用户名: 密码: 验证码:
ATO、ATO/TiO_2粉体制备技术及其导电理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电粉体具有抗静电、导电、屏蔽电磁波等功能,可以用作导电性填料添加于涂料、化纤、塑料,广泛用于航空、电子、汽车、建材、化工、军事等领域。目前,国内外透明、浅色无机导电粉体的开发研究非常活跃,一般以重晶石、石英粉、钛白粉、氧化锌、云母粉等为核体,通过表面包覆导电层AT0(掺Sb的SnO2)、ITO(掺Sn的In2O3),FTO(掺F的SnO2)的方法来制备无机复合导电粉体。用ATO包覆TiO2获得的ATO/Ti 02导电粉体,能同时具备ATO与TiO2的优点:既有一定的导电性,颜色较浅,能吸收紫外光,又具有很好的耐候性及高温使用性能。ATO. ATO/Ti02粉作为一种新型的功能导电材料,主要是以添加剂的形式应用于各种材料中,用于制备各种颜色的永久性导电、电磁屏蔽及防静电材料,如导电涂料、导电胶(粘合剂)、导电塑料、导电橡胶、导电陶瓷、导电水泥、导电油墨、导电纤维等导电制品。
     本文对导电粉的种类、特点、性能、应用范围、发展历史及研究现状进行了全面综述,并系统地综述了超细二氧化钛的表面包覆改性制备技术以及ATO. ATO/Ti02导电粉体的研究现状。本文以五水四氯化锡(SnCl4.5H20).三氯化锑(SbCl3)和超细二氧化钛粉(TiO2)为主要原料采用湿化学共沉淀的方法,制备了ATO.ATO/TiO2粉体,运用差热—示差扫描量热(TG-DSC).X一射线衍射(XRD).X-射线光电子能谱(XPS)、扫描电镜(SEM)、比表面积测定(BET)等方法对ATO、ATO/Ti02粉体进行了表征。对ATO、ATO/TiO2粉体的制备技术、工艺性能及相关机理进行了深入研究,揭示了Sb变价机理,发现了Sb在SnO2表面存在富集现象建立了Sb掺杂SnO2富集模型。研究了ATO/TiO2.粉体的包覆机制,用渗流理论解释了ATO/Ti02粉体的导电机理。研究结果表明:
     1、系统地研究了工艺参数对粉体电导率的影响规律,用五水四氯化锡(SnCl4·5H2O)、三氯化锑(SbCl3)、TiO2颗粒为原料,用湿化学共沉淀法成功地制备了导电性能优良的ATO.、ATO/TiO2粉体。
     2、电导率,XRD、XPS综合测试分析表明:Sb掺杂量、煅烧温度对Sb在SnO2晶粒中的分布、Sb价态的存在形式、电导率的变化有较大的影响。ATO的导电机理由有效施主Sb5‘和有效氧空位共同控制。当低浓度(小于12%)掺杂或低温煅烧(小于500℃)时,Sb3+→Sb5+,Sb5+/Sb3+>1,Sb5+逐渐占主导地位,ATO的导电载流子浓度主要由有效施主Sb5+提供;当高浓度(大于12%)掺杂或高温煅烧(大于500℃)时,Sb5+→Sb3+,Sb5+/ Sb3+≤1, Sb3+逐渐占主导地位,ATO的导电载流子浓度主要由有效氧空位提供。
     3、XPS测试和Sb掺杂Sn02富集模型表明:掺杂到SnO2中的Sb存在表面富集和Sb氧化物价态的变化(Sb3+和Sb5+)。掺杂到SnO2粉体中的Sb含量,不会改变SnO2的四方金红石结构,一部分Sb原子固溶到SnO2晶格中,剩余的Sb原子向SnO2粉体表面富集,并取代SnO2表面的Sn原子,形成Sb富集层,相当于一层“栅栏”,阻碍心部Sb原子向表面扩散,抑止掺杂SnO2晶粒的长大。运用Sb掺杂SnO2富集模型建立了掺杂SnO2粉体总掺杂浓度、表面浓度、心部浓度、晶粒尺寸、比表面、表面覆盖率(富集层厚度)之间的关系,得到了定量计算SnO2晶粒心部Sb浓度表面Sb浓度,固溶度及表面覆盖率的公式。
     4、ATO包覆TiO2颗粒表面的机制为成核包覆,即:xSnO2·yH2O与Sb2O3[xSn(Sb)O2·yH2O]的生成不是以TiO2表面为基异质形核,而是均相形核,随后,xSnO2·yH2O与Sb2O3的混合物(ATO)以非晶态的形态靠范德华力与静电引力吸附在TiO2表面,煅烧过程中,x.Sn(Sb)O2·yH2O脱去结晶水吸附或键合在TiO2表面。
     5、ATO包覆TiO2复合粉体的导电机制可以用渗滤理论来解释,ATO含量决定TiO2颗粒表面能否形成完整的导电网络基本框架。渗滤阈值前(Vc=0.0689),导电的ATO含量相对较少,ATO/TiO2复合材料电阻率大导电连通网络尚未大范围形成,电阻率随ATO含量变化而变化的速度缓慢;达到渗滤阈值Vc=0.0689~0.1562时,导电连通网络逐渐形成,ATO/ TiO2复合材料电阻率随ATO含量变化而变化的速度急剧;当体积分数超过0.1562时,ATO导电粒子含量很高,导电连通网络己经大范围形成,ATO/TiO2复合材料电阻率随ATO含量变化而变化的速度又趋缓慢。
     本文的创新点在于:(1)用XPS深入研究了Sb掺杂S n02的表面富集机理,提出了Sb掺杂Sn02富集模型,Sb在Sn02中,一部分以替代原子进入了Sn02晶格中,一部分富集在S n02的表面,并随着掺杂量,煅烧温度的改变,表层的元素发生变化,给出了定量计算Sn02表面、心部Sb浓度数学公式;(2)Sb掺杂Sn02存在Sb氧化物价态的变化(Sb3+和Sb5 +),Sb5+、Sb3+的比例随着Sb的掺杂量、煅烧温度不同而改变,并影响其电导率。本文提出了有效施主Sb5+和有效氧空位共同控制ATO的导电机理,建立了ATO能带模型,可以解释Sb掺杂量、煅烧温度对ATO导电性能的影响规律。(3)在ATO包覆TiO2机理上,确定了"xSn(Sb)O2·yH2O胶粒均匀形核—吸附在TiO2颗粒表面—脱水成不定形Sn(Sb)O2颗粒”的成核机制,能很好的解释各种现象,预测了ATO包覆量与TiO2颗粒半径的关系。粘附在TiO2表面很不光滑的ATO粒子决定TiO2颗粒表面能否形成完整的导电网络基本框架,用渗流理论能够很好地解释ATO/TiO2粉体的导电现象,本文确定的工艺可以制备导电性能优异的ATO、ATO/TiO2粉体,能适应市场的要求。
Conductive Powder with antistatic, conductivity, electromagnetic shielding, and other functions, can be used as a conductive filler added to paint, chemical fiber, plastic, widely used in aerospace, electronics, automobiles, building materials, chemical, military and other fields.
     At present, the research of transparent、conductive inorganic light-coloured powder was very active both at home and abroad. The quartz powder, titanium dioxide, zinc oxide were generally made as nuclear body, the norganic conductive composite powders were manufactured by conductive surface coating layer ATO (Sb doped SnO2), ITO (Sn doped In2O3), FTO (F doped SnO2). ATO coated TiO2 conductive powder, which can get many advantages of ATO and TiO2, not only has a conductivity, junior color, absorbing ultraviolet light but also has good weather resistance, high temperature performance, so this kind of conductive powder is widely Applied..ATO, conductive TiO2 powder as a function of a new type of conductive materials, mainly in the form of additives used in various materials for the preparation of various colors permanent conductivity, electromagnetic shielding, anti-static materials, such as conductive coatings, conductive plastic (adhesive), conductive plastics, conductive rubber, conductive ceramic, conductive cement, conductive inks, conductive fiber products.
     In this paper, the type, features, performance, applications, historical development and recent research of conductive powder were summaried completely.. The wet chemical method、surface nature, surface coating technologies of ultrafine titanium dioxide and research status of ATO coated TiO2 Powder were reviewed systematically. In this paper, ATO and ATO/TiO2,which TiO2 was coated by Sb-doped SnO2,conductive composite powders were prepared by wet chemical method with the raw material SnCl4·5H2O、SbCl3. and ultrafine titanium dioxide (TiO2). ATO, ATO/TiO2 conductive composite powders were characterized by differential thermal-Differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), the determination of specific surface area (BET) and other methods. The dependence of the property、mechanism of nanoparticles ATO、ATO/TiO2 conductive composite powders on technological conditions were studied systematically, Sb change valence mechanism、Sb surface enrichment and ATO conductivity theory was discoved. Sb-doped SnO2 enrichment model was founded. The mechanism of ATO coated TiO2 particles surface was studied and the conductive mechanism of ATO\TiO2 composite powder was explained by percolation theory. The research results showed:
     1、The influence of The process parameters on conductivity was researched greatly. In this paper, conductive ATO、ATO/TiO2 composite powders were successfully prepared by co-precipitation method using SnCl4·5H2O,SbCl3 and ultra-fine TiO2 powders as basic processors, which ATO was coated on the surface of titania (TiO2). The preparation technique studied in this paper could be used to produce excellent conductive TiO2 powder.
     2、The conductivity、XRD、XPS test showed:The large influence of Sb doped concentration, the calcination temperature on the Sb distribution, valence existence forms was investigated. The Sb surface enrichment (segregation) and valence change (Sb3+and Sb5+) in SnO2 grain was observed. The conductive mechanism of Sb-doped SnO2 (ATO) powder depends on effective donor Sb5+and valid oxygen vacancy. When low concentration (less than 12%) doped or the low temperature calcined (less than 500℃), Sb3+→Sb5+, Sb5+/Sb3+> 1, Sb5+was gradually dominant, the conductive carrier concentration of Sb-doped SnO2 (ATO) were mainly attributed to the effective donor Sb5+.when high concentrations (greater than 12%) doped or calcination temperature (more than 500℃), Sb5+→Sb3+, Sb5+/Sb3+≤1, Sb3+was gradually dominated, the conductive carrier concentration of Sb-doped SnO2 (ATO) were mainly attributed to the valid oxygen vacancies.
     3、The XPS test and Sb-doped SnO2 enrichment model showed:Sb content doped into SnO2 powder will not change quartet rutile structure of SnO2. Sb is partly incorporated into the SnO2 lattice.The remaining atoms create a layer on the surface of SnO2,which provide a barrier for surface diffusion and suppress crystal growth during calcinations. The Sb-doped SnO2 enrichment model which was proposed establish the correlation among the total doping concentration, the surface concentration, bulk concentration, grain size, surface area, surface coverage (enrichment thickness). The Sb bulk concentration、surface concentration、the solubility and surface coverage in SnO2 were calculated quantativly by Sb-doped SnO2 (ATO) segregation model.
     4、The mechanism of ATO coated TiO2 particles surface was shown: The generation of xSnO2·yH2O and Sb2O3 [xSn(Sb)O2·yH2O] were not heterogeneous nucleation as TiO2 surface-based, but were homogeneous nucleation, then a amorphous ATO mixture of xSnO2·yH2O and Sb2O3 was absorbed to the TiO2 particles surface by van der Waals force and electrostatic force, the stronger interface combination force can be formed with H bond or condensation reaction between the atoms. During the calcination process, xSn(Sb)O2·yH2O (ATO) dehydrate crystal water, The ATO microcrystalline powder were absorbed and bonded in TiO2 particles surface.
     5、The conductive mechanism of ATO coated TiO2 composite powder was explained by percolation theory. The complete network of conductive basic framework was made by the decision of ATO content in TiO2 particles surface. Before Percolation threshold (VC<0.0689), the conductive ATO content was relatively smaller, the ATO content can not be interconnected and independently dispersed, the large-scale conductive connectivity network has not yet formed, the resistivity of ATO coated TiO2 composite powde, the resistivity change of ATO/TiO2 powder with ATO content was fresh slow; VC=0.0689-0.1562,the Probability of the chain network of conductive channel was greater, the connection between the ATO has undergone a qualitative change, and a three-dimensional conductive network structure was gradually formed, the resistivity of ATO/TiO2 conductive composite powder change dramatically with ATO content. Vc>0.1562, the high conductive network connectivity has been The large-scale formation, the resistivity of ATO/TiO2 composite powder change slowly with ATO content.
     The innovation was followed as
     (1)The surface enrichment mechanism of Sb doping SnO2 was investigated by XPS. The segregation model of Sb doping SnO2 was proposed. It was believed that some of the Sb atoms in SnO2 acting as substitute atoms entered into the crystal lattice of SnO2and the others enriched on the surfacial layer of SnO2. The ratio of Sn and Sb in surface layer of ATO was given calculation formula quantitatively.
     (2)The valence state of Sb in SnO2 was a very complex problem, the proportion of Sb5+and Sb3+, which was affected the resistivity of ATO, changed with the different doping contents and calcining temperature. The conductive mechanism of Sb-doped SnO2 (ATO) powder depends on effective donor Sb5+and valid oxygen vacancy was put forward in this paper. The influence of ATO conductive properties on Sb doping concentration calcination temperature can be explained by the establishment of the ATO band model.
     (3)To the mechanism of ATO coated TiO2 particles, the framework of formation of colloidal particles xSn(Sb)O2·yH2O-adsorption dehydration to amorphous Sn(Sb)O2 particles-island-like adsorption or a certain extend bonding was shown. This can explain numerous phenomena commendably. The coating model of island-like particles was introduced, furthermore, the relation of the optimum quantity of ATO used in coating and the radius of TiO2 grains measured by the method of BET was also predicted.Some conductive phenomenon of ATO/TiO2 powder was explained by the percolation mechanism. The manufacture procedure represented in this paper can prepare TiO2 powders with excellent conductivity. The resistivity could be adjusted to the market requirements.
引文
[1]李明建,浅色云母导电颜料制备工艺研究,涂料工业,,1996,(6):20-21
    [2]日本专利公开,昭60—253112
    [3]日本专利公开,昭61-286224
    [4]日本专利公开,昭62-275186
    [5]德国专利G3842330
    [6]刘红伟,浅色导电填料,化工新型材料,1996,(6):33-35
    [7]刘光炳,梁国明等,重庆师范学院学报(自然科学版),.1998,(15):33-36
    [8]Santos-pena J. Brousse T. Antimony doping effeeting on the electrochemical behavior of SnO2 thin film electrodes J. Power Sources,2001,97-98:232
    [9]Bisht H, Eun H TAegerter M A Comparison of spray pyrolyzed FTO, ATO and ITO coatings forat and bent glass substrates.Thin Solid Films,1999,351:109
    [10]Chopra K L, Major S, Pandya D K. Transparent conductors status review. Thin Solid Films,1983,102:1-46
    [11]Burgard D, Goebbet C, Nass R. Synthesis of Nanocrystalline Redispersable Antimony Doped SnO2 Particles for the Preparation of Conductive,Transparent Coating. Journal of Sol-Gel Science and Technology,1998,13:789-792
    [12]Wu N L etal. Enhanced Performance of SnO2 Xerogel Electrochemical Capacitor Prepared by Novel Crystallization Process. Journal of Power Sources,2002,109:418-421
    [13]Lipp L, Pletcher D. Preparation and Characterization of Thin Dioxide Coated Titanium Electrodes. Electrochim Acta.,1997,42(7):1091-1099
    [14]Nae-Lih Wu, Sze-Yen Wang, and I.A.Rusakova. Inhibibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides. Science. 1999,285:1375-1377
    [15]Thangaraju B. Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin film from SnCl2 precursor. Thin Solid Films.,2002,402:71-78
    [16]Shanthi S et al. Growth and characterization of antimony doped tin oxide thin films. Journal of Crystal Growth.1999,197:858-864
    [17]Rajpure K Y, et al. Effect of Sb doping on properties of conductive spray deposited SnO2 thin film. Materials of Chemistry and Physics.2000,64:184-188
    [18]Vincent C A,etal. Preparation and properties of semiconducting polycrystalline tin oxide. J. Electrochem. Soc.1972,119(4):518-521
    [19]Coleman J P,etal. Antimony doped tin oxide powders:Electrochromic materials for printed displays. Solar Energy Materials and Solar Cells.1999,56:375-394
    [20]姚超,吴凤芹等,纳米导电二氧化钛的研制,涂料工业,2003,33(72):18-21
    [21]Z.M.Jarzebski, Physical Properties of SnO2 Materials.Preparation and Defect Structure。, J.Electrochem.Soc.,1976,123):199-205
    [22]David J.Smith,L.A.Bursill,G.J.Wood., High Resolution Eletron Micoscopic Study of Tin Dioxide Crtstal, J. Solid State Chem.,1983,50:51-69
    [23]P.C.Hollamby,P.S.Aldridge,G.Moretti.R.G.Egdell., The Influence of Oxygen Deficiency and Sb Doping on Inverse Photoemission Spectra of SnO2, Surf.Sci.,1993,280:393-397
    [24]Koichi.Suzuki,Mamoru,Mizuhashi, Tin Solid Films.,1982,97:119-125
    [25]Che n J, Gao L, Huang J. J. Mater Sci.1996,31:3497
    [26]张立德,牟季美。纳米材料科学。沈阳:辽宁科学出版社,1994,10
    [27]陆厚根,张庆红,梅芳。上海化工,1996,21(4):15
    [28]Hoffmann M N, et al. Chem Rev,1995,95:69
    [29]GUO Y H, Zhang Y. Particles Mater Chem Phy,1997.47:211
    [30]Homola A M, Lorenz M R, Mastrangelo C J, et al. IEEE Transactions on Magnetics.1986, MAG-22(5):716
    [31]Mitchell T D, Jr and De Jonghe Lutgard C. J. Am. Cream Soc.1995,78(1): 199
    [32]丁子上,王民全,潘守彝.硅酸盐物理化学.北京:中国建筑工业出版社,1983
    [33]Burattin Paolo, Che Michel, Louis Catherine. J. Phys. Chem B.1998,10 2:2722
    [34]刘华,胡文启,钛白粉的生产和应用.北京:科学技术文献出版社,1992
    [35]陈朝华.钛白粉生产技术问答.北京:化学工业出版社。1998
    [36]Wernwr Alfred J. US,3437502.1969
    [37]Robert Moody J ohn. US,3515566,1970
    [38]D ecolibus Raymond Le w. U S,3928057,1975
    [39]Maurizio Bruni, M ario Visca. Ind Eng Prod Res Dev.1985,24:579
    [40]沙利,王训,李晓娥等.现代化工,2000,20(1); 37
    [41]Navio J A, Colon G, Macias M, et al. Part I:Synthesis and Characterization
    Appl. Catal. A:General,1999,177(1):111
    [42]李国辉,李国忠,化学世界,2000,(2):59
    [43]陈朝毕.钛白粉生产技术问答.北京:科学出版社,1998
    [44]华东理工大学物理化学技术研究所,超细颗粒制备科学与技术,1995.
    [45]J Rockenberger,U Zum Fede,M Tscher,et al, Near Edge X-ray Absoption Fine Structure measurements (XANES) and Extended X-ray Absorption Fine Structure Measurement(EXAFS) of the Valence State and Coordination of Antimony in Doped Nano crystalline SnO2, J Chem phys,2000,112(9):4292-4304.
    [46]K.Sun,J.Liu,N.D.Browning, Correlated Atomic Resolution Microscopy and Spectroscopy Studies of Sn(Sb)O2 Nanophase Catalysts, Journal of Catalysis,2002, 205:266-277
    [47]张建荣,顾达等,Sb掺杂SnO2纳米粉体的结晶行为和电学性能,应用化学,.2002,19(6):552-555
    [48]L.D.Loch. J. Electrochem. Soc,1963,11(10):1081-1083
    [49]Mar. R. W. J. Phys, Chem. Solids.1972,33:220-223
    [50]Paria M.K. J. Mater. Sci.1982,17:3275.
    [51]Colin. J. Electrochem. Soc.,1972,119(4):515-518
    [52]薄占满,掺Sb二氧化锡半导体导电机理的试验探讨,无机材料学报,1990,5(4):324-329
    [53]刘杏芹,朱海宁,沈瑜生,SbxSn1-xO2固溶体系电学性能与导电机制研究,无机化学学报,1996,12(2):130-134
    [54]郭玉忠,王剑华等,掺杂SnO2透明导电薄膜电学及光学性能研究,无机材料学报,2002,1(1):131-138
    [55]史金涛,赵高凌,杜丕一等,溶胶凝胶法制备SnO2:Sb膜的光学电学性能,太阳能学报,2003,24(1):5-9
    [56]陈忠伟,余爱萍等.,一种白色导电粉的制备研究.,上海化工.,2002,(5):16-19
    [57]杨华明,谭定桥等,石英基复合导电粉末的制备与研究,中国粉体技术,2002,(8):13-15
    [58]夏华,郭峰等,浅色重晶石导电颜料制备,非金属矿,1998,121:21-23
    [59]毛庆珠,浅色导电粉末的研究,涂料工业,1992,(1):8-11
    [60]杨丽梅等,导电云母粉的制法及其应用,涂料工业,1998,(11):19-21
    [61]日本づ厶协会志,1985,58(9):561-567
    [62]杨丽梅等,导电云母粉的制法及其应用,涂料工业.,1998,(11):19-21
    [63]姚超,吴凤琴等,纳米导电二氧化钛的研制,涂料工业.2003,(7):18-21
    [64]高濂 郑珊 张青红箸,纳米氧化钛光催化材料及应用,化学工业出版社,2000
    [65]李汝雄,.粉体粒子的表面改性,现代化工,1991,(3):52-54
    [66]候万因,王国庭,超细材料制备、表面改性及应用.化工进展,1992,(5):21-26
    [67]蒋子铎,吴璧耀等,二氧化钛的表面化学改性,现代化工,.1991,(5):14-18
    [68]Goswami D Y., A review of engineering developments of aqueous phase solar pHotocatalytic detoxification and disinfection processes, Journal of Solar energy engineering,1997,119:7
    [69]A. Suisalu, J. Aarik, H. Mandar, I. Sildos, Spectroscopic study of nanocrystalline TiO2 thin films grown by atomic layer deposition, European Materials Research Society symposia proceedings,1997,79:295-298
    [70]Li X.Z,Li F.B-, Study of Au/Au3+ photocatalusts toward visible photo-oxidation for water and wastewater treatment, Environ.sci.technol.1987,35: 2381-2387
    [71]F.B.L.i,X.Z.Li, The enhancement of photodegradation effiency using Pt-TiO2 catalyst, Chemosphere,2002,48:1103-1111
    [72]王卫红,刘长生,周爱军等,纳米二氧化钛包覆改性及光催化性能研究,武汉化工学报,.2003,25(1):69-72
    [73]施利毅,李春忠等,SnO2-TiO2复合颗粒形态结构及其光催化活性,化学物理学报,2000,13(3):336-342
    [74]Andrew P.Hong et.al, Cobalt Tetrasulfophthalocyanle on Tltanlum Dioxide:a new Efficient Electron relay for the photocatalytic Formation and Depletion of Hydrogen Perocide in Aqueous suspensions, The journal of physical Chemistry,1987, 91:2109
    [75]颜秀茹,宋宽秀,Sn02-TiO2纳米粒子的光催化性能,天津大学学报,2002,25(6):742-743
    [76]赵旭,杨少风,氧化锌包覆超细二氧化钛的的制备及其紫外屏蔽性能,高等学校化学学报,2001,21(11):1617-1620
    [77]张梅,魏志峰等,CeO2包覆对TiO2传感器材料的氧敏性能的影响,稀有金属,2001,25(1):71-74
    [78]Z.M.Jarzebski, Physical Properties of SnO2 Materials.Preparation and Defect Structure., J.Electrochem.Soc.,1976,123):199-205
    [79]David J.Smith,L.A.Bursill,G.J.Wood., High Resolution Eletron Micoscopic Study of Tin Dioxide Crtstal, J. Solid State Chem.,1983,50:51-69
    [80]P.C.Hollamby,P.S.Aldridge,G.Moretti.R.G.Egdell., The Influence of Oxygen Deficiency and Sb Doping on Inverse Photoemission Spectra of SnO2, Surf.Sci.,1993,280:393-397
    [81]何琳,陈耀祖,沈瑜生,SnO2气敏半导体材料,硅酸盐学报.,1985,(4):41-51
    [82]K.C.Mishra,K.C.Johnson,P.C. Schmidt, Electronic Structure of Antimony-Doped Tin Oxide, Am.Phy.Soc.,1995,51:13972-1.3976
    [83]Koichi.Suzuki,Mamoru,Mizuhashi, Tin Solid Films.,1982,97:119-125
    [84]J Rockenberger,U Zum Fede,M Tscher,et al, Near Edge X-ray Absoption Fine Structure measurements (XANES) and Extended X-ray Absorption Fine Structure Measurement(EXAFS) of the Valence State and Coordination of Antimony in Doped Nano crystalline SnO2, .J Chem phys,2000,112(9):4292-4304.
    [85]D. Dobler etal. X-ray photoelectron spectroscopy investigation of segregation processes at Sb and In. Chemical Physics 286(2003):375-383
    [86]D.Gorvea etal. Solid state inorg. Chem.1996,33:1015
    [87]E.Kh.Shokr,M.M.Wakkad,H.Abd EI-Ghanny,et al.Sb-doping Effects on Optical and Electrical Parameters of SnO2 Films J.Phy.Chem.Solids.2000(61):75-85
    [88]K.Sun,J.Liu,N.D.Browning. Correlated Atomic Resolution Microscopy and Spectroscopy Studies of Sn(Sb)O2 Nanophase Catalysts. Journal of Catalysis,2002, 205:266-277
    [89]赵光明等,纳米的氧缺陷研究-Mossbaur谱与PAT寿命谱.,汕头大学学报(自然科学报),1997,12(1):44-48
    [90]崔爱莉.,TiO2颗粒表面包覆SnO2纳米膜的动力学模型,高等化学学,2001,21(10):1560-1562
    [91]B.M.Rud,D.E.Dyshel., Preparation microcomposite powders doped with antimony dioxide and properties of thick films based on those powders, Powder Metallurgy and Metal Ceramics,2000,19:201-204
    [92]R.W.卡恩等,材料科学丛书,北京:科学出版社,1998
    [93]崔爱莉.,SiO2和Al2O3在TiO2表面的成核包覆和成膜包覆,化工冶金,1997,20(3): 178-181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700