained. After that, the different results were compared, ensued with the determination of long-term shear rheological strength of the diabase. Through comparisons of long-term shear strength and transient shear strength, attenuation percentage of the strength parameters of rock mass under long-term constant loads was obtained.
     3. The thesis determined the mechanical parameters of diabase in creep process, analyzed the weakening law of the mechanical parameters of rock mass, and established the damage evolution equations (i.e. the formula of elastic modulus, cohesion and friction angle, in accordance with stress and time of rock mass). The process of creep damage evolution of diabase was described from a quantitative view, and the functional relation was certificated by the strength variation of rock creep damage.
     4. Based on the results of uniaxial compression tests, triaxial compression tests, and load-unload tests, systematic analysis on the diabase deformation characteristics, strength characteristics and energy dissipation characteristics under different stress states was made from the different views regarding deformation, strength, energy, and damage, and the instantaneous mechanical properties and deformation damage law of the diabase were gained. With the help of fracture strain model, the internal propagation principle of rock and intensity failure mechanism was identified.
     5. The mechanical parameter variations of diabase were introduced to the strength formula, and the model that could reflect the aging rheological damage intensity of diabase was established.
     6. Secondary development of the finite difference software Flac3D was processed through programming of C++and FISH language, which achieved programming of rheological aging evolution model, and then it was applied to the study of long-term stability of the Dagangshan Hydropower Station Dam slopes. Displacement vector fields, stress vector fields and distributions of yield areas were analyzed comprehensively and systematically. Eventually space-time evolution principle and characteristics of mechanical response of rock mass were summarized, while sensible engineering suggestions on the excavation and long-term stability of rock mass in the dam regions were given. In conclusion, the research on these issues will certainly make contribution to the further seepage influence study of rock mass, providing basic information and theoretical foundation.
引文
[1]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    [2]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [3]杨圣奇.岩石流变力学特性研究及其工程应用[M].南京:河海大学,2006.
    [4]丁秀丽.岩体流变特性的试验研究及模型参数辨识[D].武汉:中国科学院武汉岩土力学研究所,2005.
    [5]周德培,朱本珍,毛坚强.流变力学原理及其在岩土工程中的应用[M].成都:西南交通大学,1996.
    [6]王可钧.岩石力学与工程的几个研究热点[C].新世纪岩石力学与工程的开拓和发展.北京:中国科学技术出版社,2000:6-10.
    [7]Griggs, D. T. Creep of rocks [J]. Journal of Geology,1939,47:225-251.
    [8]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1106.
    [9]Matsushima S. On the flow and fracture of igneous rocks[J]. Bulletins-Disaster Prevention Research Institute, Kyoto University.1960,36:1-9.
    [10]Jaeger J C, Cook N G W. Fundamentals of rock mechanics[M]. New York:Chapman & Hall, 1979.
    [11]Cruden DM. Single-increment creep experiments on rock under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1971,8(2):127-142.
    [12]Okubo S, Nishimatsu Y, Fukui K. Complete creep curves under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1991,28(1):77-82.
    [13]Maranini E, Brignoli M. Creep behaviour of a weak rock:experimental characterization [J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(1):127-138.
    [14]Ma L, Daemen J J K. An experimental study on creep of welded tuff[J]. International Journal of Rock Mechanics and Mining Sciences.2006,43(2):282-291.
    [15]Tsai L S, Hsieh Y M, Weng M C, et al. Time-dependent deformation behaviors of weak sandstones[J]. International Journal of Rock Mechanics and Mining Sciences.2008,45(2):144-154.
    [16]钟时猷,马明军.软弱岩石蠕变破坏规律的探讨[J].中南矿冶学院学报.1987,18(5):494-500.
    [17]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报,1995,16(1):39-47.
    [18]杨建辉.砂岩单轴受压蠕变试验现象研究[J].石家庄铁道学院院报,1995,8(2):77-80.
    [19]王贵君,孙文若.硅藻岩蠕变特性研究[J].岩土工程学报.1996,18(6):55-60.
    [20]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报,1996,18(4):63-67.
    [21]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报,1997,16(3): 246-251.
    [22]张学忠,王龙,张代钧,等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报,1999,22(5):99-103.
    [23]朱定华,陈国兴.南京红层软岩流变特性试验研究[J].南京工业大学学报,2002,24(5):77-79.
    [24]赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J].岩土力学,2003,24(4):583-586.
    [25]李化敏,李振华,苏承东.大理岩蠕变特性试验研究[J].岩石力学与工程学报,2004,23(22):3745-3749.
    [26]范庆忠,高延法.分级加载条件下岩石流变特性的试验研究[J].岩土工程学报,2005,27(11):1273-1276.
    [27]姜永东,鲜学福,熊德国,等.砂岩蠕变特性及蠕变力学模型研究[J].岩土工程学报,2005,27(12):1478-1481.
    [28]袁海平,曹平,许万忠,等.岩石粘弹塑性本构关系及改进的Burgers蠕变模型[J].岩土工程学报,2006,28(6):796-799.
    [29]崔希海,付志亮.岩石流变特性及长期强度的试验研究[J].岩石力学与工程学报,2006,25(5):1021-1024.
    [30]Wawersi. Time-dependent rock behaviour in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Science&Geomechanics Abstracts,1974,11(7):139-139.
    [31]Singh DP. A study of creep of rocks[J]. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1975,12(9):271-276.
    [32]周祖辉,黄荣搏,庄锦江.软弱岩层的蠕变及其与油井套管岩压外载的关系[J].岩石力学与工程学报,1986,5(2):115-128.
    [33]李晓.岩石峰后力学特性及其损伤软化模型的研究与应用[D].徐州:中国矿业大学,1995.
    [34]Maranini E, Brignoli M. Creep behaviour of a weak rock:experimental characterization[J]. Int J Rock Mech Min Sci,1999,36(1):127-138.
    [35]彭苏萍,王希良,刘咸卫,等.“三软”煤层巷道围岩流变特性试验研究[J].煤炭学报,2001,26(2):149-152.
    [36]陈渠,西田和范,岩本健,等.沉积软岩的三轴蠕变实验研究及分析评价[J].岩石力学与工程学报,2003,22(6):905-912.
    [37]万玲.岩石类材料粘弹塑性损伤本构模型及其应用[D].重庆:重庆大学博士论文,2004.
    [38]徐卫亚,杨圣奇,谢守益等.绿片岩三轴流变力学特性的研究(Ⅱ):模型分析[J].岩土力学,2005,26(5):693-698.
    [39]杨圣奇,徐卫亚,谢守益,等.饱和状态下硬岩三轴流变变形与破裂机制研究[J].岩土工程学报,2006,28(8):962-969.
    [40]范庆忠,李术才,高延法.软岩三轴蠕变特性的试验研究[J].岩石力学与工程学报,2007,26(7):1381-1385.
    [41]黄书岭.高应力下脆性岩石的力学模型与工程应用研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [42]于洪丹,陈卫忠,郭小红,等.厦门海底隧道强风化花岗岩力学特性研究[J].岩石力学与工程学报.2010,29(2):381-387.
    [43]徐平,夏熙伦.三峡枢纽岩体结构面蠕变模型初步研究[J].长江科学院院报,1992,9(1):42-46.
    [44]丁秀丽,刘建,刘雄贞.三峡船闸区硬性结构面蠕变特性试验研究明[J].长江科学院院报,2000,17(4):30-33.
    [45]陈记.岩石节理面剪切流变的试验研究[J].淮海工学院学报(自然科学版),2004,13(4):74-77.
    [46]沈明荣,朱银桥.规则齿形结构面的蠕变特性试验研究[J].岩石力学与工程学报,2004,23(2):223-226.
    [47]庞正江,胡建敏.结构面剪切蠕变及其长期强度试验研究[J].岩土力学,2006,27,1179-1182.
    [48]杨圣奇,徐卫亚,杨松林.龙滩水电站泥板岩剪切蠕变力学特性研究[J].岩土力学,2007,28(5):895-902.
    [49]朱明礼,朱珍德,李志敬,等.深埋长大隧洞围岩非定常剪切流变模型初探[J].岩石力学与工程学报,2008,27(7):1436-1441.
    [50]程强,周德培,封志军.典型红层软岩软弱夹层剪切蠕变性质研究[J].岩石力学与工程学报,2009,28:3176-3180.
    [51]朱珍德,李志敬,朱明礼,等.岩体结构面剪切蠕变试验及模型参数反演分析[J].岩土力学,2009, 30(1):99-104.
    [52]刘学增,苏京伟,王晓彤.不同围岩级别凝灰熔岩剪切蠕变特性的试验研究[J].岩体力学与工程学报,2009,28(1):190-197.
    [53]沈明荣,张清照.绿片岩软弱结构面的剪切蠕变特性研究[J].岩体力学与工程学报,2010,29(6):1149-1155.
    [54]吴玉山,李纪鼎.大理岩卸载特性的研究[J].岩土力学,1984,5(1):29-36.
    [55]Ramamurth T. Strength and Modulus Response of Anisotropic Rocks[J]. Comprehensive Rock Mech., 1993,4(1):23-28.
    [56]李建林,孟庆义.卸荷岩体的各向异性研究[J].岩石力学与工程学报,2001,20(3):338-341.
    [57]张振南,茅献彪,郭广礼.松散岩块压实变形模量的试验研究[J].岩石力学与工程学报,2003,22(4):578-581.
    [58]吕颖慧,刘泉声,胡云华.基于花岗岩卸荷试验的损伤变形特征及其强度准则[J].岩石力学与工程学报,2009,28(10):2096-2103.
    [59]吕颖慧,刘泉声,江浩.基于高应力下花岗岩卸荷试验的力学变形特性研究[J].岩土力学,2010,31(2):337-344.
    [60]Bieniawski Z T. Rock Mass Classification in Rock Engineering[A]. In Explor. for Rock Eng., Proc. Of the Symp.,1976:97-106.
    [61]Barton N, By T L, Chryssanthakis P, et al. Predicted and Messured Performance of the 62m Span Norwegian Olympic Tce Hockey Cavern at Gjovik[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1994,31(6):617-641.
    [62]Kim K, Gao H. Probabilistic Approaches to Estimating Variation in the Mechanical Properties of Rock Masses[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts, 1995,32(2):111-120.
    [63]聂运钧,肖国强,王法刚.声波法在三峡坝基岩石力学试验中的应用[J].岩土力学,2003,24(增1):175-177.
    [64]Zhang L, Einstein H. Using RQD to Estimate the Deformation Modulus of Rock Masses[J]. Int J Rock Moch Min Sci,2004, (41):337-341.
    [65]Sakulai S. Interpretation of the Result of Displacement Measurements in Cut Slopes[A]. In:Proc.2nd Int. Symp. On Field Measurement in Geom.[C]. [s.l]:[s. n.],1987,528-540.
    [66]Sonmez H, Ulusay R, Gokceoglu C. A Practical Procedure for the Back Analysis of Slope Failure in Closely Jointed Rock[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.,1998,35(2):219-233.
    [67]徐卫亚,蒋晗,谢守益.三峡永久船闸高边坡变形的人工神经网络预测法[J].岩土力学,1999,20(2):108-112.
    [68]陈益峰,周创兵.隔河岩坝基岩体在运行期的弹塑性力学参数反演[J].岩石力学与工程学报,2002,21(7):968-975.
    [69]杨志法,张路青,曾庆利等.可用于确定水平地应力分量和围岩弹性模量的TBA位移反分析法[J].岩石力学与工程学报,2004,23(23):4000-4005.
    [70]江权,冯夏庭,苏国韶等.基于松动圈-位移增量监测信息的高地应力下洞室群岩体力学参数的智能反分析[J].岩石力学与工程学报,2007,26(增刊1)
    [71]倪绍虎,肖明.基于围岩松动圈的地下工程参数场位移反分析[J].岩石力学与工程学报,2009,28(7):1439-1446.
    [72]熊文林,李胡生.岩石样本力学参数值的随机模糊处理方法[J].岩土工程学报,1992,14(6):101-108.
    [73]Yan Chunfeng, Zhang Jianhui. The use of Bayes Method to Infer Distribution of Mechanical Parameters [A]. In:Proc. Rock Mech.&Env. Geotech., EMRG'97 [C]. Chongqing:Chongqing University Press,1997,61(6).
    [74]张征,程祖锋,王思样等.岩土参数随机场空间最优估计精度分析与特异值研究[J].岩土工程学报,1999,21(5):586-590.
    [75]Nawari N O, Liang R. Fuzzy-BasedApproach for Determination of Characteristic Values of Measured Geotechnical Parameters[J]. Canadian Geotech. J.,2000,37:1131-1140.
    [76]徐卫亚,蒋中明.岩土样本力学参数的模糊统计特征研究[J].岩土力学,2004,25(3):342-346.
    [77]徐光黎,潘别桐,晏同珍.节理岩体变形模量估算新方法[J].地球科学,1991,16(5):573-580.
    [78]周维垣,杨延毅.节理岩体力学参数取值研究[J].岩土工程学报,1992,14(5):1-11.
    [79]周火明,盛谦等.三峡工程永久船闸边坡岩体宏观力学参数的尺寸效应研究[J].岩石力学与工程学报,2001,20(5):661-664.
    [80]朱焕春,陈文理.生成节理随机数的直接法[J].武汉水利电力大学学报,1997,30(2):10-12.
    [81]朱焕春,BRUMMER Richard, PATRICK Andrieux节理数值计算方法及其应用(一):方法与讨论[J].岩石力学与工程学报,2004,23(20):3444-3449.
    [82]晏石林,黄玉盈,陈传尧.非贯通节理岩体等效模型与弹性参数确定[J].华中科技大学学报,2001,29(6):64-67.
    [83]汪远年,李世海.断续节理岩体随机模型三维离散元数值模拟[J].岩石力学与工程学报,2004,21:3652-3658.
    [84]杨学堂,哈秋聆,张永兴,等.裂隙岩体宏观力学参数数值仿真模拟研究[J].水力发电,2004,30(7):43-49.
    [85]汤明高,许强,黄润秋,等.小湾水电工程6#山梁节理岩体高边坡3DEC分析[J].水文地质工程地质,2006(3):57-60.
    [86]张玉军.节理岩体等效模型及其数值计算和室内试验[J].岩土工程学报,2006,28(1):29-32.
    [87]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [88]David T. Griggs. Experimental Flow of Rocks under Conditions Favoring Recrystallization[J]. Bulletin of the Geological Society of America,1940,51(7):1001-1022.
    [89]Tan Tjon Kie, Li Ke Re. Relaxation and Creep properties of thin interbeded clayer seams and thier fundamental in the stability of dams. I.S.R.M.symposium weak rock, tokyo, japan, sept,21-24,1981.
    [90]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(1):1-20.
    [91]舒芝琴.长期强度在工程上的应用[J].水文地质工程地质,1986,23-25.
    [92]石豫川,张倬元.二滩水电站右坝肩纤闪石化玄武岩软弱岩带流变特性的研究[J].成都地质学院学报,1991,18(2):72-81.
    [93]蒋昱州.高拱坝拱肩槽岩石流变力学特性试验研究及其长期稳定性分析[D].南京:河海大学,2009.
    [94]Z.T.Bieniawski.Mechanism of Brittle Fracture of Rock. Partsl,2 and 3, Int.J Rock Mech.Min.Sci.,4(4),1967.
    [95]P.Desayi and C.S.Viswanatha. True Ultimate Strength of Plain Concrete. Bull. RILEM,(36),1967.
    [96]C.M.Sangha and R.K.Dhir. Influence of time on the strength, deformation and fracture properties of a lower Devonian sandstone[J]. International Journal of Rock Mechanics and Mining Science,1972,9(3): 343-352.
    [97]Z.T.Bieniawski. Mechanism of brittle fracture of rock:Part Ⅱ—experimental studies[J]. International Journal of Rock Mechanics and Mining Science,1967,4(4):407-423.
    [98]P.Desayi, C.S.Viswanatha. True Ultimate Strength of Plain Concrete[J]. Bulletin rilem,1967,1967(36): 163-173.
    [99]B.V.Winkel, K.H.Gerstle, H.Y.KO. Analysis of time-dependent deformations of openings in salt media[J]. International Journal of Rock Mechanics and Mining Science,1972,9(2):249-260.
    [100]刘东俊.软弱岩体流变特性及长期强度测定法[J].岩土力学,1980,(1):37-50.
    [101]崔希海,付志亮.岩石流变特性及长期强度的试验研究[J].岩石力学与工程学报,2006,25(5):1021-1024.
    [102]王贵君,孙文若.硅藻岩蠕变特性研究[J].岩土工程学报,1996,18(6):55-60.
    [103]刘晶辉,王山长,杨洪海.软弱夹层流变试验长期强度确定方法[J].勘察科学技术,1996,(5):3-7.
    [104]夏熙伦,徐平.岩石流变特性及高边坡稳定性流变分析[J].岩石力学与工程学报,1996,15(4):31-322.
    [105]任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报,2002,(1):10-15.
    [106]王在泉.泥化夹层长期强度的灰色预测[J].金属矿山,1998,(2):16-20.
    [107]杨天鸿,芮勇勤,朱万成等.炭质泥岩泥化夹层的流变特性及长期强度[J].实验力学,2008,23(5):396-402.
    [108]刘沐宇,徐长佑.硬石膏的流变特性及其长期强度的确定[J].中国矿业,2000,9(2):53-55.
    [109]张学忠,王龙,张代钧.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报(自然科学版),1999,22(5):99-103.
    [110]王来贵,王泳嘉,刘学.岩石试件的流变失稳理论及判据[J].阜新矿业学院学报(自然科学版),1994,13(3): 93-97.
    [111]孙钧.岩石流变力学及工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1106.
    [112]杨延毅.裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究[J].工程力学,1994,11(2):81-90.
    [113]凌建明.岩体蠕变裂纹起裂与扩展的损伤力学分析方法[J].同济大学学报,1995,23(2):141-146.
    [114]李新平,朱瑞赓,朱维申.裂隙岩体的损伤断裂理论与应用[J].岩石力学与工程学报,1995,14(3):236-245.
    [115]朱维申,邱祥波,李术才等.损伤流变模型在三峡船闸高边坡稳定分析的初步应用[J].岩石力学与工程学报,1997,16(5):431-436.
    [116]熊先仁.蠕变损伤强度理论新准则研究[J].江西电力职工大学学报,1998,1](4):15-19.
    [117]肖洪天,强天弛,周维垣.三峡船闸高边坡损伤流变研究及实测分析[J].岩石力学与工程学报,1999,18(5):512-515.
    [118]朱珍德,胡定.岩体损伤流变模型及其有限元分析[J].工程力学(增刊),1999,828-833.
    [119]陈卫忠,朱维申,李术才.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报,1999,(12):33-37.
    [120]肖洪天,周维垣,杨若琼.三峡永久船闸高边坡流变损伤稳定性分析[J].土木工程学报,2000,33(6):94-98.
    [121]杨松林,徐卫亚,张贵金.裂隙蠕变的稳定性准则[J].岩土力学,2003,24(3):423-427.
    [122]高红.岩土材料屈服破坏准则研究[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [123]陈景涛.高地应力下硬岩本构模型的研究和应用[D].北京:中国科学院研究生院,2006.
    [124]庞桂珍,宋飞.一种岩石的损伤流变模型[J].西安科技大学学报,2008,28(3):429-433.
    [125]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    [126]徐卫亚,杨圣奇,杨松林等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):531-537.
    [127]李世平,吴振业,贺永年等.岩石力学简明教程[M].北京:煤炭工业出版社,1996.
    [128]肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1986.
    [129]葛修润,任建喜,蒲毅彬等.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004.
    [130]金丰年,范华林.岩石的非线性流变损伤模型及其应用研究[J].解放军理工大学学报,2000,1(3):1-5.
    [131]陈沅江,潘长良.基于内时理论的软岩流变本构模型[J].中国有色金属学报,2003,13(3):736-742.
    [132]范庆忠.岩石蠕变及扰动试验研究[D].青岛:山东科技大学,2006.
    [133]缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报,1995,16(4):343-346.
    [134]崔少东.岩石力学参数的时效性及非定常流变变本构模型研究[D].北京:北京交通大学,2010.
    [135]古德曼著,王鸿儒,王红硕等译.岩石力学原理及其应用[M].北京:水利电力出版社,1989.
    [136]朱思哲,刘虔,包承纲等,三轴试验原理与应用技术[M].北京:中国电力出版社,2003.
    [137]贾乃文.粘塑性力学及工程应用[M].北京:地震出版社,2000.
    [138]周维垣,杨延毅.节理岩体的损伤断裂模型及验证[J].岩石力学与工程学报,1991(1):43-54.
    [139]徐海滨,朱维申,白世伟.岩体粘弹塑性-损伤本构模型及其有限元分析[J].岩土力学,1992(3):11-20.
    [140]王明洋,周泽平,钱七虎.深部岩体的构造和变形与破坏问题[J].岩石力学与工程学报,2006,25(3):448-455.
    [141]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [142]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
    [143]靖洪文,许国安,谢述新.不同围压下大理岩剪胀试验研究[J].河海大学学报(自然科学版),2001,29(s):31-33.
    [144]康红普.岩石扩容与巷道底[J].阜新矿业学院学报,1992,11(3):40-45.
    [145]陆阳泉,赵家骝.利用大样本岩石破裂实验模拟扩容:扩散孕震模式的某些结果(一)[J].地震学报,1998,20(2):194-200.
    [146]尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778-781.
    [147]谢强,姜崇喜,凌建明.岩石细观力学试验与分析[M],成都:西南交通大学出版社,1996.
    [148]C. Derek Martin. The strength of massive Lac du Bonnet granite around underground openings[D], The United States:University of Manitoba,1993.
    [149]SAMMIS C G, ASHBY M F. The failure of brittle porous solids under compressive stress states[J]. Acta Metallurgica,1986,34(3):511-526.
    [150]KEMENY J M, COOK N G W. Crack models for the failure of rocks in compression[C]. Proceedings of the International Conference on Constitutive Laws for Engineering Materials. Amsterdam:Elsevier,1987: 879-887.
    [151]DEY T N, WANG C Y. Some mechanisms of microcrack growth and interaction in compressive rock failure[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1981,18(3):199-209.
    [152]BRACE W F, PAULDING B W, SCHOLZ C. Dilatancy in the fracture of crystalline rocks[J]. Journal of Geophysical Research 1966,71(16):3939-3953.
    [153]Hallbauer, D.K., Wagner, H. and Cook, N.GW. Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff[J], Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.1973,9:37-86.
    [154]J.C.Jaeger, N.G W.Cook.岩石力学基础[M],北京:科学出版社,1981.
    [155]许宏发,陈力新.岩石时效特性与节理模型[M].上海:上海交通大学出版社,2009.
    [156]邓广哲,朱维申.岩体裂隙非线性蠕变过程特性与应用研究[J].岩石力学与工程学报,1998,17(4):358-365.
    [157]刘雄.一般蠕变本构方程探讨及实验验证[J].岩土力学,1986,5(3):245-256.
    [158]范广勤.岩土工程流变力学[M].北京,1992.
    [159]徐宏发,陈立新.岩石时效特性与节理模型[M].上海:上海交通大学出版社,2009.
    [160]Hoek E, Brown E T. Strength of jointed rock masses[J]. Geotechnique,1983,33(3):157-223.
    [161]Mogi K. Pressure dependence of rock strength and transition from brittle fracture to ductile flow[J]. Bulletin of the Earthquake Research Institute,1966,44(1):215-232.
    [162]Hoek E, Brown E T. Practical estimates of rock masses strength[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1165-1186.
    [163]Yu M H, Zan Y W, Zhao J, et al. A unified strength criterion for rock material[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(8):975-989.
    [164]张金铸,林天建.三轴试验中岩石的应力状态和破坏性质[J].力学学报,1979,(2)99-106.
    [165]许东俊,耿乃光.岩石强度随中间主应力变化规律[J].固体力学学报,1985,(1):72-80.
    [166]高延法,陶振宇.岩石强度准则的真三轴压力试验检验与分析[J].岩土工程学报,1993,15(4):26-32.
    [167]Yu MaoHong. Twin-shear theory and its application[M]. Beijing:Science Press,1998.
    [168]宋玉普,赵国藩,彭放.三轴加载下混凝土的变形和强度[J].水利学报,1991,(12),17-24.
    [169]过镇海,郭玉涛,徐焱等.混凝土非线弹性正交异性本构模型[J].清华大学学报(自然科学版),37(6):78-81.
    [170]徐林生,王兰生,李天斌.国内外岩爆研究现状综述[J].长江科学院报,1999,16(4):24-27.
    [171]中国水电顾问集团成都勘测设计研究院.四川省大渡河大岗山水电站可行性研究报告(综合说明)[R].成都,2006.
    [172]中国水电顾问集团成都勘测设计研究院.四川省大渡河大岗山水电站可行性研究报告(工程地质)[R].成都,2006.
    [173]中国水电顾问集团成都勘测设计研究院.大岗山岩体分类及力学特性研究报告[R].成都,2006.
    [174]胡云华.高应力下花岗岩力学特性试验及本构模型研究[D].武汉:中国科学院研究生院,2008.
    [175]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.
    [176]山东大学.大岗山水电站坝区初始地应力场反演计算分析报告[R].济南,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700