用户名: 密码: 验证码:
海底阀箱流激振荡特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着船舶工业的迅速发展和海军装备建设日新月异,船舶的供水需求日益提高,越来越多的船舶分别在船体艏部、舯部和艉部设置了海底阀箱(即垂向贯穿船底,底部与海水相通,顶面无自由表面的陷落腔结构),以海底阀箱结构为代表的三维陷落腔结构的流激振荡问题又重新受到各国学者的关注。在一定的条件下,流激振荡所产生的交变流体力会诱发“流体力共振现象”和“流激振动现象”,从而使陷落腔结构的的疲劳寿命受损,给船舶的正常运营带来不利的影响。若能够对复杂流场中三维陷落腔的流激振荡特性做出合理的预报,可大大提高三维陷落腔结构的使用寿命,同时为腔体结构的设计提供依据。
     本论文重点针对以海底阀箱结构为代表的陷落腔流激振荡特性中的若干问题,结合国防科技工业技术基础科研项目,并在追踪了国内外有关陷落腔流激振荡问题的最新研究动态的基础上,采用物理实验的方法展开系列、深入的研究。旨在揭示三维陷落腔流激振荡机理,并合理地给了各种参数对腔体内流激振荡特性影响的规律。本论文的主要工作内容可总结为以下几个方面:
     1、本文在正确地掌握腔型分离流数值计算方法的基础上,提出了实验方案数值设计的方法。针对实验的影响因素和将出现的现象进行一系列的数值实验。利用CFD方法分别对三维陷落腔模型的FSO问题和实验船模的Green Water问题进行数值实验研究,优化了实验方案,预测了实验现象。
     2、针对均匀流中三维陷落腔流激振荡问题采用LES湍流模型进行数值研究。根据数值计算结果,结合涡运动学基本理论知识分析了腔体剪切层处和其内部流体运动的机理。
     3、针对不同结构型式的陷落腔模型,采用对比分析的实验方法开展了均匀流作用和浪流联合作用时,三维陷落腔流激振荡问题的系列实验研究,测量了腔体侧壁上的流体压力信号。同时在实验中分别考虑了来流攻角、波浪周期、波高对陷落腔流激振荡特性的影响及流体力分布的影响,给出了影响规律,给出了Cp和St数的估算公式。
     4、分别分析了不同来流条件、不同浪流条件时三维陷落腔流体力随Re数/KC数的变化规律及分布规律,同时分析了波高、波频、来流流速、来流攻角对剪切层振荡频率的影响,给出了各种来流条件下剪切层振荡频率随来流流速的变化规律。
     5、针对腔体内流体与外界存在质量交换的问题分别开展了均匀流场作用和浪流联合作用时,三维陷落腔的质量交换实验研究(即抽水实验),同时考虑了腔型的变化和来流方向的变化,给出了腔内与外界存在质量交换时对腔内侧壁流体力分布的影响规律及质量交换量的变化对腔口剪切层振荡特性的影响规律。
With the rapid development of ship industry and quickly changing of naval equipment construction, the need of water supply in ship increases, so more and more ships set up suction boxes which locate in the stem, amidships and stern, in that suction boxes transfix bottom plating and hull bottom connect with sea water. Moreover they are cave-in cavity without free surface at the top. Represented by the suction box the problem of fluid induced oscillation of cave-in cavity is paid close attention again by many researchers.Under certain conditions the alternating force caused by fluid induced oscillation will lead to phenomenon of "fluid force resonance" and "fluid induced vibration", finally fatigue life of cave-in cavity would be damaged, which will have adverse influence on normal operations. If reasonable forecast of fluid induced oscillation characteristic can be given in complex fluid, their fatigue life will be increased greatly, at the same time the foundation of cave-in cavity'design will be put forward.
     Aiming at many problems of fluid induced oscillation of cave-in cavity, combining basic research projects of national defense science, technology and industry, besides searching many latest research results on fluid induced oscillation of cavity, a series of experimental and contrastive research methods are carried out in this paper. The purpose is to open out mechanism of fluid induced oscillation on cave-in cavity, and the influencing rule of all kinds of parameter on fluid induced oscillation is given. The main content of this thesis includes the following aspects:
     1、On the basis of validly grasping numerical calculation method of cavity separation numerical design method on experimental project is opened out. Aiming at experimental influencing factors and taking on new phenomena a series of numerical experiment are carried out. The problems of cave-in cavity's FSO and ship model's Green Water are studied using CFD method, then experimental project is optimized, forever experimental phenomena is predicted.
     2、Aiming at the problem of cave-in cavity's FSO LES calculating model is adopt to complete numerical research in uniform. Based on the calculating results combining basic theory of vortex dynamics, shear layer oscillation and internal dynamic mechanism of cavity flow are analyzed.
     3、Aiming at different cavity types, experimental method of constructive analysis is adopted to complete a series of experimental research on flow induced oscillation problem of three dimensional cave-in cavity, which subjected to uniform field and wave flow field. Moreover the pressure signals of cavity's sidewall are measured, and the influence of attack angle, wave cycle and wave height on the characteristics of fluid induced oscillation of cavity are considered. The influencing rule is presented and estimating formula of Cp and St are opened out.
     4、Considering the conditions at different incoming and wave flow, the rules of flow forces versus Re number and KC number separately are analyzed. At the same time the influence of wave height, wave frequency, incoming velocity and incoming angle on frequency of the shear layer are analyzed. Then the rule of shear layer versus velocity is given.
     5、Aiming at the problem of flow of cavity inner having the mass exchange with outside, the different cavity type's experimental research with mass exchange are carried out, which separately subjected to uniform field and wave field. Then the influence rules of mass exchange on the distribution of flow forces of cavity inner and characteristic of shear layer oscillation are given.
引文
[1]童秉纲,张炳暄,崔尔杰.非定常流与涡运动.北京:国防工业出版社,1993:100-290页
    [2]何祚镛.结构振动与声辐射.哈尔滨:哈尔滨工程大学出版社,2001:147~182页
    [3]康庄.月池流噪声及水动力特性的实验.研究.哈尔滨工程大学博士学位论文.2006:4-100页
    [4]衣云峰,何祚镛.水中圆柱腔流激振荡特性研究[J].中国造船.1996,3(134):36~47页
    [5]朱习剑,衣云峰,何祚镛.突出腔的流激振荡激励源[J]哈尔滨船舶工程学院学报.1994,15(1):26~36页
    [6]何祚镛.水流引起突出流线型腔共振的实验研究[J]哈尔滨船舶工程学院学报.1993,14(1):48~58页
    [7]刑景棠,周盛,崔尔杰.流固耦合力学概述.力学进展.1997,1:19-38页
    [8]张明敏,何祚镛.导流板对腔口流体自持振荡影响的研究.应用力学学报[J].1995,12(2):9~16页
    [9]Zhu Xijian, He Zuoyong.Anaysis of Mechanism of Flow-Induced Oscillation of Cavity. Proceedings of Asia Workshop on Computational Fluid Dynamics. Sichuan,9China.1994:122-125,12-14P
    [10]Payl K. Chano. Separation of flow. Pergamon Press Inc.1970:272-603P
    [11]Blevins P D.流体诱发振动吴恕三等译.北京:机械工业出版社,1983:50-250P
    [12]NaudascherE. Flow-induced loading and vibration of gates. Proc Int sympon Hydr for High Dam, Beijing:Invited Lecture,1988:90-180P
    [13]Rockwell D, Naudascher E. Review-self-sustaining oscillations of flow past cavities. Trans ASME.J.Fluids Engineering.1978,100:152-165P
    [14]Rossiter J E. Wind Tunnel Experiments on the Flow Over Rectangular Cavitier at Subsonic and Transonic Speed. R.A.E.Tech. Report 64037,1964: 210-235P
    [15]He Zuoyong, Yi Yunfeng, LiDagang. Induced Resonance of Protruding Cavities by Flow. Proceedings of International Conference of Acoustics. Beijing,10, China.1992:3-10P
    [16]Knisely, C., Rockwell,D. Self-sustained low frequency components in an impinging shear layer. Iournal of Fluid Mechanics.1982,116:157-186P
    [17]Kuo,C.H.,Huang,S.H.,2001.Influence of flow path modification on oscillation of cavity shear layer.Experiments in Fluids2001,31:162-179P
    [18]Gharib,M.Response of the cavity shear layer oscillations to external forcing. AIAA.Journal 1987,25(1):43-47P
    [19]Heller H H, Bliss D B. Aerodynamically induced pressure oscillations in cavities. Physical Mechanisms and Suppression Concepts.1975,11:74-133p
    [20]Bartel H W, Mcavoy J M. Cavity oscillation in cruise missile carrier aircraft. AFWAL.1981:3030-3060P
    [21]Lamp A M, Chokani N. Computation of cavity flows with suppression using jet blowing. Journal of Aircraft.1997,34(4):545-551P
    [22]Zhang X, Chen X X, Rona A. Attenuation of cavity flow oscillation through leading edgd flow control. January of Sound and Vibration.1999,22(1): 223-247P
    [23]潘文全.流体力学基础.北京:机械工业出版社,1982:50-210P
    [24]Bilamin & Covert. Estimation of possiblc excitation frequencics for shallow rectangular cavities. AIAA Joural.1973,11:347-351P
    [25]Rockwell,D.& Naudascher, E. Review-self-sustaining oscillations of flow past cavities. Trans.ASME:J. Flluids engng.1978,100:120-154P
    [26]Colonius, T. An overview of simulation,modeling, and active control of flow/acoustic resonance in open cavities. AIAApaper,.2001:70-76P
    [27]Rowley,C.W.,& Wlliams,D.R. Dynamics and control of high-Reynolds-num-ber flow over cave-in cavity. Annu.Rev. Fluid Mech.2006, (8):251-276P
    [28]Naudascher, E., Rockwell, D., Flow-induced vibrations, an engineering guide, A.A.Balkema, Rotterdam, the Netherlands,1994,(3):25-89P
    [29]C.H.Kuo&W.I.Jeng. Lock-on characteristics of a cavity shear layer. Journal of Fluids and structures.2003,18(6):715-728P
    [30]S.Ziada, H.Ng&C.E.Blake. Flow excited resonance of a confined shallow cavity in low Mach number flow and its flow. Journal of Fluids and structures.2003,18(1):79-92P
    [31]A.Yu.D'yachenko,V.I.Terekhov&N.I.Yarygina.Vortex formation and heat transfer in turbulent flow past a transverse cavity with inclined frontal and trar walls. International Journal of Heat and Mass Transfer.2008,51:3275-3286P
    [32]C.-H.Kuo, S.-H.Huang & W.Chang. Self-Sustained Oscillation Induced by Horizontal Cover Plate above cavity. Journal of Fluids and Sstructures 2000,14:p25-48P
    [33]Jacquin & Geffroy. Large-eddy simulation of a subsomic cavity flow including asymmetric three-dimensional effects. Journal of Fluid Mechanics. 2007,577:105-126P
    [34]Faure, T. Ml., Adrianos, P., Lusseyran, F.& Pastur, L. Visualizations of the flow inside an cave-in cavity at medium range Reynolds numbers.Exps.Fluids.2007, (42):169-184P
    [35]Grace.S.M.Dewar.W.G.& Wroblewski,D.E. Experimental Inverstigation of the flow characteristics within a shallow wall cavity for both laminar and turbulent upstream boundary layers. Experiments in fluids.2004,36:791-804P
    [36]Ashcroft.C.& Zhang.X. Vorticial Structures over Rectangular Cavities at Low Speed. Physics of fluids.2005,17:15-104P
    [37]Larsson, L., Stern, F. and Bertram. Benchmarking of Computational Fluid Dynamics for Ship Flows:The Gothenburg 2000Workshop. Joural of ship research.2003,47(1):63-81P
    [38]潘志远.海洋立管涡激振动机理与预报方法研究.上海交通大学博士学位论文.2005:86-123页
    [39]Zdravkovich. Flow around Circular Cylinders.New York:Oxford University Press.1997,1:22-45P
    [40]Rizzetta, D.P.& Visbal, M. R. Large-eddy simulation of supersonic cavity flowfields including flow control. AIAAJ.2003,41:1452-1462P
    [41]Larcheveque,L., Sagaut,P., Le,T.& Comte,p.Large-eddy simulation of a compressible flow in a three-dimensional cave-in cavity at high Reynolds number.J.Fluid Mech.2004,516:265-301P.
    [42]Chang, K., Constantinescu, G.& Park, S. Analysis of the flow and mass transfer processes for the in comperssible flow past an cave-in cavity with a laminar and a fully turbulent incoming boundary layer. J.Fluid Mech.2006, 561:113-145P
    [43]Zhisong Li&Awatef Hamed. Effect of sidewall boundary conditions on unsteady high speed cavity flow and acoustics. Computers&fluids. 2007,37(5):584-592P
    [44]MichaelJ.Stanek, Miguel R.Visbal, etal. On a mechanism of stabilizing turbulent free shear layers in cavity flows. Compuers&Fluids.2007,36(10): 1621-1637P
    [45]GuiliaumeA.Bres&TimColonius. Three-dimensional instabilities in compre-ssible flow over open cavities. J.Fluid Mech.2008,599:309-339P
    [46]卢侃.孙建华.混沌学传奇.1991:2-10页
    [47]帕坦卡.传热与流体流动的数值方法.北京:科学出版社.2008,17-22页
    [48]ADINA R & D.Theory and Modeling Guide[M].2005.America,2005:50-90p
    [49]H. Yamamoto, N. Seki, S. Fukusako, Forced-convection heat transfer on heated bottom surface of a cavity [J], Trans. ASME, J. Heat Transfer,1979 101(3):475-479P
    [50]A.Yu.Dyachenko, V.I.Terekhov. Vortex formation and heat transfer in turbulent flow past a transverse cavity with inclined frontal and rear walls [J], Heat and Mass transfer 51,2008,3275-3286pP.
    [51]岳宝增、李笑天.ALE有限元方法研究及应用.力学与实践.2002,24(2):7-11页
    [52]蒋莉莉等.求解流体与结构相互作用问题的ALE有限体积方法.水力学研究与进展.2000,15(2):148-155页
    [53]KOHNO H,BATHE KJ.A nine-node quadrilateral FCBI element for incompressible fluid flows[J].International Journal for Numerical Methods in Fluids,2006,51:673-699P
    [54]Klaus-Jurgen Bathe,HouZhang. Finite element developments for general fluid flows with strural interaction. International Joural for Numerical methods in engingeering.2004,60:213-232P
    [55]GuiliaumeA.Bres&TimColonius. Three-dimensional instabilities incompressible flow over open cavities. J.Fluid Mech.2008,599:309-339P
    [56]内河船舶设计手册(船体分册).长江船舶设计院编.人民交通出版社,1977,北京:649-673页
    [57]刘儒勋.数值模拟方法和运动界面追踪.安微:中国科学技术大学出版社,2001:50-105页
    [58]邓锐,黄德波.三体船阻力数值计算方法.哈尔滨工程大学学报.2008,29(7):673-676页
    [59]李玉成,张春蓉.规则波和水流共同作用下圆柱受力的研究.水动力学研究与进展.1990,5(2):58-64页
    [60]张涵信.分离流与旋涡运动的结构分析.北京:国防工业出版社,2005:33-66页
    [61]A.Yu.D'yachenko,V.I.Terekhov,N.I.Yarygina. Vortex formation and heat transter in turbulent flow past a transverse cavity with inclined frontal and rear walls.International Journal of Heat and Mass Transfer.2008,51:3275-3286P
    [62]Alan.Kistler. Some ProPerties of Tubulent Separated Flows(?) The Pyysics of Fluid Supplenent,1967:165-173P
    [63]夏国泽.船舶流体力学.武汉:华中科技大学出版社,2003:44-75页
    [64]李晓东,刘靖东,高军晖.空腔流激振荡的数值模拟研究.力学学报.2006,38(5):599-604页
    [65]吴望一.流体力学.北京:北京大学出版社,1982:60-98页
    [66]姚熊亮.舰船结构振荡冲击与噪声.国防工业出版社,2007:300-350页
    [67]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004:160-215页
    [68]陆鑫森,金咸定.船体振动学.北京:国防工业出版社,1980:14-25页
    [69]迟世春,林少书.结构动力模型试验相似理论及其验证.世界地震工程.2004,20(4):11-19页
    [70]Virendra Sarohia. Experimental Investigation of Oscillations in Flows Over Shallow Cavities. AIAA Journal.1977,15(7):984-991P
    [71]Chedevergne F, CasalisG, and Feraille Th. Biglobal linear Stability Analysis of the flow induced by wall injection. Physics of Fluids.2006,18:146-159P
    [72]李广望,任安禄,陈文曲.ALE方法求解圆柱的涡致振动.空气动力学报.2004,22(3):283-288P
    [73]Ellen S.P.So, Andy T.Y.Chan, Anton Y.T.Wong. Large-eddy simulation of wind flow and pollutant dispersion in s street canyon. Atmospheric Environment.2005,39:3573-3582P
    [74]Arlindo de Matos, Francisco A.A.Pinho, Aristeu Silveira-Neto. Large-eddy simulating of turbulent flow over a two-dimensional cavity with temperature fluctuations. Heat and Mass Transfer.1999,42:49-59P
    [75]孙明波,梁剑寒.王振国.超声速燃烧火焰稳定凹腔质量交换特性的数值研究.力学学报.2007,3(2):188-194P
    [76]朱仁传等.运动船体甲板上浪的三维数值模拟.水动力学研究与进展.A辑,2006,23(1):8-10页
    [77]E.Celik and Rockwell. Shear layer oscillation along a perforated surface:A self-excited large-scale instability. Physics of Fluids.2002,12(14):4444-4447P
    [78]季文美,方同,陈松湛.机械振动.北京:科学出版社1996:537-599页
    [79]张亮,李云波.流体力学.哈尔滨:哈尔滨工程大学出版社,2001:66-84页
    [80]Virendra Sarohia. Experimental Investigation of Oscillations in Flows over Shallow cavities. AIAA Journal.1977,15(7):984-991P
    [81]张强.流动诱导空腔振荡频率方程的改进.振动工程学报.2004,17(1):53-57页
    [82]罗柏华,胡章伟,戴昌晖.空腔流激振荡的简化模型分析及振荡频率预估.空气动力学学报.1999,17(1):39-48页
    [83]Alan L.Kistler. Some Properties of Turbulent Separated Flows. The Physics of Fluids Supplement.1967:165-173P
    [84]H.H.Heller. Flow-Induced Pressure Oscillations in Shallow Cavities. Journal of Sound and Vibration.1971,18(4):545-553P
    [85]陈立敬.二维平面槽道内涡旋波流场的数值模拟.大连理工大学硕士学位论文.2005:20-98页
    [86]黄双.自激振荡的实验及应用研究.重庆大学硕士学位论文.2002:4-12页
    [87]齐鄂荣.二维矩形突起物绕流流动结构的实验研究.水动力学研究与进展.A辑,2006,21(3):388-394页
    [88]朱德祥等.船模数值水池框架及其研究基础.水动力学研究与进展.A辑,2006,23(1):25-30页
    [89]张涵信.三维定常流粘性流动的分离条件及分离线附近流动的性状.空气动力学学报,1985(1):1-12页
    [90]Zhang H X. Advances in the study of separated flows.ACTA mechanic sinica,1988,4(2):93-11P
    [91]张涵信.分离点附近流线的性状及分离叛据.力学学报.1983(3):227-232P
    [92]McGregor.W and White,R.A. Drag of Rectangular Cavities in Supersonic and Transonic Flows Including the Effects of Cavity Resonance. AIAA Journal.1970,11(8):1959-1964P
    [93]Heller,H.H.,Holmes,etc. Flow Induced Pressure Oscillations in Shallow Cavities. Journal of Sound and Vibrations.1971,18(4):545-552 P
    [94]Billanin,A.J.and Covert,E,E.Estimation of Possible Excitation Frequencies for Shallow Rectangular Cavities. AIAA Journal,1973,11:347-351P
    [95]Piot E., Prestreaky flow instability.DNS and LST Sirth Ercoftac Sig-33 Workshop. Laminar Turbulent Transition Mechanisms. Prediction and Control. Kleinwalsertal.2006,6:18-20P
    [96]Chedevergne F, Casalis G. and Feraille Th. Biglobal linear Stability Analysis of the flow induced by wall injection. Physics of Fluid.2006,18:239-247P
    [97]T.P. Chinag,TonyW.H.Sheu, C.C.Fnag.Numerical investigation of vertical evolution in a backwardfacing step expansion flow. Applied Mathematical Modelling.1999,23:915-932 P
    [98]王助成,邵敏.有限元法基本原理和数值方法.北京:清华大学出版社,1997:148-153页
    [99]王志东.三维自由液面湍流场数值模拟及其在水利工程中的应用.河海大学博士学位论文.2004:37-52页
    [100]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004:122,233-267页
    [101]凌国灿.圆柱绕流旋涡运动及离散涡方法.力学进展.1985.(15):458-470页
    [102]林宗虎等.气液两相流涡脱落特性及工程应用.北京:化学工业出版社,2001:6-15页
    [103]陆鑫森.高等结构动力学.上海:上海交通大学出版社,1992:55-160页
    [104]是勋刚.湍流.天津大学出版社,1994:112-128页
    [105]H. K. Versteeg, W. Malalasekera. An Introduction to Computational Fliud Dynamics:The Finite Volume Method, New York:Wiley.1995:105-123P
    [106]A.Prasad, C.H.K.Williamson. The instability of the shear layer separating from a bluff body. JMF.1997:333-375P
    [107]姚东等著.MATLAB命令大全.北京:人民邮电出版社,2000:384-391p
    [108]Cebeci T.An unsteady laminar boundary layer with separation and reattachment. AIAA J.1978,16(12):1305P
    [109]Telionia DP. Rewiew-Unsteady boundary layer. Separated and attached. ASME Jouranl of Fluid Engineering.1979,101:29-43P
    [110]Neuburger D and Wygnanski L. The use of vibration ribbon to delay separation on two dimensional dirfoils-preliminary observations. AFOSR Workshop onUnsteady Seperated Flow.Colorado Spring Col.1987:591-602P
    [111]吴介之.流动分离的渐近理论.力学进展.1985,15(31):162-178页
    [112]童秉纲,尹协远.关于涡方法的讨论.空气动力学学报.1992,10(1):1-7页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700