用户名: 密码: 验证码:
空气—水介质板式换热器流动与传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济技术的发展与进步,能源日益有限。强化传热技术,高效、节能的产品备受瞩目。研究强化传热技术,设计开发新颖的、紧凑的高效换热装置,成为一个具有理论和实践意义的重要课题。
     本论文的主要内容是研究基于一次表面换热原理的空气一水介质波纹板式换热器的流动与传热特性。在广泛调研国内外的板式换热器与燃气轮机回热器应用一次表面实现高效传热的理论研究、实验研究、数值模拟和模型研制的基础上,将一次表面引入到空气-水换热过程,拓展了一次表面换热装置的应用领域。
     在研究中先将传统的水一水介质波纹板式换热器改装成空气一水换热器,进行实验,通过与光管式、翅片管式紧凑型换热器的传热与流阻的权威数据进行比较,表明一次表面波纹板式换热装置具有结构紧凑与低流动阻力的特征,利用一次表面可实现空气-水之间的高效传热。
     一次表面波纹板上波纹的凸起与凹陷不仅可促进无源的扰动,还可阻断边界层发展。带有倾角的波纹板叠合放置,板间形成的流道是复杂的空间结构,针对其特点,本研究建立了描述空气在波纹板间的流动与传热过程的数学模型。通过数值求解27种可代表一次表面形面特征的物理模型,比较了波纹形状、波纹高度及波纹倾角对空气在波纹板间传热与流动的影响,以高对流换热系数与小流动阻力作为指标,初选了几种高效的一次表面。又以面积最佳传热因子j/f/与体积最佳传热因子E作为后续评价依据,实现优中选优。
     研究中从波纹的不等截面积流道理论出发,创新性地提出了不等高度波纹的方法。通过实验证明该方法可进一步缩小了两侧流体的热容比,提高换热效率。并将实验结果与模拟的数据进行了比较,对建立的数学模型实现了验证,表明用于模拟的数学模型能够满足本研究的需要。
     研究中还对不锈钢波纹板的防冻性能进行了实验研究,实验中测定了水在不锈钢表面最高结冰温度,波纹板的凸凹结构可破坏冰在波纹板表面的附着,具有防结冻的功能。以实验为依据,建立了水在波纹板间的三维静止结冰与流动结冰的数学模型,进行了模拟计算,分析了水在波纹板间结冰过程中温度变化与相变界面移动规律,有助于改进波纹板的设计。
     本研究为一次表面及其类似介质的紧凑、高效换热装置的设计与开发提供了依据,拓展了一次表面的应用,具有一定的理论与实践价值。
With the development of society economy and technology, demand of energy resources grew day by day. Under the condition of limited energy resources, enhanced heat transfer, efficient and energy-saving technologies, product applications had been paid a great deal of attention. The study of the process of enhanced heat transfer technology and designing the novel compact heat exchanger devices had became an important problem with theoretical and practical meaning.
     The main contents of this paper were the studying of air-water medium corrugated plate heat exchanger flow resistance characteristics according to the principle of primary surface heat transfer. The two successful cases of plate heat exchanger and gas turbine regenerator which applied primary surface to transfer heat efficiently were extensively researched including theory study, experiment study, numerical simulation and model development. Then the efficiently primary surface was introduced to the field of air-water heat transfer, which expanded the application scope of primary surface.
     The traditional water-water plate heat exchanger was converted into air-water heat exchanger and the experimentation was carried out. Through comparing with the heat transfer and flow resistance authority data of smooth tube and finned tube compact heat exchangers, the results demonstrated that the primary surface corrugated plate heat exchanger had the characteristics of low flow resistance and compact construction and could transfer heat efficiently between water and air.
     The salient and depression of the primary surface corrugated plates were not only the promotion of passive disturbance, but also could block the development of boundary layer. The corrugated plates with inclination angle were congruently placed; the flow passage had a complex space structure. In view of these characteristics, the basic laws-the mass conservation, momentum conservation, energy conservation and the basic theory of turbulence were adopted in the study to establish the mathematical model of air flowing and transferring heat between the corrugated plates. Through solving 27 physical models which could represent the shape and surface characteristics of the primary surface, the impact of air transferring heat and flowing between the corrugated plates by corrugation shape, corrugation height and corrugation inclination angle were compared. The indexes of high convective heat transfer coefficient and low flow resistance were selected and several efficient primary surfaces were primarily chosen. The area best heat transfer factor j/f and volume best heat transfer factor E were taken as the follow-up estimation basis to select the best one.
     The method of differ height corrugation was put forward innovatively on the basis of differ section theory. The experimentation proved that this method could reduce the heat capacity ratio of the fluid on both sides further and improved the heat transfer efficiency. The numerical simulation data and experimental results were compared and the mathematical model was validated satisfying the request of this study.
     The anti-frozen performance of stainless steel corrugated plates was also experimented studied. The minimum icing temperature of water on the stainless steel surface was determined; the convex-concave structure could block the ice adhering on the surface of corrugated plates and had a certain anti-frozen function. The three-dimensional processes of water statically freezing and flow freezing between the corrugated plates were simulated; the temperature variation and phase change interface moving law were analyzed, which could be used in the improvement of corrugated plates.
     This study provided the basis and method guidance to the design and development of air-water primary surface and similarly the compact, efficient heat exchange equipment, which expanded the scope of application and had a certain theoretical and practical value.
引文
[1]崔海亭,彭培英.强化传热新技术及其应用.北京:化学工业出版社,2006:1-2页
    [2]林宗虎,汪军,李瑞阳,崔国民等.强化传热技术.北京:化学工业出版社,2007:1-3页
    [3]毛央平,毛绍融.强化板翅式换热器传热的有效途径.杭氧科技.2006(4):1-4页
    [4]徐百平,夏建波.高效气-气换热波纹板换热器强化传热的研究.石油化工设备技术.2001(1):Vol.22,33-35页,38页
    [5]陶文铨,何雅玲.对流换热及其强化的理论与实验研究最新进展.北京:高等教育出版社,2005:15-21页
    [6]Manglik R M, Zhang J, Muley A. Low Reynolds Number Forced Convection in Three-Dimensional Wavy-Plate-Fin Compact Channels:Fin Density Effects. Int. J. Heat Mass Transfer.2005:Vol.48,1439-1449P
    [7]Wang Q W, Lin M, Zeng M, Tian L. Investigation of Turbulent Flow and Heat Transfer in Periodic Wavy Channel of Internally Finned Tube With Blocked Core Tube. ASME J. Heat Transfer,2008:Vol.130,061801
    [8]钱颂文.换热器设计手册.北京:化学工业出版社,2002:305-307页
    [9]Bergles A E. Enhancement of Heat Transfer. Proc,6th In. Heat Transfer Conf. Toronto,1978:Vol.6,89-108P
    [10]Bergles A E. Techniques to augment heat transfer. Handbook of Heat transfer Applications,2ed. New York:W M Rohsenow, J P Hartnett and E N Ganic McGraw-Hill.2006
    [11]连之伟等.热质交换原理与设备.北京:中国建设工业出版社,2001
    [12]F.C.麦奎斯顿,J.D.帕克,J.D.斯皮特勒.俞炳丰译.供暖、通风及空调——分析与设计(原著第六版).北京:化学工业出版社.2005:29页
    [13]林宗虎.强化传热技术.北京:化学工业出版社.2006:2-6页
    [14]W M Kays, M E Crawford, B Weigand著,赵镇南译.对流传热与传质(第四版).北京:中国教育出版社,2007:10-15页
    [15]田晓虎,童明伟,李隆键.平行流冷凝器空气侧换热性能和压降的CFD仿真及试验研究.重庆大学博士学位论文.2007:1-30页
    [16]Jacobi A M, R K Shan. Air-Side Flow and Heat Transfer in Compact Heat Exchangers:A Discussion of Enhancement Mechanisms. Heat Transfer Engineering,1998:Vol.19,29-41P
    [17]Kuppan T. Heat Exchanger Design Handbook. New York:Basel, Marcel Dekker, Inc.2000
    [18]Chang Y J, Chang W J, Li M C, Wang C C. An Amendment of the Generalized Friction Correlation for Louver Fin Geometry. Int. J. Heat Mass Transfer,2006:vol.49,4250-4253P
    [19]Park Y G, Jacobi A M. Air-Side Heat Transfer and Friction Correlations for Flat-Tube Louver-Fin Heat Exchangers. ASME J. of Heat Transfer, 2009:Vol.131,021801
    [20]王泽红,张仁和.水介质板式换热器防冻的探讨.上海市制冷学会2001年学术年会论文集.2001
    [21]李娥飞.暖通空调设计与通病分析(第二版).北京:中国建筑工业出版社,2004:238-254页
    [22]隆德.半焊式板式换热器在制冷系统中的应用和发展.制冷学报.2003(2):27-31页
    [23]程宝华,李先瑞.板式换热器及换热装置.北京:中国建筑工业出版社,2005:1-7页
    [24]杨崇麟.板式换热器工程设计手册。北京:机械工业出版社,1994:1-5页
    [25]松崎丰明.传热部件及其制造方法.中国专利:02124756.0,2003.04.02
    [26]Paul, Eberhard. Offenlegungsschrift. Deutschland:DE 103 29 153 A1, 2005.01.27
    [27]内皮洛公司.用于制作热交换器和其他结构的板型.中国专利:02822117.6,2005,2(16)
    [28]Shah R K, Focke W W. Plate heat exchangers and their design theory, Heat Transfer Equipment Design, Hemisphere Publishing Co, Washington, DC.1988:227-254P
    [29]Focke W W, Zachariades J, I Olivier. The effect of the corrugation inclination angle on the thermo-hydraulic performance of plate heat exchangers. Int. J. Heat Mass Transfer.1985 (8):Vol.28,1469-1479P
    [30]Focke W W, Knibbe P G. Flow visualization in parallel plate ducts with corrugated walls. J. of Fluid Mechanics,1986:Vol.165,73-77P
    [31]Bobbili P R, Sunden B, Das S K. An experimental investigation of the port flow maldistribution in small and large plate package heat exchangers. Applied Thermal Engineering.2006 (16):Vol.26,1919-1926P
    [32]Zhang G M, Tian M C, S J Zhou. Simulation and analysis of flow pattern in cross-corrugated plate heat exchangers. Journal of Hydrodynamics. 2006(5):Vol.18,547-551P
    [33]Kang S W, Tseng S C. Analysis of effectiveness and pressure drop in micro cross-flow heat exchanger.Applied Thermal Engineering.2007(5-6): Vol.27,877-885P
    [34]Miura R Y, Galeazzo F C C, Tadini C C, Gut J A W. The effect of flow arrangement on the pressure drop of plate heat exchangers. Chemical Engineering Science.2008(22):Vol.63,5386-5393P
    [35]Kanaris A G, Mouza A A, Paras S V. Optimal design of a plate heat exchanger with undulated surfaces. International Journal of Thermal Sciences.2009:vol.48,1184-1195P
    [36]Tsai Y C, Liu F B, Shen P T. Investigations of the pressure drop and flow distribution in a chevron-type plate heat exchanger. International Communications in Heat and Mass Transfer.2009:doi:10.1016/j. icheatmasstransfer.2009.03.013
    [37]Manglik R M, Ding J. Laminar flow heat transfer to viscous power-law fluids in double-sine ducts. International Journal of Heat and Mass Transfer.1997(6):vol.40,1370-1390P
    [38]Metwally H M, Manglik R M. Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels.International Journal of Heat and Mass Transfer. 2004(10-11):Vol.47,2283-2292P
    [39]L K Wang, B Sunden. Optimal design of plate heat exchangers with and without pressure drop specification. Applied Thermal Engineering. 2003:vol.23 295-311P
    [40]Wang L K. Performance analysis and optimal design of heat exchangers and heat exchanger networks. Doctoral Thesis:Lund Institute of Technology. Sweden,2001
    [41]Wang L K, Sunden B. On plate heat exchangers in heat exchanger networks.34th National Heat Transfer Conference. Pittsburgh, USA. 2000:12150-12166P
    [42]G N Xie, B Sunden, Q W Wang. Optimization of compact heat exchangers by a genetic algorithm.Applied Thermal Engineering.2008(8-9):Vol.28, 895-906P
    [43]Dast S K, Roetzel W. Second law analysis of a plate heat exchanger with an axial dispersive wave. Cryogenics.1998(8):791-798P
    [44]Olaf S. A general calculation method for plate heat exchangers. International Journal of Thermal Sciences.2000(39):645-658P
    [45]Awadhi E M. Forced Convection Flow in a Wavy Channel With a Linearly Increasing Waviness at the Entrance Region. ASME Journal of Heat Transfer.2009(1):Vol.131,011703
    [46]Ferziger J H, Penic M. Computational Methods for Fluid Dynamics 3rd.2001.1-12P
    [47]Kanaris A G, Mouza A A, Paras S V. Flow and Heat Transfer in Narrow Channels with Corrugated Walls:A CFD Code Application.Chemical Engineering Research and Design.2005(5):Vol.83,460-468P
    [48]Pelletier O, Stromer F, Carlson A. CFD simulation of heat transfer in compact brazed plate heat exchangers. ASHRAE TRANSACTIONS.2005: Vol.111,Part 1 846-854P
    [49]Stasiek J, Ciofalo M, Smith I K, Collins M W. Experimental and analytical studies of fluid flow and c across corrugated-undulated heat exchangers surfaces. Proc.10th Int. Heat Transfer Conference, Brighton:1994:Vol.6, 103-109P
    [50]Stasiek J, Ciofalo M, Collins M W, Chew P E. Investigation of flow and heat transfer in corrugated Passages-I. Experimental simulations. Int. J. Heat Mass Transfer.1996(1):Vol.39,149-192P
    [51]Blomerius H, Holsken C, Mitra N K. Numerical investigation of flow field and heat transfer and in cross-corrugated ducts. Int. J. Heat Transfer. 1999:Vol.121,314-21P
    [52]Blomerius H, Mitra N K. Numerical investigation of convective heat transfer and pressure drop in wavy ducts. Numerical Heat Transfer, Part A. 2000:Vol.37,37-54P
    [53]Sarikaya O, Islamoglu Y, Celik E. Finite element modeling of the effect of the ceramic coatings on heat transfer characteristics in thermal barrier applications.Materials & Design.2005(5):Vol.26,357-362P
    [54]Croce G, Agaro P D. Numerical analysis of forced convection in plate and frame heat exchangers. International Journal of Numerical Methods for Heat & Fluid Flow.2002(6):Vol.12,756-771P
    [55]Croce G, Agaro P D. Numerical analysis of roughness effect on microtube heat transfer Super lattices and Microstructures.2004(3-6):Vol.35, 601-616P
    [56]Agaro P D, Cortella G, Croce G. Two and three dimensional CFD applied to vertical display cabinets simulation.International Journal of Refrigeration.2006(2):Vol.9,178-190P
    [57]Croce G, Agaro P D, Nonino C. Three-dimensional roughness effect on microchannel heat transfer and pressure drop.International Journal of Heat and Mass Transfer.2007(25-26):Vol.50,5249-5259P
    [58]G Croce, P D Agaro. Compressibility and rarefaction effect on heat transfer in rough microchannels.International Journal of Thermal Sciences.2009 (2):Vol,48.252-260P
    [59]Ribeiro C P J, Andrade M H C. An algorithm for steady-state simulation of plate heat exchangers. Journal of Food Engineering.2002:Vol.53, 59-66P
    [60]Fernandes C S, Dias P R. Laminar flow in chevron-type plate heat exchangers:CFD analysis of tortuosity shape factor and friction factor. Chemical Engineering and Processing.2007(9):Vol.46,825-833P
    [61]Islamoglu Y, Parmaksizoglu C. The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel. Applied Thermal Engineering.2003:Vol.23,979-987P
    [62]Wiirfel R, Ostrowski N. Experimental investigations of heat transfer and pressure drop during the condensation process within plate heat exchangers of the herringbone-type. International Journal of Thermal Sciences.2004:Vol.43,59-68P
    [63]Marty P, Michel F, Tochon P. Experimental and Numerical Study of the Heat Transfer along a Blunt Flat Plate. Int. J. Heat Mass Transfer. 2008:Vol.51,13-23P
    [64]Srihari N, Das S K. Experimental and Theoretical Analysis of Transient Response of Plate Heat Exchangers in Presence of Non-uniform Flow Distribution. ASME Journal of Heat Transfer.2008(3):Vol.130,051801
    [65]Morison K R. Steady-state control of plate pasteurisers. Food Control. 2005(16):23-30P
    [66]Grijspeerd K, Hazarika B, Vucinic D. Application of computational fluid dynamics to model the hydrodynamics of plate heat exchangers for milk processing. Journal of Food Engineering.2003(57):237-242P
    [67]Tonner J B, Hinge S, Legorreta C. Plate heat exchangers-the new trend in thermal desalination. Desalination 1999(125):243-249P
    [68]Fernandes C S, Dias R. Simulation of stirred yoghurt processing in plate heat exchangersJournal of Food Engineering.2005(3):Vol.69,281-290P
    [69]Asano H, Takenaka N, Fuji T, Maeda N. Visualization and void fraction measurement of gas-liquid two-phase flow in plate heat exchanger. Applied Radiation and Isotopes.2004(61):707-713P
    [70]Gut J A W, Fernandes R, Pinto J M, Tadini C C. Thermal model validation of plate heat exchangers with generalized Configurations. Chemical Engineering Science.2004:Vol.59,4591-4600P
    [71]Gut J A W, Pinto J M. Modeling of plate heat exchangers with Generalized configurations. International Journal of Heat and Mass Transfer.2003(14):Vol.46,2571-2585P
    [72]Gut J A W, Pinto J M. Optimal configuration design for plate heat exchangers. International Journal of Heat and Mass Transfer.2004(22): Vol.47,4833-4848P
    [73]Gut J A W, Pinto J M. Optimial design of continuous sterilization processes with plate heat exchangers.Computer Aided Chemical Engineering.2005(1):Vol.20,919-924P
    [74]Jain S, Joshi A. A New Approach to Numerical Simulation of Small Sized Plate Heat Exchangers With Chevron Plates. ASME Journal of Heat Transfer.2007(3):Vol.129,291-297P
    [75]杨崇麟.板式换热器国内外情况及我国发展板式换热器的建议.全国石油设备技术发展专题报告.1985
    [76]罗棣庵,焦芝林,顾传宝.超低流阻板式换热器的实验研究.工程热物理学报.1987(3):264-267页
    [77]罗棣庵,龚茂勤.人字波纹和百叶窗连续翅片管束内传热、流阻和流型的研究.工程热物理学报.1990(1):69-71页
    [78]过增元,庄文红.对流换热的物理机制分析及其应用.工程热物理学报.1992(1):52-56页
    [79]张力,谷操,顾维藻,刘文艳.连续型与打孔型波纹传热表面热力性能试验研究.工程热物理学报.工程热物理学报.2001(增刊):97.100页
    [80]陈群,任建勋,过增元.流体流动场协同原理及其在减阻中的应用.科学通报.2008(4):489-492页
    [81]詹宗勉,袁金良,潘延龄.评价板式换热器传热及流阻综合性能的方法.工程热物理学报.1992(4):400-403页
    [82]熊大曦,李志信,过增元.换热器的效能及熵产分析.工程热物理学报.1997(1):90-94页
    [83]赵镇南,王中铮.板式换热器中水蒸汽的冷凝阻力特性.高等学校工程热物理研究会会议论文集.西安:西安交大出版社,1990
    [84]王中铮,王艳,郭新川.复杂结构流道中汽-液两项凝结流动压降研究.天津大学学报.1993(6)
    [85]赵镇南,郝睿.管内与波纹板通道内冷凝传热与压降关联式.石油化工设备.2004(3):51-55页
    [86]赵镇南.流量分布不均匀对板式换热器传热性能的影响.化工机械.2003(1):1-4页
    [87]邓先和,王杨君,黄德斌,张亚君.来流不均匀分布对换热器传热的影响.华南理工大学学报.2004(2):1-3页
    [88]过增元,周维强,布卫红.来流温度不均匀时叉流换热器的热分析.工程热物理学报.1985(2):66-68页
    [89]周森泉,过增元,胡桅林,李志信.来流温度速度不均匀时换热器效能的分析.工程热物理学报.1994(41:403-407页
    [90]蒋寒松,张先棹.高综合传热系数和低阻力系数是换热器的基本要求.冶金能源.1999(1):28-30页
    [91]戴传山.板式换热器板型研究及设计初探.区域供热.1995(6):8-10页
    [92]常春梅.新型非对称网状导流板式换热器.石油化工设备.2001(5):51-66页
    [93]雷国庆,张治川.板式换热器波纹板片设计.石油化工设备.2003(5):32-33页
    [94]赵镇南.板式换热器人字波纹倾角对传热及阻力性能影响.石油化工设备.2001(增刊):1-3页
    [95]刘艳,何国庚,赖学江.板式换热器板型尺寸对换热性能影响的探讨.制冷.2003(2):65-68页
    [96]倪晓华,夏景清,萧渊.板式换热器的换热与压降计算.流体机械.2002(3):22-32页
    [97]Muley A, Manglik R M. Experimental Study of Turbulent Flow Heat and Transfer and Pressure Drop in a Plate Heal Exchanger with Chevron Plates. Journal of Heat of Transfer.1999:121P
    [98]吴继臣,陈晓杰.板式换热器热力简化计算的精度分析.哈尔滨建筑大、 学学报.1999(2):50-53页
    [99]徐百平,吴雪.超低流阻板式换热器强化传热研究.石油化工设备.2000(1):4-6页
    [100]刘志军,史启财,刘凤霞.型板换热器的传热性能和阻力降特性研究.化工机械.2002(2):63-65页
    [101]胡跃明,董玉军,周翔,包涛,袁秀玲.人字型波纹板式蒸发器数值模拟.制冷与空调.2005(2):42-46页
    [102]徐向华,梁新刚,任健勋.空气冷凝换热器模拟中几个问题的研究.工程热物理学报.2005(6):1131-1033页
    [103]黄秀琴.板式换热器波纹通道内流动与传热的数学模型及其求解.彭城职业大学学报.1999(4):56-58页
    [104]杨勇.数值传热学在波纹板式换热器上的应用.华北电力技术.1999(10):27-29页
    [105]黄秀娟.板式换热器中流体的流动状况与传热机理分析.辽宁高职学报.2001(3):44-49页
    [106]栾志坚,张冠敏,张俊龙,潘继红.波纹几何参数对人字形板式换热器内流动形态的影响机理.山东大学学报.2007:Vol37.34-37页
    [107]曲宁.板式换热器传热与流动分析.山东大学硕士学位论文.2005:5-12页
    [108]蔡毅,贾志刚.板式换热器性能的数值模拟和实验研究.北京化工大学硕士学位论文.2008:6-12页
    [109]谷芳,刘春江,袁希钢,余国棕.倾斜波纹板上液膜流动的CFD研究.化工学报.2005(3):462-467页
    [110]师晋生.波纹壁面降膜过程的一种近似模型.工程热物理学报.2006(2):310-312页
    [111]何庆琼,田茂城.复合波纹板式换热器换热与阻力特性研究.山东大学硕士学位论文.2007
    [112]师晋生,刘瑞,陈东,刘振义.波纹竖壁下降液膜的传热.天津科技大 学学报.2006(2):39-42页
    [113]刘研,玄哲浩,王永珍,崔淑琴.换热器传热和阻力特性的实验研究.实验技术与管理.2005(5):90-99页
    [114]郭荣春.板式换热器测试系统研究.哈尔滨工业大学硕士学位论文.2006:8-12
    [115]张海泉.板式换热器热工与阻力性能测试及计算方法研究。哈尔滨工业大学硕士学位论文.2006:10-17页
    [116]张明艳.换热器性能测试系统的设计与开发.兰州理工大学工程硕士学位论文.2006:6-12页
    [117]马学虎,林乐,兰忠.低Re下板式换热器性能的实验研究及热力学分析.热科学与技术.2007(3):38-43页
    [118]徐之平,卢玫,李凌等.微型燃机回热器.动力工程.2003(3):2752-2759页
    [119]赵士杭.新概念的微型燃气轮机的发展.燃气轮机技术2001(2):8-9页
    [120]McDonald C F. Low Cost compact primary surface recuperator concept for micro-turbines. Applied Thermal Engineering.2000(5):Vol.19,45-52P
    [121]McDonald C F. Recuperator considerations for future higher efficiency microturbines. Applied Thermal Engineering.2003 (12):Vol.23, 1463-1487P
    [122]McDonald C F, Rodgers C. Small recuperated ceramic micro-turbine demonstrator concept. Applied Thermal Engineering.2008(1):Vol.28, 60-74P
    [123]Tsai B J, Wang Y L. A Novel Swiss-Roll Recuperator for the Micro-turbine Engine. Applied Thermal Engineering.2009(2-3):Vol.29, 216-223P
    [124]Shih H Y, Huang Y C. Thermal design and model analysis of the Swiss-roll recuperator for an innovative micro gas turbine. Applied Thermal Engineering.2009(8-9):Vol.29,1493-1499P
    [125]Blomerius H, Holsken C. Numerical investigation of flow field and heat transfer in cross-corrugated ducts. ASME Journal of Heat Transfer.1999(2):314-321P
    [126]Blomerius H, Mitra N K. Numerical Investigation of Convective Heat Transfer and Pressure Drop in Wavy Ducts. Numerical Heat Transfer. Part A.2000:37-54P
    [127]Yin J, Li G, Feng Z. Effects of intersection Angles on Flow and Heat Transfer in Corrugated-Undulated Channels with Sinusoidal Waves. ASME J. Heat Transfer.2006(8):Vol.128,819-828P
    [128]Bontemps A, Brun M. Development of a compact heat exchanger for gas turbine heat recovery. Proceedings of the Eurotherm seminar Hamburg. Berlin:Springer-Verlag.1991:270-279P
    [129]Gao X, Sunden B. Heat transfer distribution in rectangular duct with V-shaped ribs. Heat and Mass Transfer.2001:315-320P
    [130]Utriainen E, Sunden B. Evaluation of the Cross Corrugated and Some Other Candidate Heat Transfer Surfaces for Micro-turbine Recuperators. ASME J. Heat Transfer.2002:Vol.124,550-560P
    [131]Utriainen E, Sunden B. Numerical Analysis of Laminar Flow in corrugated Undulated Ducts. Third International Conference on Compact Heat Exchangers and Enhancement Technology for the Process Industries. Davos, Switzerland.2001
    [132]Utriainen E, Sunden B. A Numerical Investigation of Primary Surface Rounded Cross Wavy Ducts. Heat Mass Transfer.2002(38):537-542P
    [133]Q W Wang. Genetic Algorithm Optimization for Primary Surface Recuperator of Micro-turbine. Transaction of ASME.2007(7):Vol.129, 436-442P
    [134]Xie G N, Sunden B, Wang Q W.Optimization of compact heat exchangers by a genetic algorithm. Applied Thermal Engineering.2008(8-9):Vol.28, 895-906P
    [135]Stevens T, Baelmans M. Optimal pressure drop ratio for micro recuperators in small sized gas turbines. Applied Thermal Engineering. 2008(17-18):Vol.28,2353-2359P
    [136]Traverso A, Massardo A F. Optimal design of compact recuperators for microturbine application. Applied Thermal Engineering.2005(14-15): Vol.25,2054-2071P
    [137]Morimoto K, Suzuki Y, Kasagi N. High Performance Recuperator with Oblique Wavy Walls. ASME J. Heat Transfer.2008(10):Vol.130,101801
    [138]Stasiek J, Collins M W, Ciofalo M. Investigation of Flow and Heat Transfer in Corrugated passages-I Experimental Results. Int. J. Heat and Mass Transfer.1996(1):Vol.39,149-164P
    [139]Rush T A, Newell T A, Jacobi A M. An Experimental Study of Flow and Heat Transfer in Sinusoidal Wavy Passages. Int. J. Heat and Mass Transfer.1998(9):Vol.42,1541-1553P
    [140]杨静,程惠尔.一次表面回热器的流动和传热研究.动力工程.2003(6):2823-2826页
    [141]张志军,程惠尔,闻雪友,肖东明.通道形面对PSR性能影响分析.热能动力工程.2002(6):638-640页
    [142]杨静,程惠尔,闻雪友,肖东明.船用燃气轮机一次表面回热器的设计分析.热能动力工程.2003(3):365-368页
    [143]李国君,阴继翔,丰镇平.CC型通道波纹相对节距对流动与传热特性的影响.动力工程.2005(4):567-572页
    [144]聂嵩,曲伟.CC型原表面回热器传热与流动的数值分析.工程热物理学报.2004(6):989-991页
    [145]高珊,曲伟.CW型原表面回热器芯体内流动与传热数值模拟.工程热物理学报.2006(3):490-492页
    [146]梁红侠,王秋旺等.微型燃气轮机CW原表面回热器流动与换热的实验研究.工程热物理学报.2006(5):865-867页
    [147]梁红侠,王秋旺等.微型燃气轮机回热器换热表面的对比研究.工程热物理学报.2004(4):688-690页
    [148]张勤,崔国民,关欣,杜鹃丽.燃气轮机回热器设计参数对其性能影响分析.2005(6):1028-1030页
    [149]马虎根,崔晓钰等.紧凑型回热器形面换热与阻力特性研究.上海理工大学学报.2004(5):393-398页
    [150]刘振宇,程惠尔.PSR波纹板片的热强度分析.热能动力工程.2005(4):342-345页
    [151]王斌,程惠尔,王平阳.一次表面回热器瞬态响应特性的数值分析.动力工程.2005(5):656-662页
    [152]王斌,程惠尔,王平阳.一次表面热交换器动态特性的数值模拟.化工学报.2006(6):1304-1308页
    [153]Wirtz R A, Huang F, Greiner M. Correlation of Developed Heat Transfer and Pressure Drop in a Symmetrically Grooved Channel. Journal of Heat Transfer, Transactions of ASME.1999(2):236-238P
    [154]Greiner M, Chen R F, Wirtz R A. Enhanced Heat and Transfer/Pressure Drop Measured From a Flat Surface in a Grooved Channel. Journal of Heat Transfer, Transactions of ASME.1991(5):498-501P
    [155]Su G G, Chen H C, Han J C. Computation of Flow and Heat Transfer in Rotating Rectangular Channels (AR=4:1) With Pin-Fins by a Reynolds Stress Turbulence Model. ASME Journal of Heat Transfer.2007(7): Vol.129,685-696P
    [156]Ridouane E H, Campo A. Heat Transfer Enhancement of Air Flowing Across Grooved Channels:Joint Effects of Channel Height and Groove Depth. Journal of Heat Transfer.2008(2):Vol.130,021901
    [157]张玉明,顾维藻,许鸿坤.粗糙矩形通道的强化传热与流动阻力.工程热物理学报.1984(3):275-280页
    [158]刘长春,顾维藻.三角通道对流换热的数值分析与实验研究.工程热物理学报.1987(1):69-73页
    [159]顾维藻,胡敦燕,刘长春,刘文艳.几种强化传热表面的实验研究.工程热物理学报.1991(4):396-400页
    [160]辛明道,张培杰,杨军.空气在微矩形槽道内的对流换热.工程热物理学报.1995(1):86-90页
    [161]姜培学,王补宣,任泽霈.微尺度换热器的研究及相关问题的探讨.工程热物理学报.1996(3):328-332页
    [162]姜培学,李勐,马永旭,任泽霈.微型换热器的实验研究.压力容器.2003(2):8-12页
    [163]Tribbe C, Steinhagen H M. Gas/Liquid Flow in Plate-and-Frame Heat Exchangers-Part I:Pressure Drop Measurements. Heat Transfer Engineering.2001(1):Vol.22,5-11P
    [164]Nakonieczny K. Numerical Modeling of Cross-Flow Plate-Fin Air-to-Air Heat Exchanger under Unsteady Flow Conditions. Numerical Heat Transfer, Part A:Applications.2005(1):Vol.49,1-24P
    [165]Hassani V, Dickens J, Bell K J. The Fin-on-Plate Heat Exchanger:A New Configuration for Air-Cooled Power Plants. Heat Transfer Engineering. 2005(6):Vol.26,7-15P
    [166]Hwang S D, Jang I H, Cho H H. Experimental study on flow and local heat/mass transfer characteristics inside corrugated duct. International Journal of Heat and Fluid Flow.2006:Vol.27,21-32P
    [167]Hettiarachchi H D M, Golubovic M, Worek W M. The effect of longitudinal heat conduction in cross flow indirect evaporative air coolers. Applied Thermal Engineering 2007:Vol.27,1841-1848P
    [168]Saini R P, Verma J. Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters. Energy.2008:Vol.33,1277-1287P
    [169]曾文良,林培森,王世平,张正国.进口压缩机中间冷却器的传热元件分析及其发展预测.流体机械.1999(6):30-33页
    [170]曾文良,林培森,王世平,张正国.板式换热器作为压缩机冷却器的传热与流阻性能试验研究.1999(12):5-8页
    [171]陈亚平,徐礼华,周强泰.波纹板空气预热器的构想.锅炉技术.2000(10):10-12页
    [172]黄秀琴,陈亚平.板壳式换热器双尺度波纹方案.石油化工设备.2002(3):22-24页
    [173]许旺发,张旭,罗海燕.波纹板式空冷器阻力与传热特性实验研究.制冷技术.2007(2):40-43页
    [174]顾锦同,马贵阳,吴强.板式空冷器及其在石化工业中的应用现状与改进措施.石油和化工设备.2007(12):22-24页
    [175]W.M.凯斯,A.L.伦敦.紧凑式热交换器.北京:科学技术出版社.1997:117-122页
    [176]史美中,王中铮.热交换器原理与设计.江苏:东南大学出版社.1996:18-20页
    [177]F.P.因克罗普拉,D.P.德威特.传热和传质的基本原理.北京:化学工业出版社.2007:564页
    [178]钱政,王忠宇.测试误差分析与数据处理.北京:北京航空航天大学出版社,2008:8-10页
    [179]卢玫,马奇,李娟等.锯齿形通道内流动与传热的数值.工程热物理学报.2004(4):Vol.25,670-672P
    [180]陶文铨.数值传热学.西安:西安交通大学出版社,2002:349页
    [181]吴华新,孙刚,姜任秋.空气在不同高度波纹通道内的流阻与传热的数值分析.哈尔滨工程大学学报.2007(10):Vol.28.1100-1103P
    [182]吴华新,孙刚,周松.波纹倾角β对空气在波纹流道内的流阻与传热影响的数值分析.热能动力工程.2008(5):Vol.23.531-534P
    [183]韩国盛,谢克光,谢忠民.高效不等截面板式换热器.中国专利:91210893.2
    [184]吴华新.专利名称:不等高度波纹板.中国发明专利,专利号:200610010515.5
    [185]曲凯阳,江亿.圆管内流动水发生结冰的影响因素研究.太阳能学报.2001(3):250-255页
    [186]曲凯阳,江亿.不锈钢表面上静止过冷水结冰随机性的试验研究.制冷学报.2000(4):8-12页
    [187]于震,曲凯阳,江亿.过冷水连续制冰系统中过冷器进出口温度的选择.制冷学报.2003(1):46-50页
    [188]Wu H X, Sun G, Zheng L. Testing Anti-frozen Characters of Air-water Plates Heat Exchangers by FLUENT. Asia-Pacific Power and Energy Engineering Conference, (APPEEC2009). Wuhan,2009.03-04-17
    [189]Virag Z, Zivic M, Galovic A. Influence of natural convection on melting of ice block surrounded by water on all sides. International Journal of Heat and Mass Transfer.2006:Vol.49,4106-4115P
    [190]Evans T S, Quarini G L, Shire G S F. Investigation into the transportation and melting of thick ice slurries in pipes. International Journal of Refrigeration.2008:Vol,31.145-151P
    [191]Shire G S F, Quarini G L, Evans T S. Pressure drop of flowing ice slurries in industrial heat exchangers. Applied Thermal Engineering.2009:Vol.29, 1500-1506P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700