用户名: 密码: 验证码:
胃癌中microRNA-200家族的表达及其功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃癌是我国最常见的恶性肿瘤之一,2009年全国恶性肿瘤发病和死亡分析显示:胃癌发病率居恶性肿瘤的第二位,死亡率居第三位,依然是我国恶性肿瘤死亡的主要原因。我国胃癌具有发病率高、早期诊断率低、5年生存率低等特点。胃癌的早期诊断率仍徘徊在10%-20%,这亦是胃癌在我国死亡率居高居不下的主要原因之一。目前手术治疗是唯一经证实的可能会治愈胃癌的手段,但即便是已行胃癌根治术的患者,仍有大部分会出现复发或转移。术后的辅助放化疗对控制胃癌的复发或转移可能有效。化疗在晚期胃癌患者的综合性治疗中亦发挥重要作用,然而耐药一直以来是胃癌化疗遇到一个很大瓶颈。由此得出,胃癌的早期诊断和及时有效的治疗是提高其5年生存率的关键,所以寻找敏感而特异性强的分子标志物、明确治疗的分子靶标以及正确的进行预后评估则是至关重要的任务。miRNA是一类机体内源性表达的、长度在18~25个核苷酸的非编码小分子RNA,这些仅占人类基因1%的miRNA分子,却很可能调控着人类三分之一以上基因的表达、修饰、转录和翻译的过程。miRNA的发现可能成为极有应用价值的分子标志物,为恶性肿瘤的早期诊断和预后评估开启了一条新的道路。其中miRNA-200家族成为目前关注的焦点,miRNA-200家族包括miRNA-200a、miRNA-200b、miRNA-200c、miRNA-141和miRNA-429五个成员。具有高度保守、基因簇集现象、时序性和组织特异性等生物学特性。该家族在某些肿瘤中呈低表达(如肝癌、肾细胞癌),而在一些肿瘤中则呈高表达(如膀胱癌、宫颈癌)。研究已经证明miRNA-200家族的各个成员单独被动表达可以阻止上皮间质转化(epithelial-mesenchymal transition,EMT)的改变,共同作用则可以调节ZEB1和SIP1(ZEB2)的表达,但该家族在人类恶性肿瘤中所扮演的具体角色尚未明晰。本研究将采用实时定量PCR技术检测miRNA-200家族五个成员在胃癌组织及其配对的癌旁正常组织中的表达差异,并分析其表达与胃癌临床病理参数的相关性。选取该家族具代表性的成员miRNA-200c,利用定量Real-time PCR检测其在4株胃癌细胞中的表达水平,采用瞬时转然的方法将miRNA-200c mimics或阴性对照转入胃癌细胞株以获得高表达miRNA-200c的细胞模型,然后通过MTT法检测肿瘤细胞的增殖情况,用流式细胞仪检测细胞周期变化,以及应用细胞划痕实验检测肿瘤细胞的迁移能力,以了解miRNA-200c对胃癌细胞生物学行为的影响,从而能进一步阐明miRNA-200c在胃癌发生、发展中的作用。并应用生物信息学软件对miRNA-200c的靶基因进行筛选,同时采用双荧光素酶报告基因法验证靶基因,为以后深入研究miRNA-200c的分子机制打下基础。
     第一部分胃癌组织中microRNA-200家族的表达及意义
     目的:探讨miRNA-200家族五个成员在胃癌组织及其配对的癌旁正常组织中的表达差异,并明确其表达与胃癌临床病理参数的相关性。
     方法:收集46例胃癌患者手术切除标本,应用定量Real-time PCR检测miRNA-200家族五个成员在胃癌组织及其配对的癌旁正常组织中的差异表达情况,并应用独立样本t检验和单因素方差分析的统计方法研究其表达水平与胃癌临床病理参数之间的相关性。
     结果:
     1miRNA-200家族在胃癌组织和配对的癌旁正常组织中的表达水平。采用定量Real-time PCR检测miRNA-200家族五个成员在46例胃癌组织及与其配对的癌旁正常组织中的相对表达情况。结果显示46例胃癌患者miRNA-200a、miRNA-200b、miRNA-200c、miRNA-141和miRNA-429在癌组织中的表达水平均显著低于相应的癌旁正常组织,表达差异有显著的统计学意义(P<0.05),五者分别在86.96%(40/46)、91.30%(42/46)、93.48%(43/46)、93.48%(43/46)和80.43%(37/46)的癌组织标本中表达水平低于癌旁正常组织。
     2miRNA-200家族五个成员的表达与胃癌临床病理参数的相关性。采用t检验或单因素方差分析对miRNA-200a、miRNA-200b、miRNA-200c、miRNA-141和miR-429的表达水平与胃癌临床病理参数的相关性进行分析。结果显示:miRNA-200家族五个成员的低表达水平均与组织学分级、脉管瘤栓呈显著相关(P<0.05),而与胃癌患者的性别、年龄、肿瘤大小、淋巴结转移、浸润深度、TNM分期、Lauren分型和Borrmann分型无明显相关(P>0.05)。结论:
     1miRNA-200家族五个成员(miRNA-200a、 miRNA-200b、miRNA-200c、miRNA-141和miRNA-429)在胃癌患者癌组织中的表达水平均显著低于相应的癌旁正常组织,提示该家族可能不适合作为胃癌早期诊断的分子标志物,但提高该家族5个成员内源性的表达,可能有助于胃癌的治疗和有效地预防,可能成为胃癌治疗和预防的分子靶标。
     2miRNA-200家族的五个成员在癌组织中的低表达与组织学分级、脉管瘤栓呈显著相关,提示其可能在胃癌发生及发展阶段起着关键性的作用。
     第二部分microRNA-200c对胃癌细胞生物学功能的影响
     目的:选取该家族具代表性的成员miRNA-200c,研究其对胃癌SGC7901细胞的增殖、周期和迁移能力等生物学行为的影响。
     方法:利用定量Real-time PCR法检测其在4株胃癌细胞中的表达水平,采用瞬时转然的方法将miRNA-200c mimics或阴性对照转入胃癌细胞株以获得高表达miRNA-200c的细胞模型,然后通过MTT法检测肿瘤细胞的增殖情况,用流式细胞仪检测细胞周期变化,以及应用细胞划痕实验检测肿瘤细胞的迁移能力。
     结果:
     1miRNA-200c在不同胃癌细胞株中的表达水平。应用定量Real-timePCR检测4株胃癌细胞MGC803、 HGC27、 SGC7901和AGS中miRNA-200c的表达情况,以胃癌患者癌旁正常组织作随机对照,结果显示:miRNA-200c在4株胃癌细胞中的表达水平均显著下调,减少倍数分别是9.93倍、9.69倍、7.18倍和2.93倍(P<0.0001)。
     2人胃癌细胞株SGC7901转染后miRNA-200c的表达水平。选择SGC7901细胞作为体外细胞模型,利用定量Real-time PCR法检测转染miRNA-200c mimics和阴性对照48h后miRNA-200c的表达水平,结果显示:转染miRNA-200c mimics后胃癌SGC7901细胞中miRNA-200c的表达水平较空白对照组和阴性对照组均显著增高,平均升高约10.2倍(P<0.05)。提示miRNA-200c mimics转染成功,可进行后续实验。
     3过表达miRNA-200c对SGC7901细胞增殖的影响。在转染miRNA-200c及阴性对照24、48、72h后,应用MTT方法对SGC7901细胞增殖进行检测,结果显示:细胞转染24、48、72小时后,miRNA-200cmimics实验组的OD值为0.308±0.010、0.360±0.016和0.457±0.029,而阴性对照组的OD值为0.339±0.008、0.505±0.006和0.775±0.010,各时间点两组之间比较均有统计学意义(P<0.05)。通过OD值计算细胞抑制率,miRNA-200c mimics实验组三个时间点的抑制率分别为10.76±2.50%、30.83±2.58%和33.86±15.9%,而阴性对照组的抑制率分别为1.78±2.70%、3.01±2.15%和0.64±0.69%,两组间各时间点比较均有显著差异(P<0.05)。表明胃癌细胞内miRNA-200c表达水平的上调可抑制胃癌细胞的增殖。
     4过表达miRNA-200c对SGC7901细胞周期的影响。应用流式细胞仪对miRNA-200c转染48h后的SGC7901细胞进行细胞周期的检测,结果显示:细胞转染48小时后,miRNA-200c mimics实验组的G0/G1期、S期和G2/M期的比例分别为72.77±0.85%、8.87±0.45%和18.36±1.29%,而阴性对照组三期的比例分别为42.10±0.80%、43.57±1.27%和14.33±2.06%,两组之间比较G0/G1期和S期存在显著差异(P<0.05),呈现G0/G1期阻滞。表明胃癌细胞内miRNA-200c表达水平的上调可阻滞G0/G1期细胞向S期进展。
     5过表达miRNA-200c对SGC7901细胞迁移能力的影响。采用细胞划痕实验检测过表达miRNA-200c对SGC7901细胞迁移能力的影响,结果显示:转染24小时后,miRNA-200c mimics实验组镜下细胞迁移宽度为344.40±17.24μm,而阴性对照组为270.51±18.21μm,两组之间比较有显著差异(P<0.05)。表明过表达miRNA-200c的细胞体外迁移能力明显低于阴性对照组。
     结论:
     1miRNA-200c在4株胃癌细胞株MGC803、HGC27、SGC7901和AGS中均存在不同程度的表达下调,与胃癌组织结果相一致。
     2miRNA-200c mimics能成功转染人胃癌细胞SGC7901,以上调SGC7901细胞中miRNA-200c的表达水平。
     3miRNA-200c在胃癌细胞SGC7901的过表达可抑制细胞增殖。提示miRNA-200c可能参与了细胞增殖的分子调控,有望成为胃癌治疗新的靶标。
     4miRNA-200c在胃癌细胞SGC7901的过表达可阻滞肿瘤细胞从G0/G1期向S期的进展,从而推测miRNA-200c可能是通过改变细胞周期来抑制细胞增殖。
     5miRNA-200c在胃癌细胞SGC7901的过表达可降低细胞体外迁移能力。提示miRNA-200c的表达水平可影响肿瘤细胞的迁移能力,为进一步研究胃癌治疗新的靶标提供了依据。
     第三部分microRNA-200c靶基因的筛选和验证
     目的:预测并验证RhoE是miRNA-200c的靶基因,为深入研究miRNA-200c的分子机制奠定基础。
     方法:应用生物信息学软件对miRNA-200c的靶基因进行预测和筛选,同时采用双荧光素酶报告基因法对预测的靶基因进行验证。
     结果:
     1miRNA-200c靶基因的生物信息学预测。目前对miRNA的靶基因筛选是应用生物信息学软件进行预测,综合分析TargetScan、PicTar、mirBase和miRanda等多个生物信息学软件预测的结果显示:miRNA-200c属于12号染色体,位置为12:7072862-7072929[+]。TargetScan和PicTar预测到的miRNA-200c潜在靶基因数分别为1057和639。本实验选取了近年来备受关注的RhoE基因(NM_005168)作为进一步研究目标,分析发现其3’UTR含有2段可能与miRNA-200c结合的位点。因此,我们针对此序列构建报告载体,进行双荧光素酶报告基因系统实验验证。
     2双荧光素酶报告基因系统验证RhoE是miRNA-200c的靶基因。我们应用验证靶基因与miRNA最经典的方法“双荧光素酶报告基因系统”对RhoE是否为miRNA-200c的靶基因进行验证。本实验先成功构建了RhoE3’UTR和突变型RhoE3’UTR的表达载体,通过在SGC7901细胞中分别共转染RhoE3’UTR+miRNA-200c mimics、RhoE3’UTR+miRNA-200cNC、RhoE mut3’UTR+miRNA-200c mimics和RhoE mut3’UTR+miRNA-200c NC分为四个实验组,48h后的检测结果显示:只有RhoE3’UTR+miRNA-200c mimics组荧光素蛋白的表达水平显著降低(P<0.05),说明miRNA-200c可靶向抑制RhoE3’UTR报告基因的活性。但miRNA-200c对RhoEmut3’UTR的表达载体没有抑制作用,miRNA-200cNC对RhoE3’UTR和RhoEmut3’UTR的表达载体均没有抑制作用(P>0.05)。因此本实验结果验证了RhoE是miRNA-200c的靶基因,提示miRNA-200c对RhoE存在抑制性功能的作用。
     结论:
     miRNA-200c可靶向抑制RhoE3’UTR报告基因的活性,验证了RhoE是miRNA-200c的靶基因,提示miRNA-200c对RhoE存在抑制性功能的作用,可能通过抑制RhoE发挥其生物学功能,从而影响着胃癌的发生、发展和侵袭转移的过程。为我们进一步阐明miRNA-200c在胃癌中的具体分子机制奠定了基础。
Gastric cancer is one of the most common malignant tumors in China.The incidence of gastric cancer in malignant tumors is the second place. It isthe third leading cause of cancer-related death in2009. Gastric cancer has thehigh incidence, the low rate of early diagnosis and the5-year survival in China.The early diagnostic rate of gastric cancer is still hovering around10%-20%,which is also the main reason of high mortality rate in China. At present,surgery is the only method to be proven to cure gastric cancer. But even if theyhad accepted the radical operation, most of patients with gastric cancer wouldinduce recurrence or metastasis. Postoperative adjuvant radiation andchemotherapy may be available to control the recurrence or metastasis ofgastric cancer. Chemotherapy plays an important role in comprehensivetreatment of advanced gastric cancer, but the drug resistance of chemotherapyhas become a big bottleneck. Therefore, we concluded that the early diagnosisand timely effective treatment is the key to improve the5-year survival rate ingastric cancer, so it is the most crucial task to look for a sensitive and specificmolecular markers, clarifing molecular targets of treatment and correctingprognosis assessment. MicroRNAs (miRNAs) are a new class of endogenousand non-coding small RNA, the length of which is approximately18-25nucleotides. These miRNAs account for only1%of human genes, but theymay regulate more than a third of gene expression, modification, transcriptionand translation in human. These miRNAs may have the potential applicationvalue of molecular markers, for the early diagnosis and prognosis assessmentof malignant tumor to open up a new road. Currently, the miRNA-200familyhas become the focus of miRNAs study. The family includes five members,which are miRNA-200a, miRNA-200b, miRNA-200c, miRNA-141andmiRNA-429. They have several biological characteristics, including the highlyconservative, gene cluster phenomenon, timing, and tissue specificity. Some studies have shown that the passive expression alone of each member in themiRNA-200family can prevent epithelial mesenchymal transformation (EMT)change, while they can adjust ZEB1and SIP1(ZEB2) expression if they worktogether, but specific role of the family in human malignant tumor has notbeen clarified. In this study, we detected the expression level of themiRNA-200family in gastric cancer tissue and adjacent normal tissue by thereal-time quantitative PCR technique, and analyzed the correlation betweenthe expression level and clinical pathological parameters of gastric cancer. Weselected the miRNA-200c, which is the representative members of the family,as study subject. We detected the expression level of miRNA-200c in4casesof gastric cancer cells using real-time quantitative PCR, and adopted themethod of transient transfection to transfer the miRNA-200c mimics ornegative control into the gastric cancer cell lines in order to obtain highexpression cell model of the miRNA-200c. In order to understand themiRNA-200c effects on gastric cancer cell biological behavior, and to furtherclarify the role of miRNA-200c in gastric cancer occurrence and development,we explored the proliferation of tumor cells by MTT method, detected the cellcycle change using flow cytometry instrument, and studied the tumor cellmigration ability by wound healing assay. Then we screened the potentialtarget genes by bioinformatics software, and at the same time used dualluciferase report gene method to validate the candidate target gene, forintensive study the molecular mechanism of the miRNA-200c.
     Part One The expression level of the miRNA-200family and thecorrelation with clinical pathological parameters in gastric cancer
     Objective: To explore the expression level of the miRNA-200family ingastric cancer tissue and adjacent normal tissue, and to analyze the correlationbetween the expression level and clinical pathological parameters of gastriccancer.
     Methods: The expression level of the miRNA-200family was detectedby real-time quantitative PCR in46cases of gastric cancer tissues andadjacent normal tissues. The correlation between the expression level of cancer tissues and clinical pathological parameters of gastric cancer wereanalyzed by independent-samples T tests and one-way ANOVA.
     Results:
     1We detected the expression level of the miRNA-200family in46casesof gastric cancer tissues and adjacent normal tissues by real-time quantitativePCR. Through the analysis of data, the results demonstrated that five membersof miRNA-200family, including miRNA-200a, miRNA-200b, miRNA-200c,miRNA-141and miRNA-429, were all significantly lower in cancerous tissuesthan those in the corresponding normal tissues (P<0.05). Among46patientswith gastric cancer,86.96%(40/46),91.30%(42/46),93.48%(43/46),93.48%(43/46) and80.43%(37/46) cases were showed low expression of themiRNA-200family, respectively.
     2We analyzed the correlation between the expression level of cancertissues and clinical pathological parameters of gastric cancer byindependent-samples T tests and one-way ANOVA. Medians of the relativeexpression values and clinicopathological factors were presented in Table. Thestatistical analysis showed that the expression of five members wereassociated with histologic grade and intravascular cancer embolus (P<0.05).However, no association was observed about gender, age, tumor size, lymphnode metastasis, invasive depth, TNM stage, Lauren type and Borrmanntype(P>0.05).
     Conclusion:
     1The expression level of the miRNA-200family was down-regulated ingastric cancer tissues compared with adjacent normal tissues, suggesting thatthe down-regulated of the miRNA-200family might become a therapeutic andpreventive tool in patients with gastric cancer, but might not be a promisingbiomarker in the early diagnosis of gastric cancer.
     2Lower levels of five members were associated with histologic gradeand intravascular cancer embolus, suggesting that the five members of themiRNA-200family might play an important role in the occurrence anddevelopment of gastric cancer.
     Part Two The effects of the miRNA-200c on biological behaviors inhuman gastric cancer cell line
     Objective: The miRNA-200c, which is the representative members of thefamily, was as the study subject. To estimate the effects of the miRNA-200family on biological behaviors in human gastric cancer cell line, including thecell proliferation, the cell cycle change and the tumor cell migration ability.
     Methods: The expression level in4cases of gastric cancer cell lines weredetected by real-time quantitative PCR, and the transient transfection wasadopt to transfer the miRNA-200c mimics or negative control into the gastriccancer cell lines in order to obtain high expression cell model of themiRNA-200c. The proliferation of tumor cells was explored by MTT, the cellcycle was detected using flow cytometry, and the tumor cell migration abilitywas studied by wound healing assay.
     Results:
     1We detected the expression level of miRNA-200c in4cases of gastriccancer cell lines, including MGC803, HGC27, SGC7901and AGS. Comparedwith adjacent normal tissue, the results showed that the miRNA-200c wassignificantly lower in MGC803, HGC27, SGC7901and AGS. The mediandecreased about9.93,9.69,7.18and2.93folds (P<0.0001).
     2The SGC7901cell was found to be a suitable cell model in vitro. Wedetected the expression level of miRNA-200c in SGC7901cell transferred themiRNA-200c mimics or negative control after48hours. The results displayedthat the expression level of miRNA-200c transferred the miRNA-200c mimicswas significantly higher than those in the negative control and blank controlgroup, with the change of median about10.2folds (P<0.05). These suggestedthat the transient transfection of miRNA-200c was successful and could beused in the next studies.
     3The MTT assays showed that24h,48h and72h after transfection ofthe miRNA-200c mimics or negative control in SGC7901cell, the cellproliferation in miRNA-200c mimics group was significantly inhibitedcompared to the negative control group(P<0.05). The OD values of miRNA-200c mimics group were0.308±0.010,0.360±0.016and0.457±0.029,while the OD values of negative control group were0.339±0.008,0.505±0.006and0.775±0.010. In three time points after transfection, the rateof inhibition in miRNA-200c mimics group were10.76±2.50%,30.83±2.58%and33.86±15.9%, while the rate of inhibition in negative control group were1.78±2.70%,3.01±2.15%and0.64±0.69%. They had significant difference ineach time point (P<0.05).
     4The flow cytometry showed that48h after transfection of themiRNA-200c mimics or negative control in SGC7901cell, the cell cycle ofmiRNA-200c mimics group was significantly changed compared to thenegative control group(P<0.05). The ratio in G0/G1phase, S phase and G2/Mphase of miRNA-200c mimics group were72.77±0.85%,8.87±0.45%and18.36±1.29%, while the ratio of negative control group were42.10±0.80%,43.57±1.27%and14.33±2.06%, respectively. There was significant differencein G0/G1phase and S phase (P<0.05). The G0/G1phase arrest suggested thatover-expression of miRNA-200c in SGC7901cell could inhibit the cell cyclefrom G0/G1phase to S phase.
     5The wound healing assays showed that24h after transfection of themiRNA-200c mimics or negative control in SGC7901cell, the tumor cellmigration ability of miRNA-200c mimics group was significantly decreasedcompared to the negative control group(P<0.05). The width in miRNA-200cmimics group was344.40±17.24μm, while the width in negative control groupwas270.51±18.21μm. There was significant difference between miRNA-200cmimics group and negative control group (P<0.05).
     Conclusion:
     1The expression level of miRNA-200c in4cases of gastric cancer celllines, was significant down-regulated. The results were consistent with theexpression in gastric cancer tissue.
     2The transient transfection of miRNA-200c was successful andup-regulated the expression level of miRNA-200c in SGC7901cell.
     3The over-expression of miRNA-200c in SGC7901cell inhibited the cell proliferation, suggesting that the down-regulation of miRNA-200c might playa role in molecule regulation of cell proliferation.
     4The over-expression of miRNA-200c in SGC7901cell inhibited the cellcycle from G0/G1phase to S phase, suggesting that the down-regulation ofmiRNA-200c might inhibit the cell proliferation through cell cycle change.
     5The over-expression of miRNA-200c in SGC7901cell decreased thetumor cell migration ability, suggesting that the down-regulation ofmiRNA-200c might affect the cell migration ability and could provide theproof for searching the molecular targets of treatment in gastric cancer.
     Part Three The prediction and verification of miRNA-200c target genes
     Objective: To predict and verify that RhoE is a target gene ofmiRNA-200c. To make a foundation for further research on moleculemechanism of miRNA-200c.
     Methods: The potential target gene was predicted and screenedaccording to the bioinformatics software, and at the same time the candidatetarget gene was verified by dual luciferase report gene assay.
     Results:
     1We used the bioinformatics software (TargetScan, PicTar, mirBase andmiRanda) to predict and screen the potential target gene of miRNA-200c. Theresults showed that miRNA-200c belongs to the chromosome12and islocated to12:7072862-7072929[+]. There were1057and639target genes ofmiRNA-200c by TargetScan and PicTar bioinformatics software.Comprehensive analysis we chose RhoE (NM_005168) as the research subject.We found that RhoE3’UTR has two binding sites of miRNA-200c, so we willbuild the report carrier of RhoE3’UTR and verify the target gene by dualluciferase report gene assay.
     2We verified that the RhoE is a target gene of miRNA-200c by theclassical method. Firstly, the RhoE3’UTR vector and RhoE mut3’UTRvector were successfully constructed. We divided into four groups throughtransferring the RhoE3’UTR/RhoE mut3’UTR and miRNA-200c mimics/miRNA-200c NC in SGC7901cell. They were RhoE3’UTR+miRNA-200c mimics group, RhoE3’UTR+miRNA-200c NC group, RhoE mut3’UTR+miRNA-200c mimics group and RhoE mut3’UTR+miRNA-200c NC group.The dual luciferase report gene assays showed that48h after transfection, theluciferin protein expression level of RhoE3’UTR+miRNA-200c mimicsgroup was reduced compared to other groups (P<0.05). The results showedthat miRNA-200c could inhibit the activity of RhoE3’UTR, suggesting thatRhoE was the target gene of miRNA-200c.
     Conclusion:
     The miRNA-200c could inhibit the activity of RhoE3’UTR, verifyingthat RhoE was the target gene of miRNA-200c. This suggested thatmiRNA-200c has the inhibitory function to RhoE, and may exert its biologicalbehaviors by RhoE. Thus they may affect the occurrence, development,invasion and metastasis of gastric cancer. This provide a foundation for furtherclarify the molecule mechanism of miRNA-200c in gastric cancer.
引文
1Le TD, Liu L, Tsykin A,et al. Inferring microRNA-mRNA causalregulatory relationships from expression data. Bioinformatics,2013,29(6):765-771
    2Nelson P, Kiriakidou M, Sharma A,et al. The microRNA world: small ismighty. Trends Biochem Sci,2003,28(10):534-40
    3Bonkovsky HL, Hou W, Steuerwald N,et al. Heme status affects humanhepatic messenger RNA and microRNA expression. World J Gastroenterol,2013,19(10):1593-601
    4Pasquinelli AE, Ruvkun G.Control of developmental timing by micrornasand their targets. Annu Rev Cell Dev Biol,2002,18:495-513
    5Davalos V, Moutinho C, Villanueva A,et al. Dynamic epigenetic regulationof the microRNA-200family mediates epithelial and mesenchymaltransitions in human tumorigenesis. Oncogene,2012,31(16):2062-74
    6Castilla Má, Díaz-Martín J, Sarrió D,et al. MicroRNA-200familymodulation in distinct breast cancer phenotypes. PLoSOne,2012,(10):e47709
    7Elson-Schwab I, Lorentzen A, Marshall CJ.MicroRNA-200FamilyMembers Differentially Regulate Morphological Plasticity and Mode ofMelanoma Cell Invasion. Plos one,2010,5(10):e13176-85
    8Nam EJ,Yoon H,Kim SW,et al.MicroRNA Expression Profiles in SerousOvarian Carcinoma. Clin Cancer Res,2008,14(9):2690-2695
    9Han Y, Chen J, Zhao X, et al. MicroRNA Expression Signatures ofBladder Cancer Revealed by Deep Sequencing. Plos one,2011,6(3):e18286-92
    10Bracken CP, Gregory PA, Kolesnikoff N,et al. A double-negative feedbackloop between ZEB1-SIP1and the microRNA-200family regulatesepithelial-mesenchymal transition. Cancer Res,2008,68(19):7846-54
    11Chen W, Zheng R, Zhang S, et al. Report of incidence and mortality inChina cancer registries,2009.Chin J Cancer Res,2013,25(1):10-21
    12赵敏,苏长青.MicroRNA对肿瘤基因的调控及其临床意义.中国肿瘤生物治疗杂志.2011,18(2):235-238
    13Verdalet-Olmedo M, Sampieri CL, Morales-Romero J,et al.Omission ofbreakfast and risk of gastric cancer in Mexico.World J GastrointestOncol,2012,4(11):223-9
    14Ali Z, Deng Y, Ma C. Progress of research in gastric cancer. J NanosciNanotechnol,2012,12(11):8241-8
    15Sánchez R, Alexander-Sierra F, Oliveros R,et al.Relationship betweenquality of life and clinical status in patients with gastrointestinalcancer.Rev Esp Enferm Dig,2012,104(11):584-591
    16Bou Kheir T, Futoma-Kazmierczak E, Jacobsen A. miR-449inhibits cellproliferation and is down-regulated in gastric cancer. MolCancer,2011,18:10-29
    17Dontu G, de Rinaldis E.MicroRNAs: shortcuts in dealing with molecularcomplexity.Breast Cancer Res,2010,12(1):301
    18Ambros V. microRNAs: tiny regulators with great potential. Cell,2001,107(7):823-6
    19Park SM, Gaur AB, Lengyel E,et al. The miR-200family determines theepithelial phenotype of cancer cells by targeting the E-cadherin repressorsZEB1and ZEB2.Genes Dev,2008,22(7):894-907
    20Buller B, Chopp M, Ueno Y,et al. Regulation of serum response factor bymiRNA-200and miRNA-9modulates oligodendrocyte progenitor celldifferentiation. Glia,2012,60(12):1906-14
    21Choi PS, Zakhary L, Choi WY,et al. Members of the miRNA-200familyregulate olfactory neurogenesis.Neuron,2008,57(1):41-55
    22Ahn SM, Cha JY, Kim J,et al. Smad3regulates E-cadherin viamiRNA-200pathway. Oncogene,2012,31(25):3051-9
    23Cai J, Liu X, Cheng J,et al. MicroRNA-200is commonly repressed inconjunctival MALT lymphoma, and targets cyclin E2. Graefes Arch ClinExp Ophthalmol,2012,250(4):523-31
    24Rotkrua P, Akiyama Y, Hashimoto Y,et al. MiR-9downregulates CDX2expression in gastric cancer cells. Int J Cancer,2011,129(11):2611-20
    25Uhlmann S, Zhang JD, Schw ger A,et al. miR-200bc/429cluster targetsPLCgamma1and differentially regulates proliferation and EGF-driveninvasion than miR-200a/141in breast cancer.Oncogene,2010,29(30):a)4297-306
    26Konishi H, Ichikawa D, Komatsu S,et al.Detection of gastriccancer-associated microRNAs on microRNA microarray comparing pre-and post-operative plasma.Br J Cancer,2012,106(4):740-7
    27Lee JW, Park YA, Choi JJ,et al.The expression of the miRNA-200familyin endometrial endometrioid carcinoma.Gynecol Oncol,2011,120(1):56-62
    28Ceppi P, Mudduluru G, Kumarswamy R,et al. Loss of miR-200cexpression induces an aggressive, invasive, and chemoresistant phenotypein non-small cell lung cancer. Mol Cancer Res,2010,8(9):1207-16
    29Gravgaard KH, Lyng MB, Laenkholm AV,et al. The miRNA-200familyand miRNA-9exhibit differential expression in primary versuscorresponding metastatic tissue in breast cancer. Breast Cancer ResTreat,2012,134(1):207-17
    30Paterson EL, Kazenwadel J, Bert AG,et al. Down-Regulation of themiRNA-200Family at the Invasive Front of Colorectal Cancers withDegraded Basement Membrane Indicates EMT Is Involved in CancerProgression. Neoplasia,2013,15(2):180-91
    31Xu Y, Sun J, Xu J,et al. miR-21Is a Promising Novel Biomarker forLymph Node Metastasis in Patients with Gastric Cancer.Gastroenterol ResPract,2012:640168
    32Motoyama K, Inoue H, Mimori K,et al. Clinicopathological and prognostic
    significance of PDCD4and microRNA-21in human gastric cancer. Int J
    Oncol,2010,36(5):1089-95
    1Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs caninhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U SA,2003,100(17):9779-84
    2Xie Z, Kasschau KD, Carrington JC. Negative feedback regulation ofDicer-Like1in Arabidopsis by microRNA-guided mRNA degradation.Curr Biol,2003,13(9):784-9
    3Wang XJ, Reyes JL, Chua NH,et al. Prediction and identification ofArabidopsis thaliana microRNAs and their mRNA targets. GenomeBiol,2004,5(9):R65
    4Malleter M, Jacquot C, Rousseau B,et al. miRNAs, a potential target in thetreatment of Non-Small-Cell Lung Carcinomas. Gene,2012,506(2):355-9
    5Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed fromcapped, polyadenylated transcripts that can also function as mRNAs.RNA,2004,10(12):1957-66
    6Lai EC. MicroRNAs are complementary to3'UTR sequence motifs that m-diate negative posttranscriptional regulation.Nat Genet,2002,30(4):363-4
    7石淙,万腊根.细胞增殖的检测方法.实验与检验医学,2012,30(2):153-155
    8Li J, Kong X, Zhang J,et al. MiRNA-26b inhibits proliferation by targetingPTGS2in breast cancer. Cancer Cell Int,2013,13(1):7
    9Selcuklu SD, Donoghue MT, Rehmet K,et al. MicroRNA-9inhibition ofcell proliferation and identification of novel miR-9targets bytranscriptome profiling in breast cancer cells. J Biol Chem,2012,287(35):29516-28
    10Zhang H, Zhang H, Zhao M,et al. MiR-138Inhibits Tumor GrowthThrough Repression of EZH2in Non-Small Cell Lung Cancer. CellPhysiol Biochem,2013,31(1):56-65
    11Ma Q, Wang X, Li Z,et al. microRNA-16represses colorectal cancer cellgrowth in vitro by regulating the p53/survivin signaling pathway. OncolRep,2013,29(4):1652-8
    12Iwaya T, Yokobori T, Nishida N,et al. Downregulation of miR-144isassociated with colorectal cancer progression via activation of mTORsignaling pathway. Carcinogenesis,2012,33(12):2391-7
    13Hirata H, Ueno K, Shahryari V,et al. MicroRNA-182-5p promotes cellinvasion and proliferation by down regulating FOXF2, RECK and MTSS1genes in human prostate cancer. PLoS One,2013,8(1):e55502
    14Iwasaki YW, Kiga K, Kayo H,et al. Global microRNA elevation byinducible Exportin5regulates cell cycle entry. RNA,2013,19(4):490-7
    15Tang J, Ahmad A, Sarkar FH. The Role of MicroRNAs in Breast CancerMigration, Invasion and Metastasis. Int J Mol Sci,2012,13(10):13414-37
    16Chang S, Sharan SK. BRCA1and microRNAs: emerging networks andpotential therapeutic targets. Mol Cells,2012,34(5):425-32
    17Kim YK, Yu J, Han TS,et al. Functional links between clusteredmicroRNAs: suppression of cell-cycle inhibitors by microRNA clusters ingastric cancer. Nucleic Acids Res,2009,37(5):1672-81
    18Cui X, Witalison EE, Chumanevich AP,et al. The induction ofmicroRNA-16in colon cancer cells by protein arginine deiminaseinhibition causes a p53-dependent cell cycle arrest. PLoS One,2013,8(1):e53791
    19Lotte Christensen L, Tobiasen H, Holm A,et al. MiRNA-362-3p inducescell cycle arrest through targeting of E2F1, USF2and PTPN1and isassociated with recurrence of colorectal cancer. Int J Cancer,2012Dec30.doi:10.1002/ijc.28010.[Epub ahead of print]
    20Cai J, Wu J, Zhang H,et al. miR-186downregulation correlates with poorsurvival in lung adenocarcinoma, where it interferes with cell-cycleregulation. Cancer Res,2013,73(2):756-66
    21Cui L, Zhou H, Zhao H,et al. MicroRNA-99a induces G1-phase cell cyclearrest and suppresses tumorigenicity in renal cell carcinoma. BMCCancer,2012,12:546
    22Biagioni F, Bossel Ben-Moshe N, Fontemaggi G,et al. miR-10b*, a masterinhibitor of the cell cycle, is down-regulated in human breast tumours.EMBO Mol Med,2012,4(11):1214-29
    23Zhong Z, Dong Z, Yang L,et al. miR-21induces cell cycle at S phase andmodulates cell proliferation by down-regulating hMSH2in lung cancer. JCancer Res Clin Oncol,2012,138(10):1781-8
    24Stavik B, Skretting G, Olstad OK,et al. TFPI alpha and beta regulatemRNAs and microRNAs involved in cancer biology and in the immunesystem in breast cancer cells. PLoS One,2012,7(10):e47184
    25Piovan C, Palmieri D, Di Leva G,et al. Oncosuppressive role ofp53-induced miR-205in triple negative breast cancer. Mol Oncol,2012,6(4):458-72
    26Nilsson S, M ller C, Jirstr m K,et al. Downregulation of miR-92a isassociated with aggressive breast cancer features and increased tumourmacrophage infiltration. PLoS One,2012,7(4):e36051
    27Le XF, Almeida MI, Mao W,et al. Modulation of MicroRNA-194and cellmigration by HER2-targeting trastuzumab in breast cancer. PLoSOne,2012,7(7):e41170
    28Akhavantabasi S, Sapmaz A, Tuna S,et al. miR-125b targets ARID3B inbreast cancer cells. Cell Struct Funct,2012,37(1):27-38
    29Li J, Guo Y, Liang X,et al. MicroRNA-223functions as an oncogene inhuman gastric cancer by targeting FBXW7/hCdc4. J Cancer Res ClinOncol,2012,138(5):763-74
    30Zhang BG, Li JF, Yu BQ, et al. microRNA-21promotes tumorproliferation and invasion in gastric cancer by targeting PTEN. OncolRep,2012,27(4):1019-26
    31Liu B, Wu X, Liu B,et al. MiR-26a enhances metastasis potential of lungcancer cells via AKT pathway by targeting PTEN. Biochim BiophysActa,2012,1822(11):1692-704
    32Rothschild SI, Tschan MP, Jaggi R,et al. MicroRNA-381represses ID1and is deregulated in lung adenocarcinoma. J Thorac Oncol,2012,7(7):1069-77
    33Wang N, Eckert KA, Zomorrodi AR,et al. Down-regulation of HtrA1activates the epithelial-mesenchymal transition and ATM DNA damageresponse pathways. PLoS One,2012,7(6):e39446
    34Bracken CP, Gregory PA, Kolesnikoff N,et al. A double-negative feedbackloop between ZEB1-SIP1and the microRNA-200family regulatesepithelial-mesenchymal transition. Cancer Res,2008,68(19):7846-54
    35Paterson EL, Kazenwadel J, Bert AG,et al. Down-Regulation of themiRNA-200Family at the Invasive Front of Colorectal Cancers withDegraded Basement Membrane Indicates EMT Is Involved in CancerProgression. Neoplasia,2013,15(2):180-91
    36Gregory PA, Bert AG, Paterson EL,et al. The miR-200family and miR-205regulate epithelial to mesenchymal transition by targeting ZEB1and SIP1.Nat Cell Biol,2008,10(5):593-601
    37Ceppi P, Mudduluru G, Kumarswamy R,et al. Loss of miR-200cexpression induces an aggressive, invasive, and chemoresistant phenotypein non-small cell lung cancer. Mol Cancer Res,2010,8(9):1207-16
    38Kurashige J, Kamohara H, Watanabe M,et al. MicroRNA-200b regulatescell proliferation, invasion, and migration by directly targeting ZEB2ingastric carcinoma. Ann Surg Oncol,2012,Suppl3:S656-64
    1Dontu G, de Rinaldis E.MicroRNAs: shortcuts in dealing with molecularcomplexity.Breast Cancer Res,2010,12(1):301
    2Sun T, Wang C, Xing J.et al. miR-429modulates the expression of c-mycin human gastric carcinoma cells. Eur J Cancer,2011,47(17):2552-9
    3Jin Z, Selaru FM, Cheng Y,et al. MicroRNA-192and-215are upregulatedin human gastric cancer in vivo and suppress ALCAM expression in vitro.Oncogene,2011,30(13):1577-85
    4Shin VY, Jin H, Ng EK,et al. NF-κB targets miR-16and miR-21in gastriccancer: involvement of prostaglandin E receptors. Carcinogenesis,2011,32(2):240-5
    5Luo D, Wilson JM, Harvel N,et al. A systematic evaluation ofmiRNA:mRNA interactions involved in the migration and invasion ofbreast cancer cells. J Transl Med,2013,11:57
    6Naifang S, Minping Q, Minghua D. Integrative Approaches for microRNATarget Prediction: Combining Sequence Information and the Paired mRNAand miRNA Expression Profiles.Curr Bioinform,2013,8(1):37-45
    7Kala R, Peek GW, Hardy TM, et al.MicroRNAs: an emerging science incancer epigenetics. J Clin Bioinforma,2013,3(1):6
    8Wang W, Zhao LJ, Tan YX,et al. Identification of deregulated miRNAsand their targets in hepatitis B virus-associated hepatocellular carcinoma.World J Gastroenterol,2012,18(38):5442-53
    9Miles GD, Seiler M, Rodriguez L, Identifying microRNA/mRNAdysregulations in ovarian cancer. BMC Res Notes,2012,5:164
    10Hsu PW,Huang HD,Hsu SD,et al. miRNAMap: genomic maps ofmicroRNA genes and their target genes in mammalian genomes. NucleicAcids Res,2006,34(Database issue):D135-9
    11Kiriakidou M, Nelson PT, Kouranov A, et al.A combined computationalexperimental approach predicts human microRNA targets. GenesDev,2004,18(10):1165-78
    12Creighton CJ, Nagaraja AK, Hanash SM,et al. A bioinformatics tool forlinking gene expression profiling results with public databases ofmicroRNA target predictions. RNA,2008,14(11):2290-6
    13Witkos TM,Koscianska E,Krzyzosiak WJ.Practical Aspects of microRNATarget Prediction.Curr Mol Med,2011,11(2):93-109
    14Nam S,Li M,Choi K,et al. MicroRNA and mRNA integrated analysis(MMIA): a web tool for examining biological functions of microRNAexpression. Nucleic Acids Res,2009,37(Web Server issue):W356-62
    15Ruan J,Chen H,Kurgan L,et al. HuMiTar: a sequence-based method forprediction of human microRNA targets. Algorithms Mol Biol,2008,3:16
    16Doran J,Strauss WM. Bio-informatic trends for the determination ofmiRNA-target interactions in mammals.DNA Cell Biol,2007,26(5):353-60
    17Tian Z, Greene AS, Pietrusz JL, MicroRNA-target pairs in the rat kidneyidentified by microRNA microarray, proteomic, and bioinformatic analysis.Genome Res,2008,18(3):404-11
    18Betel D, Wilson M, Gabow A,et al.The microRNA.org resource: targetsand expression. Nucleic Acids Res,2008,36(Database issue):D149-53
    19Xiong M, Jiang L, Zhou Y,et al. The miR-200family regulatesTGF-β1-induced renal tubular epithelial to mesenchymal transitionthrough Smad pathway by targeting ZEB1and ZEB2expression. Am JPhysiol Renal Physiol,2012,302(3):F369-79
    20Cong N, Du P, Zhang A,et al. Downregulated microRNA-200a promotesEMT and tumor growth through the wnt/β-catenin pathway by targetingthe E-cadherin repressors ZEB1/ZEB2in gastric adenocarcinoma. OncolRep,2013,29(4):1579-87
    21Puhr M, Hoefer J, Sch fer G,et al. Epithelial-to-mesenchymal transitionleads to docetaxel resistance in prostate cancer and is mediated by reducedexpression of miR-200c and miR-205. Am J Pathol,2012,181(6):2188-201
    22Cao M, Seike M, Soeno C,et al. MiR-23a regulates TGF-β-inducedepithelial-mesenchymal transition by targeting E-cadherin in lung cancercells. Int J Oncol,2012,41(3):869-75
    23Bracken CP,Gregory PA,Kolesnikoff N,et al. A Double-NegativeFeedback Loop between ZEB1-SIP1and the microRNA-200FamilyRegulates Epithelial-Mesenchymal Transition.Cancer Res,2008,68(19):7846-7854
    24Bindels S,Mestdagt M,Vandewalle C,et al. Regulation of vimentin by SIP1in human epithelial breast tumor cells.Oncogene,2006,25(36):4975-4985
    25Mees ST, Mardin WA, Wendel C, et al. EP300-a miRNA-regulatedmetastasis suppressor gene in ductal adenocarcinomas of the pancreas. IntJ Cancer,2010,126(1):114-124
    26Hu X, Schwarz JK, Lewis JS Jr, et al. A microRNA expression signaturefor cervical cancer prognosis. Cancer Res,2010,70(4):1441-48
    27Saydam O, Shen Y, Würdinger T, et al. Downregulated microRNA-200a inmeningiomas promotes tumor growth by reducing E-cadherin andactivating the Wnt/β-catenin signaling pathway. Mol Cell Biol,2009,29(21):5923-5940
    28Liebig T, Erasmus J, Kalaji R,et al. RhoE Is required for keratinocytedifferentiation and stratification. Mol Biol Cell,2009,20(1):452-63
    29Komander D, Garg R, Wan PT, et al.Mechanism of multi-sitephosphorylation from a ROCK-I:RhoE complex structure. EMBOJ,2008,27(23):3175-85
    30Collett GP,Goh XF,Linton EA,et al.RhoE is regulated by cyclic AMP andpromotes fusion of human BeWo choriocarcinoma cells. PLoS One,2012,7(1):e30453
    31Riento K, Totty N, Villalonga P,et al. RhoE function is regulated by ROCKI-mediated phosphorylation. EMBO J,2005,24(6):1170-80
    32Riento K, Villalonga P, Garg R,et al. Function and regulation of RhoE.Biochem Soc Trans,2005,33(Pt4):649-51
    33Riento K, Guasch RM, Garg R,et al. RhoE binds to ROCK I and inhibitsdownstream signaling. Mol Cell Biol,2003,23(12):4219-29
    34Trojan L, Schaaf A, Steidler A,et al. Identification of metastasis-associatedgenes in prostate cancer by genetic profiling of human prostate cancer celllines. Anticancer Res,2005,25(1A):183-91
    35Li K, Lu Y, Liang J,et al. RhoE enhances multidrug resistance of gastriccancer cells by suppressing Bax.Biochem Biophys Res Commun,2009,379(2):212-6
    36封斌,李凯,任贵等. RhoE促进胃癌转移及其分子机制.科学技术与工程,2010,10(31):7631-36
    37Zhang C,Zhou F,Li N,et al. Overexpression of RhoE has a prognosticvalue in non-small cell lung cancer.Ann Surg Oncol,2007,14(9):2628-35
    38Goldoni D,Yarham JM,McGahon MK,et al. A novel dual-fluorescencetrategy for functionally validating microRNA targets in3'untranslatedregions: regulation of the inward rectifier potassium channel K(ir)2.1bymiR-212. Biochem J,2012,448(1):103-13
    39Lee JY, Kim S, Hwang do W,et al. Development of a dual-luciferasereporter system for in vivo visualization of MicroRNA biogenesis andposttranscriptional regulation. J Nucl Med,2008,49(2):285-94
    40Solberg N, Krauss S. Luciferase assay to study the activity of a clonedpromoter DNA fragment. Methods Mol Biol,2013,977:65-78
    41Grentzmann G, Ingram JA, Kelly PJ,et al. A dual-luciferase reportersystem for studying recoding signals. RNA,1998,4(4):479-86
    42Heyn J, Hinske LC, Ledderose C,et al. Experimental miRNA targetvalidation. Methods Mol Biol,2013,936:83-90
    43Xu YZ, Kanagaratham C, Jancik S,et al. Promoter deletion analysis usinga dual-luciferase reporter system. Methods Mol Biol,2013,977:79-93
    1Dontu G, de Rinaldis E. MicroRNAs: shortcuts in dealing with molecularcomplexity? Breast Cancer Res,2010,12(1):301
    2Lussier YA,Xing HR,Salama JK,et al. MicroRNA expression characterizesoligometastasis(es). PLoS One,2011,6(12):e28650
    3Olson P, Lu J, Zhang H, et al. MicroRNA dynamics in the stages oftumorigenesis correlate with hallmark capabilities of cancer. Genes Dev,2009,23(18):2152-2165
    4Yang Y, Ahn YH, Gibbons DL,et al. The Notch ligand Jagged2promoteslung adenocarcinoma metastasis through a miR-200-dependent pathway inmice. J Clin Invest,2011,121(4):1373-85
    5Gill JG, Langer EM, Lindsley RC,et al. Snail and the microRNA-200family act in opposition to regulate epithelial-to-mesenchymal transitionand germ layer fate restriction in differentiating ESCs. StemCells,2011,29(5):764-76
    6Elson-Schwab I, Lorentzen A, Marshall CJ. MicroRNA-200familymembers differentially regulate morphological plasticity and mode ofmelanoma cell invasion. PLoS One.2010Oct4;5(10). pii: e13176.
    7Schliekelman MJ, Gibbons DL, Faca VM,et al. Targets of the tumorsuppressor miR-200in regulation of the epithelial-mesenchymal transitionin cancer. Cancer Res,2011,71(24):7670-82
    8Castilla Má, Díaz-Martín J, Sarrió D, et al. MicroRNA-200familymodulation in distinct breast cancer phenotypes. PLoS One,2012,7(10):e47709
    9Park SM, Gaur AB, Lengyel E, et al. The miR-200family determines theepithelial phenotype of cancer cells by targeting the E-cadherin repressorsZEB1and ZEB2. Genes Dev,2008,22(7):894-907
    10Paterson EL, Kolesnikoff N, Gregory PA,et al. The microRNA-200familyregulates epithelial to mesenchymal transition. Scientific WorldJournal,2008,8:901-4
    11Bracken CP, Gregory PA, Kolesnikoff N,et al. A double-negative feedbackloop between ZEB1-SIP1and the microRNA-200family regulatesepithelial-mesenchymal transition. Cancer Res,2008,68(19):7846-54
    12Burk U, Schubert J, Wellner U,et al. A reciprocal repression betweenZEB1and members of the miR-200family promotes EMT and invasion incancer cells. EMBO Rep,2008,9(6):582-9
    13Gill BJ, Gibbons DL, Roudsari LC,et al. A synthetic matrix withindependently tunable biochemistry and mechanical properties to studyepithelial morphogenesis and EMT in a lung adenocarcinoma model.Cancer Res,2012,72(22):6013-23
    14Wellner U, Schubert J, Burk UC,et al. The EMT-activator ZEB1promotestumorigenicity by repressing stemness-inhibiting microRNAs. Nat CellBiol,2009,11(12):1487-95
    15Wang N, Eckert KA, Zomorrodi AR,et al. Down-regulation of HtrA1activates the epithelial-mesenchymal transition and ATM DNA damageresponse pathways. PLoS One,2012,7(6):e39446
    16Yokobori T, Suzuki S, Tanaka N,et al. MiR-150is associated with poorprognosis in esophageal squamous cell carcinoma via targeting the EMTinducer ZEB1. Cancer Sci,2013,104(1):48-54
    17Xia H, Hui KM. MicroRNAs involved in regulating epithelialmesenchymal transition and cancer stem cells as molecular targets forcancer therapeutics. Cancer Gene Ther,2012,19(11):723-30
    18Wang Y, Shang Y. Epigenetic control of epithelial-to-mesenchymaltransition and cancer metastasis. Exp Cell Res,2013,319(2):160-9
    19Hill L, Browne G, Tulchinsky E. ZEB/miR-200feedback loop: at thecrossroads of signal transduction in cancer. Int JCancer,2013,132(4):745-54
    20Carraro G, El-Hashash A, Guidolin D,et al. miR-17family of microRNAscontrols FGF10-mediated embryonic lung epithelial branchingmorphogenesis through MAPK14and STAT3regulation of E-Cadherindistribution. Dev Biol,2009,333(2):238-50
    21Hurteau GJ, Carlson JA, Roos E,et al. Stable expression of miR-200calone is sufficient to regulate TCF8(ZEB1) and restore E-cadherinexpression. Cell Cycle,2009,8(13):2064-9.
    22Chen Y, Sun Y, Chen L,et al. miRNA-200c increases the sensitivity ofbreast cancer cells to doxorubicin through the suppression of E-cadherinmediated PTEN/Akt signaling. Mol Med Rep,2013,7(5):1579-84
    23Cufí S, Vazquez-Martin A, Oliveras-Ferraros C,et al. Metformin lowers thethreshold for stress-induced senescence: a role for the microRNA-200family and miR-205. Cell Cycle,2012,11(6):1235-46
    24Choi PS, Zakhary L, Choi WY,et al. Members of the miRNA-200familyregulate olfactory neurogenesis. Neuron,2008,57(1):41-55
    25Korpal M, Lee ES, Hu G, et al. The miR-200family inhibits epithelialmesenchymal transition and cancer cell migration by direct targeting ofE-cadherin transeriptional repressors ZEB1and ZEB2. J Biol Chem,2008,283(22):14910-14
    26Gibbons DL, Lin W, Creighton CJ, et al. Contextual extracellular cuespromote tumor cell EMT and metastasis by regulating miR-200familyexpression. Genes Dev,2009,23(18):2140-2151
    27Gregory PA, Bert AG, Paterson EL, et al. The miR-200family andmiR-205regulate epithelial to mesenchymal transition by targeting ZEB1and SIP1. Nat Cell Biol,2008,10(5):593-601
    28Vrba L, Jensen TJ, Garbe JC,et al. Role for DNA methylation in theregulation of miR-200c and miR-141expression in normal and cancercells. PLoS One,2010,5(1):e8697
    29Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA, hsa-miR-200c, is anindependent prognostic factor in pancreatic cancer and its upregulationinhibits pancreatic cancer invasion but increases cell proliferation. MolCancer,2010,9:169
    30Schickel R, Park SM, Murmann AE, et al. miR-200c regulates induction ofapoptosis through CD95by targeting FAP-1. Mol Cell,2010,38(6):908-915
    31Li Y, VandenBoom TG, Kong D, et al. Up-regulation of miR-200and let-7by natural agents leads to the reversal of epithelial-to-mesenchymaltransition in gemcitabine-resistant pancreatic cancer cells. Cancer Res,2009,69(16):6704-6712
    32Mees ST, Mardin WA, Wendel C, et al. EP300-a miRNA-regulatedmetastasis suppressor gene in ductal adenocarcinomas of the pancreas. IntJ Cancer,2010,126(1):114-124
    33Nakada C, Matsuura K, TsukamotoY, et al. Genome-wide microRNAexpression profiling in renal cell carcinoma: Significant down-regulationof miR-141and miR-200c. J Pathol,2008,216(4):418-427
    34Slaby O, Jancovicova J, Lakomy R, et al. Expression of miRNA-106b inconventional renal cell carcinoma is a potential marker for prediction ofearly metastasis after nephrectomy. J Exp Clin Cancer Res,2010,29:90
    35Yang H, Kong W, He L, et al. Microma expression profiling in humanovarian cancer:Mir-214induces cell survival and cisplatin resistance bytargeting pten. Cancer Res,2008,68(2):425-433
    36Bendoraite A, Knouf EC, Garg KS, et al. Regulation of mir-200familymicrornas and zeb transcription factors in ovarian cancer:Evidencesupporting a mesothelial-to-epithelial transition. Gynecol Oncol,2010,116(1):117-125
    37Hu X, Macdonald DM, Huettner PC, et al. A miR-200microRNA clusteras prognostic marker in advanced ovarian cancer. Gynecol Oncol,2009,114(3):457-464
    38Kan CW, Hahn MA, Gard GB,et al. Elevated levels of circulatingmicroRNA-200family members correlate with serous epithelial ovariancancer. BMC Cancer,2012,12:627
    39Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stableblood-based markers for cancer detection. Proc Natl Acad Sci USA,2008,105(30):10513-18
    40Lodes MJ, Caraballo M, Sucin D, et al. Detection of cancer with serummiRNAs on an oligonucleotide microarray. Plos One,2009,4(7): e6229
    41张占薪,罗大虎,崔金全. has-miRNA-200b在宫颈癌中的表达及意义.中国实用妇科与产科杂志,2010,26(5):386-387
    42Hu X, Schwarz JK, Lewis JS Jr, et al. A microRNA expression signaturefor cervical cancer prognosis. Cancer Res,2010,70(4):1441-48
    43Snowdon J, Zhang X, Childs T,et al. The microRNA-200family isupregulated in endometrial carcinoma. PLoS One,2011,6(8):e22828
    44Lee JW,Park YA,Choi JJ,et al.The expression of miRNA-200family inendometrial endometrioid carcinoma.Gynecol Oncol,2011,120(1):56-62
    45Saydam O, Shen Y, Würdinger T, et al. Downregulated microRNA-200a inmeningiomas promotes tumor growth by reducing E-cadherin andactivating the Wnt/β-catenin signaling pathway. Mol Cell Biol,2009,29(21):5923-5940
    46Bandrés E,Cubedo E,Agirre X,et al.Identification by Real-time PCR of13mature microRNAs differentially expressed in colorectal cancer andnon-tumoral tissues.Mol Cancer,2006,5:29
    47Paterson EL, Kazenwadel J, Bert AG,et al. Down-Regulation of themiRNA-200Family at the Invasive Front of Colorectal Cancers withDegraded Basement Membrane Indicates EMT Is Involved in CancerProgression. Neoplasia,2013,15(2):180-91
    48Rossi L, Bonmassar E, Faraoni I. Modification of miR gene expressionpattern in human colon cancer cells following exposure to5-fluorouracil invitro.Pharmacol Res,2007,56(3):248-253
    49Hurteau GJ,Carlson JA,Spivack SD,et al. Over expression of themicroRNA has-miR-200c leads to reduced expression of transcriptionfactor8and increased expression of E-cadherin. Cancer Res,2007,67(17):7972-7976
    50Roybal JD, Zang Y, Ahn YH,et al. miR-200Inhibits lung adenocarcinomacell invasion and metastasis by targeting Flt1/VEGFR1. Mol CancerRes,2011,9(1):25-35
    51Ceppi P, Mudduluru G, Kumarswamy R,et al. Loss of miR-200cexpression induces an aggressive, invasive, and chemoresistant phenotypein non-small cell lung cancer. Mol Cancer Res,2010,8(9):1207-16
    52Feitelson MA, Lee J. Hepatitis B virus integration,fragile sites,andhepatocarcinogenesis. Cancer Lett,2007,252(2):157-170
    53Uhlmann S, Zhang JD, Schwager A, et al. miR-200bc/429cluster targetsPLCgamma1and differentially regulates proliferation and EGF-driveninvasion than miR-200a/141in breast cancer. Oncogene,2010,29(30):4297-4306
    54Tryndyak VP, Beland FA, Pogribny IP. E-cadherin transcriptionaldown-regulation by epigenetic and microRNA-200family alterations isrelated to mesenchymal and drug-resistant phenotypes in human breastcancer cells. Int J Cancer,2010,126(11):2575-83
    55Gravgaard KH, Lyng MB, Laenkholm AV,et al. The miRNA-200familyand miRNA-9exhibit differential expression in primary versuscorresponding metastatic tissue in breast cancer. Breast Cancer ResTreat,2012,134(1):207-17
    56Shinozaki A,Sakatani T,Ushiku T,et al.Downregulation of microRNA-200in EBV-associated gastric carcinoma. Cancer Res,2010,70(11):4719-27
    57Ellis-Connell AL, Iempridee T, Xu I,et al. Cellular microRNAs200b and
    429regulate the Epstein-Barr virus switch between latency and lyticreplication. J Virol,2010,84(19):10329-43
    58Ahn SM,Cha JY,Kim J,et al.Smad3regulates E-cadherin via miRNA-200pathway. Oncogene,2012,31(25):3051-9
    1Dontu G, de Rinaldis E. MicroRNAs: shortcuts in dealing with molecularcomplexity. Breast Cancer Res,2010,12(1):301
    2Bonnet E, Tatari M, Joshi A, et al. Module Network Inference from aCancer Gene Expression Data Set Identifies MicroRNA RegulatedModules. Plos one,2010,5(4):e10162-72
    3Dontu G, de Rinaldis E. MicroRNAs: shortcuts in dealing with molecularcomplexity? Breast Cancer Res,2010,12(1):301
    4Olson P, Lu J, Zhang H, et al. MicroRNA dynamics in the stages oftumorigenesis correlate with hallmark capabilities of cancer. Genes Dev,2009,23(18):2152-2165
    5Yang Y, Ahn YH, Gibbons DL,et al. The Notch ligand Jagged2promoteslung adenocarcinoma metastasis through a miR-200-dependent pathway inmice. J Clin Invest,2011,121(4):1373-85
    6Ilan Elson-Schwab, Anna Lorentzen, Christopher J Marshall.MicroRNA-200Family Members Differentially Regulate MorphologicalPlasticity and Mode of Melanoma Cell Invasion. Plos one,2010,5(10):e13176-85
    7Saydam O, Shen Y, Würdinger T, et al. Down-regulated MicroRNA-200ain Meningiomas Promotes Tumor Growth by Reducing E-Cadherin andActivating the Wnt/β-Catenin Signaling Pathway. Mol Cell Biol,2009,29(21):5923–5940
    8李海明,施南峰. miRNA一种新的调控基因表达的小分子RNA.中国癌症杂志,2006,16(8):675-679
    9Brabletz S, Brabletz T. The ZEB/miR-200feedback loop—a motor ofcellular plasticity in development and cancer? EMBO Rep,2010,11(9):670-7
    10Korpal M, Lee ES, Hu G, et al. The miR-200family inhibits epithelialmesenchymal transition and cancer cell migration by direct targeting ofE-cadherin transeriptional repressors ZEB1and ZEB2. J Biol Chem,2008,283(22):14910-14
    11Sun-Mi Park, Arti B. Gaur, Ernst Lengyel, et al. The miR-200familydetermines the epithelial phenotype of cancer cells by targeting theE-cadherin repressors ZEB1and ZEB2. Genes Dev,2008,22(7):894-907
    12杜平,张庆瑜. miR-200家族在消化系肿瘤中的研究进展.世界华人消化杂志,2011,19(29):3053-3057
    13Bracken CP, Gregory PA, Kolesnikoff N, et al. A Double-NegativeFeedback Loop between ZEB1-SIP1and the microRNA-200FamilyRegulates Epithelial-Mesenchymal Transition. Cancer Res,2008,68(19):7846-7854
    14Bindels S, Mestdagt M, Vandewalle C, et al. Regulation of vimentin bySIP1in human epithelial breast tumor cells. Oncogene,2006,25(36):4975-4985
    15Murakami Y, Toyoda H, Tanaka M,et al. The Progression of LiverFibrosis Is Related with Over-expression of the miR-199and200Families.Plos one,2011,6(1):e16081-9
    16Slaby O, Jancovicova J, Lakomy R, et al. Expression of miRNA-106b inconventional renal cell carcinoma is a potential marker for prediction ofearly metastasis after nephrectomy. J Exp Clin Cancer Res,2010,29:90-97
    17Han Y, Chen J, Zhao X, et al. MicroRNA Expression Signatures ofBladder Cancer Revealed by Deep Sequencing.Plos one,2011,6(3):e18286-92
    18Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in humanovarian cancer. Cancer Res,2007,67(18):8699-8707
    19Hu X, Macdonald DM, Huettner PC, et al. A miR-200microRNA clusteras prognostic marker in advanced ovarian cancer. Gynecol Oncol,2009,114(3):457-64
    20Bendoraite A, Knouf EC, Garg KS, et al. Regulation of mir-200familymicrornas and zeb transcription factors in ovarian cancer: Evidencesupporting a mesothelial-to-epithelial transition. Gynecol Oncol,2010,116(1):117-125
    21张占薪,罗大虎,崔金全. has-miRNA-200b在宫颈癌中的表达及意义.中国实用妇科与产科杂志,2010,26(5):386-387
    22胡庆伟,杜英,梅丽娜等.微小RNA-200家族在子宫内膜癌中的表达及意义.中国预防医学杂志,2011,12(3):238-242
    23Mees ST, Mardin WA, Wendel C, et al. EP300-a miRNA-regulatedmetastasis suppressor gene in ductal adenocarcinomas of the pancreas.Int JCancer,2010,126(1):114-124
    24Shah AN, Summy JM, Zhang J, et al.Development and characterization ofgemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol,2007,14(12):3629-3637
    25Meng F,Henson R,Lang M,et al. Involvement of human micro-RNA ingrowth and response to chemotherapy in human cholangiocarcinoma celllines. Gastroenterology,2006,130(7):2113-129
    26Kurashige J, Kamohara H, Watanabe M,et al. MicroRNA-200b regulatescell proliferation, invasion, and migration by directly targeting ZEB2ingastric carcinoma. Ann Surg Oncol,2012,19(Suppl3):S656-64
    27Ahn SM,Cha JY,Kim J,et al.Smad3regulates E-cadherin via miRNA-200pathway. Oncogene,2012,31(25):3051-9
    28Ding W, Dang H, You H,et al. miR-200b restoration and DNAmethyltransferase inhibitor block lung metastasis of mesenchymalphenotype hepatocellular carcinoma. Oncogenesis,2012,1:e15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700