用户名: 密码: 验证码:
飞机座舱动态热载荷计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了保障飞机乘员舒适性与仪表设备工作可靠,以及节省能耗,需要在飞机设计阶段精确计算飞机座舱的稳态和动态热载荷。然而,目前国内外关于飞机座舱动态热载荷研究的公开文献很少,且尚无可供工程应用的客机动态热载荷的系统计算,这种局面极为不利于我国大型客机环境控制系统的研制,为此,本文主要进行了如下研究:
     1、对国内外飞机座舱动态热载荷计算情况进行了文献调研,确定了采用数值计算法获得客机座舱动态热载荷。?
     2、以ARJ21‐700型客机为例,对飞机增压区进行分舱、分区,建立传热模型,采用有限差分法求得瞬态温度场,获得了地面停机状态座舱瞬态热载荷和座舱内空气温度以及飞行过程飞机座舱动态热载荷等随时间的变化情况,且对整机模式和单独舱模式的客舱瞬态传热进行了对比。?
     3、考察了材料层布置方式、空气层厚度、空间位置以及绝热层厚度等变化对飞机绝热性能的影响。?
     4、对非透明围护结构的三种结构即一维结构、当量一维单层结构、二维结构进行了传热对比。?
     研究表明:地面停机状态舱内供气量对座舱传热影响较大,飞行过程座舱热载荷变化范围较大,且整机与单独舱计算的客舱瞬态传热存在差异。此外,材料层布置方式、空气层厚度、空间位置及绝热层厚度对飞机绝热性能具有一定的影响,尤其是前者对其影响程度较大;隔框、桁条对座舱围护结构的传热影响较大。上述研究为飞机环境控制系统的方案选择、参数优化及控制规律的研究等提供了重要依据。
In order to protect the aircraft occupant feeling comfortable and the instrumentation to go reliable, as well as to save energy, the steady-state and transient heat load should be calculated accurately in the design stage. However, the open literatures on the study of transient heat load for aircraft cabins were very few at home and abroad. And there was no one can supply the engineering application of the calculation of transient heat load for airliners. This situation was extremely detrimental to research and produce the airliner Environmental Control System. So, the following studies were carried out in this paper:
     1. The literatures on the calculation of transient heat load for aircraft cabins at home and abroad were researched, and the method of numerical computation to calculate transient heat load for airliner cabins was determined.
     2. Using ARJ21-700 as a numerical example, the pressurized areas of the aircraft were parted and based on the heat transfer model to solve the transient temperature field by using the finite difference method. The transient heat load and air temperature distribution for cabins under the ground downtime were obtained, as wall as the changes over time about the transient heat load for aircraft cabins during flight. And the transient heat transfer for cabins of the machine model and the single compartment model was compared.
     3. The influence of the insulation performance of the aircraft about the material layer layout, thickness of the air sandwich, the location and thickness of the insulation were researched.
     4. The heat transfer for the three non-transparent envelopes, that is one-dimensional four-story structure, equivalent one-dimensional single-layer structure and two-dimensional structure, was compared.
     Studies show that: The gas volume in cabins had more effect on the heat transfer of cabins under the ground downtime. The range of the thermal load for cabins was larger during flight. And the calculations of the transient heat transfer about the whole machine and the single compartment were different. Besides, the influence of the insulation performance of the aircraft about the material layer layout, thickness of the air sandwich, the location and thickness of the insulation was smaller. But the influence of the heat transfer of cabin envelopes about the compartment boxes and stringers was larger. Studies all above provided an important foundation for the selection of the aircraft environmental control system, optimization of parameters and the study of control laws.
引文
[1]李京生,李军生.大型客机机载系统技术发展趋势.航空制造技术,2008,(16):42~45.
    [2]袁领双,刘猛,王浚.适于多电飞机的新型环境控制系统初探.中国航空学会2007年学术年会机载、航电专题87:1~4.
    [3]张兴娟,杨春信,袁修平.大飞机座舱制冷系统发展概述.中国航空学会2007年学术年会,机载航电专题79:1~4.
    [4]苏向辉,许锋,昂海松.飞机环境控制系统的现状与未来.专题综述航空制造技术.2002,(10):40~42,46.
    [5]陈元先.飞机环境控制系统的发展与展望.航空科学技术,1996,(5):29~31,41.
    [6]寿荣中,何慧姗.飞行器环境控制.北京:北京航空航天大学出版社,2004:1~5.
    [7]郑慧凡,阎秀英,范晓伟,李安桂.建筑物空调负荷计算方法研究进展.中原工学院学报,2007,1.
    [8]焦密.歼击机座舱飞行全过程瞬态热载荷计算分析.北京航空航天大学高空设备教研室
    [9]应文江.座舱瞬态热载荷.南京航空学院科技报告,NGJB-91-6972.
    [10]应文江.座舱瞬态热载荷的计算方法.南京航空航天大学学报,1994,26(3):407~411.
    [11]Falcon Rankins and Darryll J.Pines,An Integral Head Load Analysis of Vehicles Flying Periodic Hypersonic Cruise Trajectories,37th AIAA Aerospace Sciences Meeting and Exhibit January LL-14,1999/Reno,NV.
    [12]夏艳.飞行器座舱热过程与环境控制系统性能的仿真研究,[硕士学位论文].南京:南京航空航天大学,2001.
    [13]范纬强,庄达民,袁修干,李德刚.座舱瞬态热载荷的计算与仿真.北京航空航天大学学报,2001,27(6):654~657.
    [14]范纬强.战斗机空调座舱瞬态热载荷的计算方法研究,[硕士学位论文].北京:北京航空航天大学,2000.
    [15]李德刚.飞机座舱热载荷及通风参数计算仿真,[硕士学位论文].北京:北京航空航天大学,2002.
    [16]夏新林,艾青,任德鹏,李德富.飞机整体瞬态热状况的数值仿真研究.航空学报,2007,28:513~518.
    [17]Siegl R,Howell J R.Thermal radiation heat transfer[M].4th Edition.Taylor and Francis,2002.
    [18]赵红燕.基于状态空间法的飞机座舱热载荷分析.科技风,2008:54.
    [19]E.J.Gabby:“Theoretical Formulation of Cabin Temperature Control”,AircraftEngineering,March,1954.
    [20]D.K.Shaeve:“Cabin Air Conditioning and Wing Anti-Icing Temperature Control”,WADC-TR-54-410.
    [21]Y.Eichler:“A Simulation of an Aircraft’s Environmental Control System”,NTIS,1974.
    [22]李德刚,庄达民.战斗机座舱热负荷的计算方法.中国工程热物理协会第十届年会传热传质学:637~641.
    [23]袁修平.飞机座舱热力特性的数学模型及其应用.北京航空学院学报,1982,(4):47~59.
    [24]杨春信.飞机座舱热力特性的数值模拟研究.航空学报,1995,16(1):64~68.
    [25]王连江,赵竞全.飞机座舱温度场数值仿真研究.计算机仿真,2008,25(5):44~46,142
    [26]何庆芝.航空航天概论(第1版).北京:北京航空航天大学出版,1997.
    [27]杨世铭,陶文铨.传热学.北京:高等教育出版社,1998,9.
    [28]湛利华,李晓谦,胡仕成.界面接触热阻影响因素的实验研究.轻合金加工技术,2002,30(9): 40~43.
    [29]应济,贾昱,陈子辰,高承煜.粗糙表面接触热阻的理论和实验研究.浙江大学学报(自然科学版).1997,1,31(1):104~109.
    [30]季军,雷世豪.旅客机座舱内的绝热隔声层.民用飞机设计与研究,2004,(2):7,20~22.
    [31]陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2001.
    [32]蒋龙富,刘鹏.座舱允许最大泄漏量与等效泄漏面积的计算及分析.民用飞机设计与研究,2006,(4):31~32.
    [33]王浚.飞机座舱温度数学模型.北京航空学院学报,1981,(2):45~60.
    [34]Al-Regib E,Zubair S M. Transient heat transfer through insulated walls[J].Energy ,1995,7(20):687~694.
    [35]Price B A ,Smith T F. Thermal response of composite building envelopes accounting for thermal radiation[J].Energy Conversion and Management,1995,1(36):23~33.
    [36]Asan H ,Sancaktar YS. Effects of Wall’s thermaophysical properties on time lag and decrement factor[J].Energy and Building,1998,28:159~166.
    [37]Asan H. Effects of wall’s insulation thickness and position on time lag and decrement factor[J].Energy and Building ,1998,28:299~305.
    [38]Asan H. Investigation of wall’s optimum insulation position from maximum time lag and minimum decrement factor point of view[J].Energy and Building ,2000,32:197~203.
    [39]飞机设计手册(第15册).北京:航空工业出版社,1999.
    [40]王兴东,李刚,李江,李远兵.耐火材料热应力计算的现状与发展.江苏冶金,2006,34(3):1~5.
    [41]杨能彪.一维非稳态导热问题的数值计算.青海师范大学学报(自然科学版),2006,(4):24~26.
    [42]杨泽茂.一种二维非稳态导热问题的数值解法.石油化工高等学校学报,1996,9(2):78~81.
    [43]闵桂荣,郭舜.航天器热控制(第二版).北京:科学出版社,1998.
    [44]章熙民.传热学(第四版).北京:中国建筑工业出版社,2001:169~170.
    [45]孟庆林,蔡宁,陈启高.封闭空气层热阻的理论解.华南理工大学学报(自然科学版),1997,25(4):116~119.
    [46]朱雷波,童树庭.中空玻璃的暖边技术.玻璃与搪瓷,2004,32(3):43~46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700