用户名: 密码: 验证码:
径向三腔渡越时间振荡器理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渡越辐射器件具有结构简单,效率高等特点,因此它们在众多的高功率微波源中具有特殊的吸引力,但是由于传统的轴向渡越辐射器件的阻抗较高(几十甚至上百Ω),器件的峰值功率受到限制。在高功率微波源低阻抗、高功率、高效率的发展需求下,如何降低器件的阻抗,提高输出功率成为渡越辐射器件的研究重点内容。
     利用径向结构空间电荷效应小、空间电荷限制流大的特点,基于三腔渡越时间振荡器,提出了一种新型低阻抗高功率微波器件——径向三腔渡越时间振荡器(栅网结构),理论效率35%,CHIPIC程序粒子模拟获得了平均功率7.4GW的微波输出,束波互作用效率27.4%,阻抗7.5Ω;考虑到径向结构中的环形栅网加工困难、且会限制器件的功率容量,提出了边加载结构径向三腔渡越时间振荡器,粒子模拟给出的束波互作用效率达33.3%;又根据三维理论的研究,提出了改进型径向三腔渡越时间振荡器,理论效率超过50%,粒子模拟效率达47.4%。本文主要从理论分析和粒子模拟两方面深入细致地研究了径向三腔渡越时间振荡器的基本原理。所做的主要工作和贡献如下:
     一、提出了径向三腔渡越辐射振荡器包括栅网结构、边加载结构(含改进型边加载结构)。
     二、采用近似手段首次将Floquet定理应用到径向结构,并对径向三腔渡越时间振荡器包括栅网结构和边加载结构的慢波系统进行高频特性分析,获得了色散方程。以栅网结构为例,对色散方程进行了数值求解和误差分析,获得了该方法适用范围。
     三、将一维理论应用于径向三腔渡越时间振荡器的理论分析,并获得了一维理论的适用范围。
     四、建立了三维理论并对径向三腔渡越时间振荡器进行了全面分析,获得了电子束电压、调制系数、谐振腔径向长度、电子束位置与束波互作用效率的关系,并研究了电子束运动轨迹。理论表明边加载结构的束波互作用效率超过50%。
     五、利用CHIPIC程序对径向三腔渡越时间振荡器进行了详细的模拟研究,研究了器件的效率、频率与电子束参数和谐振腔结构参数的关系,获得了对实验有指导意义的结果。
Compare to numbers of high power microwave (HPM) sources, the transit time oscillators have the special merits, such as, simple structure, high efficiency and so on. These characters make the transit time oscillators been given most attention by the studies. But usually, the traditional axial transit time oscillators have a character of high impedance which restricts the output wave power seriously. And so under the uptrend of lower impedance, high efficiency and high power, how to improving the impedance merit and obtain higher power become the keystone of the transit time oscillators.
     By the base of the three-cavity transit time oscillator, and considering the merits of the radial structure such as the small space charge offect and big space charge restricting current, A new kind of low impedance HPM oscillator named radial three-cavity transit time oscillator is brought forward. Through the PIC simulation, the oscillator gives an output wave of 7.4GW, and the impedance 7.5 Q, and the efficiency 27.4%. In order to improve the highest power capacity, and depress the difficulty of the cure, the side-appending configuration is also brought forward with an efficiency of 33.3% by the PIC simulation. And through the 3D theoretic analysis, an improved side-appending configuration is brought forward, and the efficiency enhanced to 47.4%. In this dissertation, we will comprehensively study the radial three-cavity transit time oscillator by the theoretic analysis and the PIC simulation. Main jobs and contribution done by this dissertation are as follows:
     First, the structures of the radial three-cavity transit time oscillators, including the foil structure, the side-appending structure, and the advanced side-appending structure are brought forward.
     Second, the Floquet theory is firstly applied to the radial structure by an approximate method. And under the theory, the high-frequency merits of the cavities including the foil structure and the appending structure are analyzed, and the dispersive equations are obtained. For illustration, the dispersive equations of the foil structure are solved by the numerical method, and errors are analyzed, and the applicable additions are given.
     Third,1-D theory is applied to explain the process of the co-action of the beam and the cavity, and the applicable additions are given.
     Forth, A 3-D theory is constructed. Using the 3-D theory, full analysis to the radial three-cavity transit time oscillator has been done. The volts of the beam, the modulation coefficient, the length of the cavity in the radial and the beam location, are analyzed how to infecting the co-action efficiency. And also the electrons tracks are given. Through the theory, we know that, the advanced side-appending structure indeed has a higher efficiency (higher than 50% by theory).
     Fifth, comprehensive simulations have been done to the radial three-cavity transit time oscillator, and the infections of the beam parameters and the cavity parameters to the efficiency have been analyzed. And some valuable results to the experiments are obtained.
引文
[1]王莹,高功率脉冲电源,原子能出版社,1989
    [2]吴鸿适,微波电子学原理,科学出版社,1987
    [3]吴伯瑜,张克潜,微波电子学,电子工业出版社,1986
    [4]刘盛刚,相对论电子学,科学出版社,1987
    [5]周传明,刘国治,刘永贵等,高功率微波源,原子能出版社;2007
    [6]James Benford, John Swegle. High power microwave[M],Artech House, MA, 1991
    [7]V.L. Granatstein and I.Alexeff(eds.). High-power Microwave Source [M]. Norword, MA:Artech House,1987
    [8]张军,新型过模慢波高功率微波发生器研究。[博士论文],长沙:国防科技大学,2004
    [9]D.V.Giri, H.Lackner, G.E.Baum, et al. Design, Fabrication and testing of a paroboloidal reflector antenna and pulse system for impulse-like waveforms. IEEE Trans.on Plasma Sci.1997, Vol.25, No.2:pp318
    [10]岳琳娜,同轴加载圆波导慢波系统的研究,[博士学位论文],成都:电子科技大学,2005
    [11]Robert J.Barker, Edl Schamiloglu, et al. High-power microwave source and technologies, The Institute of Electrical and Electronics Engineers, Inc., New York,2001
    [12]S.P. Bugaev,etc, Investigation of a millimeter-wavelength-range Relativistic Diffraction Generator. IEEE Trans. On Plasma. Sci., Vol.18.No.3,1990,p518
    [13]舒挺,多波契仑柯夫振荡器的研究[博士论文],长沙:国防科技大学,1998
    [14]D.Shffier, etc, A high power Traveling wave Tube Amplifier. IEEE Trans. On Plasma Sci., Vol.18,1990,546
    [15]J.A. Swegle, J. W. Poukey and G. T. Leifeste, Backward wave Oscillator with Rippled Wall Resonators:Analytic Theory and Numerical Simulation, Phys. Fluids,1985,Vol.28, No.9,2882
    [16]钱宝良,具有等离子体背景或电介质衬套的返波振荡器[博士论文],北京:清华大学电机系,1996
    [17]杨建华,低磁场谐振腔契仑柯夫振荡器-锥形放大器的研究[博士论文],长沙:国防科技大学,2002
    [18]S.P. Bugev. Et al. Relativistic Multiwave Cerenkov Generator. Sov. Tech. Phys. Lett, Vol.9, No.11,1983,586
    [19]Hirshfield J L, Wachtel J M. Electron Cyclotron Maser. Phys Rev Lett,1964,12: 533-536
    [20]赖颖欣,正弦波纹同轴布喇格结构研究[博士论文],成都:西南交通大学,2008
    [21]Kovalev N F, Petelin M I, Reznikov M G. Resonator. Author's Certificate 72051 with priority of Nov.14,1978, Bull KDIO,1980,9
    [22]Mahaffey R A, Sprangle P, Golden J, High-Power Microwaves from a Nonisochronic Reflexing System. Phys. Rev. Lett, Vol.39,1977, p843
    [23]Didenko A N, Zherlitsyn A G and Sulakshin A S et al, The Generation of High-power Microwave Radiation in a Tride System by a Heavy-Current Beam of Microsecond Duration. Sov. Tech. Phys. Lett, Vol.4,1978, p3
    [24]Twiss R Q. Radiation Transfer and the Possibility of Negative Absorption in Radio Astronomy. Aust J Phys,1958,11:564-579
    [25]Twiss R Q, Robert J A. Electromagnetic Radiation from Electrons Rotating in an Ionized Medium under the Action of a Uniform Magnetic Field. Aust J Phys,1958,11:424-446
    [26]Jess Marcum, Contributed Original Research, Interchange of Energy between an Electron Beam and an Oscillating Electric Field, Journal of applied physics, Vol.17,1946
    [27]W. J. Kleen, Electronics of microwave Tubes. New York:Academic,1958, sec. 13.2
    [28]Nusinovich, T. M. Antonsen, Jr., V.L. Bratman, and N. S. Ginzburg, Principles and capabilities of high-power microwave generators, in Applications of High-Power Microwaves, A. V. Gaponov-Grekhov and V. L. Granastein, Eds. Boston, MA:Artech House,1994
    [29]Gelvich E. A, et al. A New Generation of Power Klystrons on the Base of Multi-Beam Design [J]. IEEE MIT-S Digest,1991
    [30]Raymond W. Lemke, M. Collins Clark, et al. Theoretical and experimental investigation of a method for increase the output of a microwave based on the split-cavity oscillator, J. Appl. Phys., Vol.75,No.10,15 May 1994
    [31]Barry M. Marder, M. Collins Clark, et al., Split-Cavity oscillator:A higer Power E-Beam modulator and microwave source, IEEE transactions on plasma science, Vol.20 No.3 June 1992
    [32]R.Bruce Miller, William F.McCullough, et al. Super-Reltron Theory and Experiments, IEEE Transactions on plasma science, Vol.20 No.3 June 1992
    [33]R.Bruce Miller, Carl A. Muehlenweg, et al.Super-Reltron Progress,IEEE Transactions on plasma science, vol.22 No.5, October 1994
    [34]刘庆想,三腔渡越时间效应高功率微波振荡器研究,中国国防科技报告,中国工程物理研究院应用电子学研究所,1998
    [35]范植开,渡越管振荡器研究.[博士学位论文],绵阳:中国工程物理研究院应用电子学研究所,1999
    [36]James Benford, John Swegle, et al. High power microwave,1991
    [37]Raymond W. Lemke, M. Collins Clark, et al. Theoretical and experimental investigation of a method for increace the output of a micronwave based on the split-cavity oscillator, J. Appl. Phys.,Vol 75,No.10,15 May 1994
    [38]Barry M.Marder, M.Collins Clark,et al.,Split-Cavity oscillator:A higer Power E-Beam modulator and microwave source, IEEE transactions on plasma science, Vol.20 No.3 June 1992
    [39]R.Bruce Miller, William F.McCullough, et al. Super-Reltron Theory and Experiments, IEEE Transactions on plasma science, Vol.20 No.3 June 1992
    [40]R.Bruce Miller, Carl A. Muehlenweg, et al. Super-Reltron Progress,IEEE Transactions on plasma science, vol.22 No.5, October 1994
    [41]Joaquim J. Barroso, et al. High-power microwave generation by an axial transit time oscillator
    [42]Joaquim J. Barroso, Design facts in the axial monotron, IEEE Transactions on plasma science,Vol.28,No.3 June 2000
    [43]Joaquim J.Barroso, Konstanitin GKostov, Triple-Beam Monotron,IEEE Transactions on plasma science,Vol.30, No.3,June 2002
    [44]Joaquim J.Barroso, Split-Cavity monotrons achieving 40 percent Electronic efficiency, IEEE Transacitons on plasma science,Vol.32 No.3,June 2004
    [45]范植开,刘庆想等.C波段三腔渡越时间效应振荡器的理论与实验研究,中国科学(G),Vol.33 NO.6 12 2003
    [46]M. Joseph Arman, Radial Acceletron, A New Low-Impendance HPM Source, IEEE Transactions on plasma sci., Vol.24. No.3.,1996
    [47]M. Joseph Arman, High Power Radial Klystron Oscillator, Proceeding of SPIE's int. Symposium on Optical Science, Engineering, and Instr., Intrense Microwave Pulses Ⅲ,1995
    [48]M. J. Arman. High Power radial klystron oscillator[A]. San Diego, USA.1995
    [49]吴中发,王玉芝.径向速调管振荡器的理论设计与数值模拟,强激光与粒子束,Vol.12 NO.2,42000
    [50]贾云峰,刘永贵,谭启美,径向渡越时间振荡器初步实验研究,强激光与粒子束,Vol.15,No.8,2003
    [51]李少甫,丁武.一种新的高功率微波折叠式谐振腔径向速调管振荡器,强激光与粒子束,Vol.15 NO.9,2003
    [52]张运俭,孟凡宝,范植开等,高效强流径向分离腔振荡器研究,强激光与粒子束,Vol.57,No.2,2008
    [53]谢家麐,赵永翔,速调管群聚理论,科学技术出版社,1966
    [54]范植开,刘庆想等,三腔渡越时间效应的小信号理论分析,强激光与粒子束,Vol.11,No.4,1999
    [55]何琥,X波段渡越辐射振荡器的理论和实验研究[博士论文],绵阳:中国工程物理研究院应用电子学研究所,2003
    [56]贺军涛,钟辉煌,钱宝良,非均匀三腔渡越时间效应的小信号理论分析,
    强激光与粒子束,Vol.15,No.10,2003
    [57]范植开,刘庆想等,多腔谐振腔中渡越时间效应的线性理论,强激光与粒子束,Vol.11,No.5,1999
    [58]L. Solymar, Exact Solution of the One-dimensional Bunching Problem, J. Ele. & Contr.1961
    [59]L. Solymar, Extension of the One-dimensional (Klystron) Solution to Finite Gaps, J. Ele. & Contr.1961
    [60]L. Solymar, Finite-gap Klystron——a Large-signal Ballistic Theory, Electron Tech. Vol.38, No.10,1961
    [61]L. Solymar, Large Signal Calculation of the Admittance of an Electron Beam Traversing a High Freqency Gap, Vol.12, No.4,1962
    [62]P. K. Tien, L. R. Walker, V. Wolontis, A Large Signal Theory of TWT-Amplifiers, PIRE 43,1955
    [63]S. E. Webber, Ballistic Analsis of a Two-Cavity Finite Beam Klystron, IRE Trans. ED-5,1958
    [64]S. E. Webber, Large Signal Analysis of the Multi-Cavity Klystron, IRE Trans. ED-5,1958
    [65]S. E. Webber, Large Signal Bunching of Electron Beams by Standing-Wave and Travelling-Wave Systems, IRE Trans. ED-6,1959
    [66]F. Paschke, On the Nonlinear Behavior of Electron-Beam Devices, RCA Rev. Vol.18,1957
    [67]F. Paschke, Generation of Second Harmonic in a Velocity-modulated Electron Beam of Finite Diameter, RCA Rev. Vol.19,1958
    [68]F. Paschke, Nonlinear Theory of a Velocity-modulated Electron Beam with Finite Diameter, RCA Rev. Vol.21,1960
    [69]Joaquim J. Barroso, et al,. High-power microwave generation by an axial transit time oscillator
    [70]Joaquim J. Barroso, Design facts in the axial monotron, IEEE Transactions on plasma science,Vol.28,No.3 June 2000
    [71]Joaquim J.Barroso, Konstanitin GKostov, Triple-Beam Monotron,IEEE Transactions on plasma science,Vol.30, No.3,June 2002
    [72]Joaquim J.Barroso, Split-Cavity monotrons achieving 40 percent Electronic efficiency, IEEE Transacitons on plasma science, Vol.32, No.3,June 2004
    [73]Raymond W. Lemke. Dispersion analysis of symmetric transverse magnetic modes in a split cavity oscillator[J]. J. Appl. Phys.,1992, Vol.72,NO 9:4422-4428
    [74]范植开,刘庆想.三腔分离腔振荡器高频特性分析[J],电子学报,2001,29(4):538-542
    [75]范植开,刘庆想,三腔渡越管振荡器高频结构解析研究[J],强激光与粒子束,2000,12(4):491-496
    [76]陈代兵,何琥,刘庆想,X波段五腔渡越管振荡器的高频特性研究,强激光与粒子束,Vol.15,No.10,2003
    [77]何琥,刘庆想,X波段六腔渡越管振荡器的高频特性研究,强激光与粒子束,Vol.16,No.4,2004
    [78]Bruce Goplen, et al. MAGIC's MANUAL, Virginia, Mission Research Corporation,1996
    [79]Tarakanov, User's Manual for Code KARAT, Virginia, Berkeley Research Associates, Inc.1995
    [80]电子科技大学CHIPC课题,CHIPIC使用帮助,电子科技大学,2006
    [81]臧杰锋,刘庆想等,径向三腔渡越时间振荡器数值模拟,强激光与粒子束,Vol.20,No.3,2008
    [82]Marer B M, Clark M M, Bacon L D, et al. The Split-Cavity Oscillator:A High-Power E-Beam Modulator and Microwave Source. IEEE TRANSACTIONS ON PLASMA SCIENCE, Vol.20, No.3,1992
    [83]J. J. Barroso,Split-Cavity Monotrons Achieving 40 Percent Electronic Efficiency[J].IEEE Trans. Plasma Sci, Vol.32, No.3,2004
    [84]范植开,刘庆想.C波段三腔渡越时间振荡器的理论与实验[J].中国科学,2003
    [85]Miller R.Bruce et al. Super-Reltron Theory and Exeperiments[J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, Vol.20, No.3,1992
    [86]Raymond W. Lemke. Dispersion analysis of symmetric transverse magnetic modes in a split cavity oscillator[J]. J. Appl. Phys., Vol.72, No.9,1992
    [87]范植开,刘庆想.三腔分离腔振荡器高频特性分析[J]。电子学报,Vol.29,No.4,2001
    [88]范植开,刘庆想.三腔渡越管振荡器高频结构解析研究[J]。强激光与粒子束,Vol.12,No.4,2000
    [89]张克潜,李德杰.微波与光电子学中的电磁理论[M],电子工业出版社,1994
    [91]Joaquim J. Barroso, Stepped Electric-Field Profiles in Transit Time Tubes, IEEE Transactions on Electron Devices, Vol.52, No.5,2005
    [92]臧杰锋,刘庆想,林远超,等.径向三腔渡越时间振荡器三维大信号理论分析,强激光与粒子束,已录用
    [93]臧杰锋,刘庆想,朱静,等.径向三腔渡越时间振荡器高频特性分析,强激光与粒子束,Vol.20,No.12,2008
    [94]臧杰锋,刘庆想,林远超,等.边加载径向三腔渡越时间振荡器,强激光与粒子束,Vol.21,No.11,2009.
    [95]臧杰锋,刘庆想,林远超,等.新型边加载径向三腔渡越时间振荡器,强激光与粒子束,Vol.21,No.12,2009.
    [96]林远超,刘庆想,臧杰锋,等,箔聚焦相对论强流环形电子束在同轴波导中的传输,强激光与粒子束,已录用
    [97]韩持宗,刘庆想,臧杰锋,等,罗科夫线圈诊断径向束流的研究,强激光与粒子束,2008
    [98]韩持宗,罗科夫线圈诊断径向束流的研究,[硕士论文],西南交通大学,2008
    [99]朱静,径向相对论电子束箔聚焦的传输研究,西南交通大学学报增刊,2008
    [100]朱静,箔聚焦径向强流相对论电子束的研究,[硕士论文],西南交通大学,2008
    [101]王浩英,高功率毫米波Cherenkov器件研究,[博士论文],电子科技大 学,2005
    [102]张桂戌、郑建华HIRFL束流诊断系统软件设计[J].核电子与探测技术July.1999,Vol.19 No.4 P287-291
    [103]王珏、张适昌、严萍、孙广生用自积分式罗氏线圈测量纳秒级高压脉冲电流[J].强激光与粒子束Mar.2004,Vol.16 No.3 P399-403
    [104]贺军涛、钟辉煌、钱宝良.非均匀三腔谐振腔渡越时间效应的小信号分析[J].强激光与粒子束,2003,15(10):985-988
    [105]贺军涛、钟辉煌、刘永贵.非均匀三腔谐振腔高频特性的数值分析[J].强激光与粒子束,2004,16(4):505-508
    [106]贺军涛,钟辉煌,刘永贵.C波段三腔渡越时间振荡器的数值模拟[J].强激光与粒子束,2003,15(9):895-898
    [107]Lemke R W,Bacon L D, Clark M M. Theoretical investigation of a split cavity oscillator for modulating magnetized, annular, relativistic electron beams[A]. IEEE International Conference on Plasma Science [C]. Williamsburg,1991
    [108]狄隽,祝大军,刘盛纲CHIPIC软件的电磁场计算方法[J].电子科技大学学报,2005,34(4):485-488
    [109]王秉中.计算电磁学[M].北京:科学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700