用户名: 密码: 验证码:
导电沥青混凝土的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青混凝土广泛应用于高等级公路和机场跑道。沥青混合料的电阻率约为10~7~10~9Ωm,属于绝缘体材料。通过掺入适量的导电相材料,改善沥青混合料的电学性能,可望获得多功能的沥青混凝土,将会对沥青路面冬季融雪化冰、路面损坏检测、公路交通智能化管理等产生深远的影响。
     导电沥青混凝土的级配设计采用Superpave设计方法,合成曲线尽可能远离禁区,提供足够的矿料间隙率来填充高掺量的导电相材料。导电粉末可作为一部分填料,但与矿粉的密度差异大,需折算成当量矿粉质量。通过掺入炭黑、石墨和碳纤维可改善沥青混凝土的导电性能。炭黑的吸油性、石墨的润滑性及碳纤维的分散性分别限制其在导电沥青混凝土的应用。石墨单位体积对沥青混凝土导电性能改善效果良好,与其它导电相材料复合改性时改善作用显著,可作为导电沥青混凝土的主要导电相材料,少量碳纤维作为辅助导电相,同时炭黑代替部分矿粉既可起增强作用。掺入少量短切碳纤维可明显改善导电粉末填充沥青混凝土的导电性能,发挥碳纤维大的长径比所具有的导电桥梁作用和导电通路短接作用,改善电子的导电机制。
     导电沥青混凝土中导电率与石墨掺量依赖性可用渗流理论解释其导电通路的形成。导电沥青混凝土的导电行为则可用隧道效应进行分析,交变电场中的导电行为可等效为电阻R和电容C并联,非线性V-I特性产生于隧道效应时粒子间的非线性导电和高电场时诱发额外的导电通路,二者是粒子间隙的函数,与电子跃迁能力有关。
     石墨对沥青的吸收能力强,评价导电沥青混凝土的体积性能指标必须考虑吸收沥青。马歇尔残留稳定度试验、冻融劈裂试验和车辙试验表明石墨导电沥青混凝土的抗水损害能力强,高温稳定性能良好,可作为新型路面使用。通过控制沥青用量和石墨用量,增加沥青混凝土的压实度,可获得稳定的导电性能。压敏产生的原因是导电沥青混凝土试件的压缩邻近效应、微裂纹和石料间的剪切力使部分导电通路错位。而温敏产生的原因则为沥青的体积膨胀、石墨和沥青的热膨胀系数差异、内部应力和沥青温度敏感性共同作用的结果。
Asphalt concrete has been extensively applied in expressway and runway of airfield. It belongs electrical insulating material with a resistivitvy of 107~109om. The conductive behavior of asphalt mixture can be improved with the addition of conductive materials, thus a multifunctional Asphalt concrete can be obtained, which would have a profound effect on pavement deicing, damage testing, highway traffic monitoring and so on.
    Superpave design method was employed to design the mix proportion of electrically conductive asphalt concrete (ECAC). The curve of mix proportion kept away from the restricted zone in order to provide enough voids in mineral aggregate (VMA) to fill the high content of conductive materials. Conductive powder can regard as a part of filler in asphalt concrete. But they need to make a conversion for equal quality of limestone powder because of the deference of the density. The conductive behavior of asphalt mixture can be improved by adding carbon black, graphite and carbon fiber. The absorbing oil nature of carbon black, the lubricated effect of graphite and the bad dispersion of carbon fiber limit their application in ECAC respectively. The improving effect of graphite on the resistivity of ECAC is excellent, and the composite modification with other conductive materials also is obvious. Graphite was used as main component, and a few carbon fibers were added as assistant component. Carbon black replaced a par
    t of limestone powder, which has an enforcement effect on asphalt concrete. The conductive performance of conductive powder filling asphalt concrete is improved by adding a few chopped carbon fibers. Carbon fibers play a role of the conductive bridge effect and the short circuit effect because of high long/ diameter ratio, improving the conductive mechanism of electron.
    Percolation Theory can explain the formation of conductive passages under the dependence of the conductivity and graphite content in ECAC. The conductive behavior of ECAC was analyzed by tunnel effect. So the conductive behavior in AC field was equivalent with the parallel connection of a resistor and a capacitor, the nonlinearity of V - I characteristics originate from a combination of the implication of the nonlinear contribution of tunnel conduction between graphite particles and the production of additional conducting pathways under sufficiently strong local fields, which is the function of the gap between graphite particles and
    
    
    has a relation with the transition ability of electrons.
    Graphite absorbs asphalt in liquid state strongly. The evaluation of volume performance of ECAC must take absorbed asphalt into account. Experimental results of Marshall Remnant Stability Test, Water Susceptibility Tensile Strength Ratio (TSR) Test and Rutting Test show that graphite modified ECAC possesses of high anti-water damage ability and excellent high-temperature stability, which is expected to apply as new-type pavement. Stable conductive performance can be achieved by controlled graphite content and asphalt content and increasing the compact degree. Piezoresistivity of ECAC may involve proximity effect, microcrack and the staggered arrangements of conductive pass-ways due to shear strength of aggregates. The T-R characteristics may originate from the total function of volume expansion and temperature susceptibility of asphalt, the deference of volume expansion coefficient with heat between asphalt and graphite, and internal stress.
引文
[1] Elvik, Rune. Assessing the validity of road safety evaluation studies by analysing causal chains. Accident Analysis and Prevention, 2003,35(5): 741-748
    [2] Gard, Gunvor, Lundborg. Pedestrians on slippery surfaces during winter--methods to describe the problems and practical tests of anti-skid devices. Accident Analysis & Prevention, 2000,32(3): 455-460
    [3] Parmenter, B., J.E. Thornes. The Use of a Computer Model to Predict the Formation of Ice on Road Surfaces. Research Report RR71, 1987
    [4] Gard, Gunvor; Lundborg,Glenn. Test of Swedish anti-skid devices on five different slippery surfaces. Accident Analysis and Prevention, 2001,33(1) 1-8
    [5] U.S. Department of Transportations. Runway Surface Condition Sensor Specification Guide. U.S. Federal Aviation Administration, 1991
    [6] Isaka H. Prediction of Road Surface Temperature. Fifth International Conference on Weather and Road Safety, Florence, Italy, Standing International Road Weather Commission, 1990
    [7] 李昌龙,付俊荣,吕金林.试论高速公路冬季除雪防滑.东北公路,2001,24(2):3-6
    [8] Sherif Yehia, Christopher Y Tuan. Conductive Concrete Overlay for Bridge Deck Deicing. ACI Mater. J., 1999,96(03):382-390
    [9] Makkonen, Lasse, Ahti, Karl. Climatic mapping of ice loads based on airport weather observations. Atmospheric Research, 1995,36(3): 185-193
    [10] 唐祖全,李卓球,侯作富.导电混凝土融雪化冰机理分析.混凝土,2001,141(7):8-12
    [11] Kassir, Mumtaz K.,Ghosn, Michel. Chloride-induced corrosion of reinforced concrete bridge decks. Cement and Concrete Research, 2002, 32 (1): 139-143
    [12] Highway Research Board. Non-chemical Methods of Snow and Ice Control on Highway Structures. Washington, D.C. Highway Research Board, National Academy of Sciences, National Research Council, NCHRP Report 4
    [13] Anonymous. Heated Pipes Keep Bridge Deck Ice Free. Civil Engineering, 1998, 68(1):19-20
    [14] Ferrara, A.A. and R. Haslett. Prevention of Preferential Bridge Icing Using Heat Pipes. Washington, D.C. -Federal Highway Administration, July 1975, FHWA-RD-75-111
    [15] Paxson, G.S. Studies on the Heating of Bridge Decks and Concrete Pavements. Oregon Highway Research Board, 1990 (30)
    [16] Cundy, V.A., J. E. Nydahl, K.M. Pell. Geothermal Heating of Bridge Decks. Second International Snow Removal and Ice Research Symposium, Hanover,New Hampshire, May 1978
    [17] Sugawara, N., Hokari, K., Watanabe, T.,Sugawara, H.. Energy saving characteristics of a new type of road-heating system. Atmospheric Research, 1998,46(2): 113-122
    
    
    [18] 侯作富,李卓球,唐祖全.融雪化冰用碳纤维混凝土的导电性能研究.武汉理工大学学报,2002,24(8):24-27
    [19] 吴少鹏,磨炼同,水中和.导电沥青混凝土的制备研究.武汉理工大学学报(交通科学与工程版).2002,26(5):566.569
    [20] Wu SP, Mo LT, Shui ZH. Piezoresistivity of Graphite Modified Asphalt-based Composites. Key Engineering Materials, 2003,249:391-396.
    [21] Wu Shaopeng, Mo Liantong, Shui Zhonghe. Improvement of Electrical Properties of Asphalt Concrete, J. Wuhan Univ. of Tech. (Mater. Sci. Ed.), 2002,17(4):69-72
    [22] Cleven M. Arch. Investigation of the Properties of Carbon Fiber Modified Asphalt Mixtures.Master's Thesis. Michigan Technological University. 2000
    [23] Yehia, S., C. Y. Tuan. Bridge Deck Deicing. Crossroads 2000 Conference, Iowa State University, Ames, Iowa, August 19-20, 1998
    [24] 陆长征.炭黑填充导电塑料的研究.塑料,2000,29(1):32-34
    [25] 景志坤.炭黑在塑料(橡胶)中的作用.塑料科技,1994,99(1):14~20
    [26] Dana Pantea, Hans Darmstadt, Serge Kaliaguine. Electrical conductivity of thermal carbon blacks Influence of surface chemistry. Carbon 2001 (39): 1147-1158
    [27] Hand G.P. Graphite. Mining Engineering 1997; 49(02): 34-38.
    [28] 周强,徐瑞清.石墨材料的润滑性能及其开发应用.新型碳材料,1997,12(3):11-17
    [29] Lee Young-Seak, Lee Byoung-Ky. Surface properties of oxyfluorinated PAN-based carbon fibers. Carbon, 2002,40 (13):2461-2468
    [30] 唐祖全.导电混凝土路面材料的性能分析及导电组分选择.混凝土,2002,150(4):28~32
    [31] 沈金安.改性沥青与SMA路面.北京:人民交通出版社,1999.60-79
    [32] 彭波,刘红瑛.SAC及superpave沥青混合料路用性能.长安大学学报(自然科学版),2002,22(6):23-29
    [33] 吕伟民.沥青混合料设计原理与方法.上海:同济大学出版社,2000.40-80
    [34] 朱道本译.导电高分子材料.北京:北京科学出版社,1989.145-153
    [35] 曾竟成.复合材料理化性能.长沙:国防科技大学出版社,1998.84-98
    [36] 杨大川译.金属填充聚合物—性能与应用.北京:巾国石化出版社,1992.104-106
    [37] J.F. Zou, Z. Z. Yu, Y.X. Pan. Conductive Mechanism of Polymer Graphite Conducting Composites with Low Percolation Threshold. Journal of Polymer Science: Part B: Polymer Physics, 2002, 40,954-963
    [38] Zhonghe Shui. The Electrical Properties of Carbon fiber-Cement Composite (CFCC). Journal of Wuhan University of Technology (Mater. Sci. Ed.), 1995, 10(04):38-42.
    [39] K. P. Sau, D. Khastgir, T. K. Chaki. Electrical conductivity of carbon black and carbon fibre filled silicone rubber composites. Die Angewandte Makromolekulare Chemic 1998 (258): 11-17
    [40] Y. H. Hou, M. Q. Zhang. Improvement of Conductive Network Quality in Carbon Black-Filled Polymer Blends. Journal of Applied Polymer Science, 2002, 84, 2768-2775
    
    
    [41] T.A. Ezquerra, N.T. Connor. Alternating-current properties of graphite, carbon-black and carbon-fiber polymeric composites. Composites Science and technology, 2001, 61:903-909
    [42] R.Q. Li, D.Y. Dou. Complicated resistivity-temperature behavior in polymer composites. Journal of Applied Polymer Science, 2002,86:2217-2221
    [43] 席保锋,刘辅宜,徐传骧.聚合物/炭黑复合材料PTC特性的理论研究进展.高分子材料科学与工程.1999,15(6):25-29
    [44] G.H. Chen, W. G. Weng. Nonlinear conduction in nylon-6/Foliated graphite nanocomposites above the percolation threshold. Journal of Polymer Science: Part B: Polymer Physics, 2004,42:155-167
    [45] X.W. Zhang, Y. Pan. Piezoresistance of conductor filled insulator Composites. Polymer International, 2001,50:229-236
    [46] 南策文,陈政新.Ti-Al_2O_3金属陶瓷的渗流模型.物理学报,1987,36:511-513
    [47] V. V. Novikov. Frequency Dependences of Dielectric Properties of Metal-Insulator Composites. Physics of the Solid State, 2002, 44, (11): 2055-2062.
    [48] Q. Zheng, Y. Song. Reversible Nonlinear Conduction Behavior for High-Density Polyethylene Graphite Powder Composites near the Percolation Threshold. Journal of Polymer Science: Part B: Polymer Physics, 2001, 39:2833-2842
    [49] 中华人民共和国交通行业标准.公路工程沥青及沥青混合料试验规程(JTJ052-93),人民交通出版社,1993
    [50] 李芳.炭黑改性沥青路用性能的研究.西安交通大学学报,1996,16,(3):42-49
    [51] 陈品华、赵元斌、李卓球等.小应力下碳纤维增强水泥的压敏性和温敏性.材料研究学报,1997,11(3):45-50
    [52] M. Taya, W.J. Kim, K. Ono. Piezoresistivity of a short fiberrelastomer matrix composite. Mechanics of Materials,1998,28:53-59
    [53] Z. Shi, D. D.L. Chung. CFRC for Traffic Monitoring and Weighing in Motion. Cement and Concrete Research 1999,29:435-442
    [54] Xuli Fu and D.D.L. Chung, Effect of Curing Age on The Self-monitoring Behavior of Carbon Fiber Reinforced Mortar, Cement and Concrete Research, 1997,27 (9): 1313-1318
    [55] Sihai Wen, D. D,L. Chung, Piezoresistivity in Continuous Carbom Fiber Cement-matrix Composite, Cement and Concrete Research, 1999,29:445-449
    [56] Jie Zhang, Shengyu Feng. Temperature Effects of Electrical Resistivity of Conductive Silicone Rubber Filled with Carbon Blacks. Journal of Applied Polymer Science, 2003, 90:3889-3895
    [57] Weihua Di, Guo Zhang. Resistivity-Temperature Behavior of Carbon Fiber Filled Semicrystalline Composites. Journal of Applied Polymer Science, 2004, 91:1222-1228
    [58] 宣兆龙.炭黑,高聚物导电复合材料PTC效应的研究.塑料.1999,19(10):25-30
    [59] G. Yu, M. Q. Zhang, Effect of Filler Treatment on Temperature Dependence of Resistivity of Carbon-Black-Filled Polymer Blends, Journal of Applied Polymer Science, 1999, 73:489-494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700