用户名: 密码: 验证码:
大跨度桥梁风致振动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度桥梁作为交通枢纽和生命线工程,近年来在全世界范围内的研究和建设方兴未艾,然而大跨度桥梁由于具有轻柔的特点,在强烈外荷载的作用下动力响应剧烈。因此,采取有效的措施来抑制大跨度桥梁结构的振动响应,并确保其在长期服役下的安全性、适用性及其耐久性具有重要的研究意义,同时也是广大工程师与科研工作者所面临的现实问题。对于桥梁结构振动响应的控制研究,目前多集中于地震和风振响应控制。本文主要研究大跨度桥梁风致振动控制。
     风致振动控制的措施主要有气动措施、结构措施和机械措施三种。自1940年美国旧Tacoma桥因风致振动失稳倒塌以来,利用控制措施改善桥梁气动稳定性的研究已引起极大的关注,而出于经济、方便与美观的考虑,在主梁上安装一些气动措施,是振动控制研究的重点。随机脉动风场的模拟是大跨度桥梁颤抖振时域分析的前提。谐波合成法和线性滤波器法是随机过程的Monte Carlo模拟中的传统方法,应用最为广泛。小波分析方法是Fourier分析思想的发展与延拓,能够快速、准确地提取样本的局部谱密度特征,所以它是本文研究随机风场模拟的主要内容。
     天兴洲长江大桥是世界上第一座四线铁路桥梁,也是世界上跨度最大的公铁两用斜拉桥。这种漂浮体系铁路桥梁在强风作用下主梁会产生大幅侧向振动,严重影响其正常使用。如何使用经济有效的减振措施来降低其风致振动幅值成为桥梁工程的主要问题之一。国内外关于桥梁竖向抖振研究的文献较多,而有关侧向抖振的研究较少,所以以天兴洲大桥作为研究背景,系统地研究该桥主梁侧向抖振响应控制也是本文研究的一个重点内容。本文主要完成了以下几方面的工作:
     (1)阐述了大跨度桥梁风致振动国内外研究状况,介绍了大跨度桥梁风致振动控制的几种方法,总结了针对主梁断面的几种有效的气动控制措施,证明了气动控制措施对颤振控制的有效性。
     (2)对苏通长江大桥闭口箱梁进行了CFD分析,提取了不同攻角下的静力三分力系数进行对比分析并通过流场的速度分布图探讨其三分力系数变化的原因。
     (3)全面分析了不同断面型式对静力三分力系数的影响。在上述基础上,进一步设计了46种不同宽度风嘴、不同宽度导流板、不同中央开槽宽度、不同宽高比、不同透空率栏杆的某悬索桥主梁断面,利用CFD方法分析了风嘴宽度、导流板宽度、中央开槽宽度、主梁宽高比、栏杆透空率对静力三分力系数的影响。通过各种断面对比分析,总结出了采取气动措施对大跨度桥梁静力风荷载的影响,并给出在本文设计中比较合理的断面型式。
     (4)将小波分析方法应用到随机风场的模拟中,实现了桥址处脉动风场的有效模拟。该方法基于多分辨率分析的思想和Meyer正交小波基,推导了小波系数与功率谱密度函数之间的关系,利用Log-Poisson湍流模型,由已知的功率谱密度函数随机生成各尺度上的小波系数,在拟合目标风速谱的同时引入湍流间歇性,进而由生成的小波系数通过逆变换生成平稳风速时程。
     (5)建立了天兴洲大桥三维有限元分析模型,并对其动力特性进行了分析;在此基础上,研究了MR阻尼器和流体阻尼器对漂浮体系铁路斜拉桥主梁侧向抖振响应的混合控制。建立了MR阻尼器和流体阻尼器混合控制系统对漂浮体系公铁两用斜拉桥侧向抖振响应的模糊混合控制的设计方法,并将其应用于天兴洲大桥的主梁侧向抖振响应的控制中。
To be important transporting facilities and lifeline infrastructures, long-span bridges have been widely investigated and constructed across the world in recent years. Owing to their light and flexible properties, long-span bridges may vibrate excessively subjected to intensive external excitations. Therefore, it is essential to abate their strong dynamic responses for their safety, applicability and durability during long term service, which is also an actual issue for common civil engineers and researchers. As far as the vibration control of bridges is concerned, most attentions are paid to the dynamic responses subjected to wind loads or seismic excitations.The control for wind-induced vibration of long-span bridges was studied in this thesis.
     Control measures for wind-induced vibration have mainly aerodynamic measures, structural measures and mechanical measures. After the collapse of Tacoma Bridge which was caused by wind-induced vibration instability in 1940, much attention has been put on the research of improving the aerodynamic stability of bridge by means of control measures. Considering the factors of economic, convenience and aesthetic, aerodynamic control measures which were installed on the girder becomes the focal point in vibration control research. Simulation of stochastic wind velocity field is prerequisite to flutter or buffeting analysis of long-span bridges in time-domain. The spectral method and the filtering method are the two traditional simulation methods, which are most widely used. Wavelet analysis method is the development and extension of Fourier analysis, which can quickly and accurately extract the local spectral density characteristics of sample.So wavelet analysis method is the main content to stimulate stochastic wind velocity field.
     Tianxingzhou Yangtze River Bridge is the first bridge with four railway lines and is the longest span highway and railway combined cabled-stayed bridge in the world. This floating system of bridge, however, may result in large lateral dynamic responses in decks subjected to strong wind. Furthermore, it may substantially affect bridge safety and common functions. Therefore, how to use economical and effective measures to reduce wind induced finite vibration becomes one of the primary problems of bridge engineering. The domestic and foreign researchers have done plenty of research about the vertical buffeting vibration of long-span bridges. But to the lateral vibration, little research has been done. Lateral dynamic response control for long span bridge subjected to wind induced lateral buffeting has been systematically investigated in this thesis based on Tianxingzhou Bridge. The work of this thesis mainly includes the several parts as follows:
     (1) We first described the domestic and foreign research status of wind-induced-vibration of long-span bridges, introduced several typical methods of wind-induced-vibration control of long-span bridges, and generalized several effective aerodynamic control measures to main beam cross-section. The effectiveness of aerodynamic control measure to buffeting was proved.
     (2) The main girder section of Sutong Yangtze River Bridge were analysised by means of CFD method. We got coefficients of tri-component from different angles and compared the results with tunnel experimental results and explored the reasons for the changes of coefficients of tri-component through analysising fluid velocity filed.
     (3) A comprehensive analysis has been done about different girder sections how to affect coefficients of tri-component. On that basis, 46 main girder sections were designed which have different width guide vane, different width fairing, different central slot width, different width-depth ratio and different ventilation ratio of parapets. We have analysised the affections of guide vane width, fairing width, central slot width, width-depth ratio and ventilation ratio of parapets to coefficients of tri-component by means of CFD method. Through the comparison analysis of various sections, we generalized the influences of aerodynamic control measures to the static wind load of long-span bridges, and gave the most suitable sections which were designed in this thesis.
     (4) Wavelet method was applied to the simulation of the stochastic wind field, performing the effective simulation of spatial stochastic wind field. According to the idea of multi-resolution analysis and orthonormal wavelets, relationship between wavelet coefficient s and PSD(power spectral density)function is deduced , then the wavelet coefficients on each and every scale are obtained from the given PSD function,the intermittency was introduced into wavelet coefficients while at the same time preserves the target spectral characters. As a result, the inverse wavelet transform is applied to generating stationary wind velocity history through the given wavelet coefficients.
     (5) The three dimensional finite element model of Tianxingzhou cable-stayed Bridge is established and its dynamic characteristics are numerically investigated. Based on this, hybrid control for lateral buffeting responses in decks of floating system cable-stayed bridge installed MR dampers and fluid dampers are investigated. Hybrid control approach is developed and thereby applied for mitigating lateral dynamic responses of Tianxingzhou cable-stayed bridge in decks subjected to buffeting based on fuzzy semi-active control strategy.
引文
[1]项海帆.21世纪世界桥梁工程的展望[J].土木工程学报.2000,33(3):1-6.
    [2]Diana G,Falco M.,et al.The aeroelastic study of the Messina straits bridge[J].Natural Hazards,2003,30(1):79-106.
    [3]Larsen A.Aerodynamic aspects of the final design of the 1624 m suspension bridge across the Great Belt.Journal of Wind Engineering and Industrial Aerodynamics,1993,48(2-3):261-285.
    [4]Miyata T.,Yamaguchi K.Aerodynamics of wind effects on the Akashi Kaikyo bridge.Journal of Wind Engineering and Industrial Aerodynamics,1993,48(2-3):287-315.
    [5]周明,施耀忠.大跨径悬索桥、斜拉桥的发展趋势[J].中南公路工程.2000,25(3):32-34.
    [6]楼庄鸿.斜拉桥的发展趋势[A].第十二届全国桥梁学术会议.1994.
    [7]陈政清.桥梁风工程[M].北京:人民交通出版社,2005.
    [8]Bienkiewicz,B..Wind-Tunnel Study of Effects of Geometry Modification on Aerodynamics of a Cable-stayed Bridge Deck[J].Journal of Wind Engineering and Industrial Aerodynamics,1987,26:325-339
    [9]陈艾荣,顾明,项海帆.调制阻尼器(TMD)对斜拉桥竖向抖振控制的试验研究[J].西安公路学院学报.1993,13(2):8-13
    [10]王修勇,陈政清等.洞庭湖大桥风雨振减振试验研究[J].桥梁建设.2002,2:11-14.
    [11]Housner G.W.,Bergman L.A.,Caughey T.K.Structural control:past,present and future[J].ASCE Journal of Engineering Mechanics.1997,123(9):897-971.
    [12]Soong T.T.,Spencer B.F.Supplemental energy dissipation:state-of-the art and state-of-the practice[J].Engineering Structure.2001,24:243-259.
    [13]Elishakoff I.Notes on philosophy of the Monte Carlo method[J].International Applied Mechanics,2003,39(7):753-762.
    [14]吴瑾,夏逸鸣,张丽芳.土木工程结构抗风设计[M].北京:科学出版社,2007.
    [15]V.Boonyapinyo,H.Yamada,T.Miyata.Wind-induced nonlinear lateral-torsional buckling of cable-stayed bridges[J].Journal Of Structural Engineering,ASCE,120(2),1994:486-506
    [16]埃米尔.希缪,罗伯特.H.斯坎伦著.刘尚培,项海帆,谢霁明译.风对结构的作用一风工程导论[M].上海:同济大学出版社,1992:40-88
    [17]方明山.超大跨度缆索承重桥梁非线性空气静力稳定理论研究[博士学位论文].同济大学,1997年11月
    [18]中交公路规划设计院.公路桥梁抗风设计规范(JTG/T D60-01-2004)[M].北京:人民交通出版社,2004.
    [19]项海帆等.现代桥梁抗风理论与实践[M].北京:人民交通出版社,2005.
    [20]Davenport A.G..The application of statistical concepts to the wind of structures.Proc.ICE,1961,19(2):449-472
    [21]Davenport A.G..The response of slend line-like structures to a gusty wind.Proc.ICE,1962,23(6):389-408
    [22]Davenport A.G..Buffeting of suspension bridge by storm winds[J].Struct.Div.,ASCE.1962,88(6):233-268
    [23]Davenport A.G..The action of Wind on suspension bridges,Proc.,Int.Symp.On Suspension Bridges,1966,79-100
    [24]Scanlan R.H.,Tomko J.J..Airfoil and bridge deck flutter derivatives[J].Engrg.Mech.Div.,ASCE.1971,97Em6:1717-1737
    [25]Scanlan R.H.,Gade R.H..Motion of suspended bridge spans under gusty wind [J].Struct.Div.,ASCE.1977,103ST9:1867-1883
    [26]Scanlan R.H..The action of flexible bridges under wind Ⅰ:Flutter theory[J].Sound and Vibration.1978,60(2):187-199
    [27]Scanlan R.H..The action of flexible bridges under wind Ⅱ:Buffeting theory[J].Sound and Vibration.1978,60(2):201-211
    [28]Scanlan R.H..Interpreting aero elastic models of cable-stayed bridges[J].Engrg.Mech.Div.,ASCE.1987,113(4):555-575
    [29]Scanlan R.H.,Jones N.P.Aeroelastic analysis of cable-stayed bridges[J].Struct.Engrg.,ASCE.1990,116(2):279-297
    [30]Lin Y.K.Motion of suspension bridges in turbulent wind[J].Engineering Mech.Div.,ASCE,1979,100(4):397-412
    [31]Lin Y.K.,Ariaratnam S.T.Stability of bridge motion in turbulent winds[J].Struct.Mech.1980,8(1):1-15
    [32]Lin Y.K.,Yang J.N.Multimode bridge response to wind excitations[J].Engrg.Mech.,ASCE.1983,109(2):586-603
    [33]Lin Y.K.,Bucher C.G.Effects of wind turbilence on motion stability of long span bridges[J].Wind Engrg.Induxt.Aerodyn.1990,36(2)
    [34]Lin Y.K.,Li Q.C.Stochastic stability of wind excited structures[J].Wind Engrg.Induxt.Aerodyn.1995,55:75-82
    [35]H.Katsuehi,N.P.Jones,R.H.Scanlan,H.Akiyama.A study of mode coupling in flutter and buffeting of the Akashi-Kaikyo bridge,J.Struct.Mech.And Earthquake Engrg.,JSCE,1998,Vol.15(2)
    [36]Hiroshi Katsuchi,N.P.Jones,R.H.Scanlan.Multimode Coupled flutter and buffeting analysis of the AKASHI-KAIKYO bridge,Journal of Struct.Engrg.,ASCE,1999,Vol.125(1),60- 70
    [37]张志田.大跨度桥梁非线性抖振及其对抗风稳定性影响的研究[博士学位论文].同济大学,2004年6月
    [38]Kovacs L.,Svensson H.S.Analytical aerodynamic investigation of cable-stayed Helgeland Bridge[J].Struct.Engrg.,ASCE.1992,118(2):147-168
    [39]Boonyapinyo V.,Miyata T.,Yamada H.Advanced aerodynamic analysis of suspension bridge by state-space approach[J].Struct.Engrg.,ASCE.1999,125(12):1357-1366
    [40]Chen X.,Matsumoto M.Time domain flutter and buffeting response analysis of bridges [J].Engrg.Mech.,ASCE.2000,126(1):7-16
    [41]Ding Q.,Lee P.K.K.Computer simulation of buffeting actions of suspension bridges under turbulent wind[J].Computer and Structure.2000,76(6):787-797
    [42]顾明,项海帆.斜拉桥桥塔的驰振响应分析[J].空气动力学学报.1991,9(4):488-494
    [43]F.Bleith.Dynamic instability of truss-stiffened suspension bridges under wind action,Proc.ASCE 74(7),1948,1269-1314
    [44]Kloppel K.,Thield F.Modell ver suche in wind kanal zur bemessng vorilcken gegen die gefahr winderregter schwingungen.Stahlbau.1967,20(12)
    [45]Van der Put.Rigidity of structures agsinst aerodynamic forces.IABSE.1976
    [46]Sarkar.P.P.,Jones N.P.,Scanlan R.H..Identification of aeroelastic parameters of flexible bridges[J].Eng.Mech.,1994,120(8):1718-1742
    [47]Jones N.P.,Jain A.,Scanlan R.H..Multi-mode aerodynamic analysis of long-span bridges.Proceeding of Structure Congress,ASCE.Atlanta,Georgia.1994,4
    [48]Namini A.,Albrecht P..Finite element-based flutter analysis of cable-suspended bridges[J].Structure Engineering,ASCE.1992,118(6):1509-1526
    [49]陈韶红.大跨桥梁三维有限元颤振分析[硕士学位论文].上海:同济大学,1994年6月
    [50]张新军,陈艾荣,项海帆.大跨度桥梁的三维非线性颤振频域分析[J].同济大学学报,2001,(1):20-34
    [51]谢霁明,项海帆.桥梁三维颤振分析的状态空间法[J].同济大学学报,1985,(3):1-13
    [52]Chen X.Z,Kareen A,Matsumoto M.Multimode coupled flutter and buffeting analysis of long-span bridges[J].Journal of Wind Engineering and Industrial Aerodynamics,2001,89(7-8):649-664
    [53]丁泉顺;陈艾荣;项海帆.大跨度桥梁多模态耦合颤振的自动分析[J].土木工程学报,2002,35(4):52-58
    [54]Miyata T.,Tanaka H.Aerodynamics of long-span structures,wind effects on structures,Univ.of Tokyo press,1976
    [55]Miyata T.,Yamada H.,et al.On an application of the direct flutter FEM analysis for long-span bridges.Proc.9~# Int.conf on Wind Engineering.New Delhi,India,1995:1033-1041
    [56]葛耀君,项海帆.桥梁颤振的随机有限元分析[J].土木工程学报,1999,32(4):27-32
    [57]Y.J.Ge,H.Tanaka.Aerodynamic flutter analysis of cable-supported bridges by multi-mode and full-mode approaches.Journal of Wind Engineering and Industrial Aerodynamics 2000,86,123-153
    [58]胡峰强,陈艾荣.基于ANSYS实现全模态额振分析的实用方法.第12届全国结构风工程学术会议论文集,西安,2005.10
    [59]Scanlan R.H.,Beliveau J.G.and Budlog K.S.Indicial aerodynamic functions for bridge decks[J].Stuct.Engrg.ASCE 1996,122(7),716-725
    [60]Bucher C.G.and Lin Y.K.Stochastic stability of bridges considering coupled modes[J].Engrg.Mech.Div.,ASCE 114(EM12),1988,2055-2071;115(EM2),1989,384-400
    [61]Miyata T.,Yamada H.,Boonyapingo V.and Santos J.C.Analytical investigation on the response of a very long suspension bridge under gusty wind.Proc.9~# ICWE New Delhi,1995,2,1006-1017
    [62]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004
    [63]项海帆,陈艾荣.特大跨度桥梁抗风研究的新进展.土木工程学报,2003,36(4):1-7
    [64]吴江航,朱怀球.计算流体力学、CFD软件与工程服务.北京大学:湍流研究国家重点实验室,2002
    [65]项海帆.进入21世纪的桥梁风工程研究.同济大学学报,2002,30(5):529-532
    [66]Blenkiewicz B..Wind-tunnel study of effects of geometry modification on aerodynamics of a cable-stayed bridge deck[J].Journal of Wind Eng.and Industrial Aerodynamics,1987,26:325-339
    [67]Huston D.R.,Bosch H,R.,Scanlan R.H..The effects of fairings and of turbulence on the flutter derivative of a notably unstable bridge deck[J].Journal of Wind Eng.and Industrial Aerodynamics,1988,29:339-349
    [68]Kubo Y.,Honda K.,Tasaki K.and Kato K..Improvement of aerodynamic instability of cable-stayed bridge deck by separated flows mutual interference method[J].Journal of Wind Eng.and Industrial Aerodynamics,1993,49:553-564
    [69]Yoahimura T.,Mizuta Y.,Savage M.G.and Liu G..Half-circular and half-elliptic edge modifications for increasing aerodynamic of stability of stress-ribbon pedestrian bridges[J].Journal of Wind Eng.and Industrial Aerodynamics,1997,69-71:861-870
    [70]Larsen A.Aerodynamics of the Tacoma narrows bridge-60 years later[J].Journal of Structural Engineering International,2000,10:243.
    [71]邹小洁,杨泳昕,葛耀君.大跨度悬索桥钢箱加劲梁中央开槽的颤振控制机理[J].力学季刊.2007,28(2):880-889
    [72]邹小洁,杨泳昕,葛耀君.风洞试验结合CFD数值模拟分析中央开槽的颤振控制作用[J].2005年上海市国际工业博览会第三届上海市“工程与振动”科技论坛论文集,2005年
    [73]Sato H.,Ogihara K..Aerodynamic characteristics of slotted box girders[C].Proceedings of Bridges into 21st century.1995:721-728
    [74]Sato H.,et al.Aerodynamic characteristics of super long-span bridges with slotted box girder [J].Journal of Wind Engineering and Industrial Aerodynamics,2000,88:297-306
    [75]杨詠昕,葛耀君,项海帆.大跨度桥梁中央开槽颤振控制效果和机理研究[J].土木工程学报,2006,39(7):74-80
    [76]Yao,J.T.P.,Concept of Structural Control,Journal of the Structural Division,ASCE,98(ST7),1567-1574,(1972).
    [77]Housner G W,Bergman L A,Caughey T K,et al.Structural Control:Past,present,and Future[J].Journal of Engineering Mechanics.September,1997,(2):897-958.
    [78]Fujino.Y,Yoshida.Y.Wind-induced vibration and control of Trans-Tokyo Bay Crossing Bridge [J].Stru.Eng,2002,8:1012-1025.
    [79]项海帆,葛耀军.现代桥梁抗风理论及其应用[J].力学与实践.2007,29(1):1-13
    [80]宋锦忠,林志兴,徐建英.桥梁抗风气动措施的研究及应用[J].同济大学学报(自然科学版),2002,30(5):618-621
    [81]韩万水,陈艾荣.设置中央稳定板对大跨度悬索桥抗风性能的影响[J].世界桥梁,2008,1:42-44
    [82]李春光,张志田,陈政清,廖建宏.桁架加劲梁悬索桥气动稳定措施试验研究[J].振动与冲击,2008,27(9):13-34
    [83]郑莉婵.湛江海湾大桥斜拉索抗风雨振措施[J].中外公路.2006,26(5):122-127.
    [84]李文勃,林志兴,杨立波.超长斜拉索风阻系数及风雨激振的试验研究[J].振动、测试与诊断.2005,25(2):85-90.
    [85]Bosdogianni A,O livrai D.Wind and rain-induced oscillations of cables of stayed bridges[J].Journal of Wind Engineering and Industrial Aerodynamics.1996,64:171-185.
    [86]Hikami Y,Shiraish N.Rain-wind induced vibration of cables in cable-stayed bridges[J].Journal of Wind Engineering and Industrial Aerodynamics.1988,29:409-418.
    [87]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992.412-545.
    [88]李桂青,霍达,邹祖军.结构控制理论及其应用[M].武汉:武汉工业大学出版社,1991.
    [89]欧进萍.结构振动控制——主动、半主动和智能控制[M].北京:科学出版社,2003.1-510.Ou Jinping.Structural vibration control:active,semi-active and smart control[M].Beijing:Science Press,2003.(in Chinese)
    [90]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [91]范立础、袁万城.桥梁橡胶支座减、隔震性能研究[J].同济大学学报,1989,17(4):447-455.
    [92]夏子敬、庄军生等.板式桥梁橡胶支座的试验研究[J].铁道工程学报,1985.6.
    [93]庄军生、张士臣等.45000kN抗震型盆式橡胶支座试验研究.95预应力混凝土连续梁和刚构桥学术会议论文集(上海),1995.7.
    [94]赵建良.铅芯橡胶隔震支座在公路桥梁中的应用[J].城市道桥与防洪.2005,9:161-165.
    [95]吴彬,庄军生.铅芯橡胶支座力学性能及其在桥梁工程中减、隔震应用研究[J].中国铁道科学,2004,25(4):138-140.
    [96]王志强.隔震桥梁分析方法与设计理论研究:[博士学问论文].同济大学,2000.
    [97]闫冬,袁万城.大跨度斜拉桥的抗震概念设计[J].同济大学学报(自然科学版),2004,32(10):1344-1349.
    [98]R.I.Skinner,H.R.William and H.M.Graeme,An introduction to seismic isolation,John Wiley & Sons,1993.
    [99]F.L.Zhou,et al.Recent research developments and application on seismic isolation of building in P.R.China.International Workshop on Use of Rubber Based Bearing for Earthquake Protection of Building,Shan Tou,China,May 1994.
    [100]刘中强,靳金平.消能减震结构的应用研究[J].铁道建筑,2006,10:100-104.
    [101]范立础.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [102]周福霖.工程结构减震控制[M].北京:地震出版社,1996.
    [103]欧进萍,吴斌.摩擦型和软钢屈服型耗能器的性能与减振效果的试验比较[J].地震工程与工程振动.1995,15(3):73-87
    [104]李冀龙,欧进萍.X形和三角形钢板阻尼器的阻尼力模型(Ⅰ)--基于双线性本构关系[J].世界地震工程.2004,20(1):10-17
    [105]李冀龙,欧进萍.X形和三角形SMA板式阻尼器的阻尼力模型[J].地震工程与工程振动.2002,22(6):109-115
    [106]J.M.Kelly,R.I.Skinner,A.J.Heine.Mechanisms of Energy Absorption in Special Devices for Use in Earthquake-Resistant Structure.National Society for Earthquake Engineering.1972,5(3):64-88.
    [107]A.S.Pall,C.Marsh.Response of Friction Damper Braces Frames.Journal of the Structure Division.1982,108(6):1313-1323.
    [108]M.C.Constantinou,M.D.Symans.Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid Viscous Dampers.Thechnical Report NCEER.1992,(12).
    [109]M.C.Constantinou,M.D.Symans.Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid Viscous Dampers.NCEER Report.1994,(10).
    [110]E.A.Delis,R.R.Malia,M.madani,K.h.Thompson.Energy Dissipation Devices in Bridges using Hydraulic Dampers.proc.Structure Congress ⅪⅤ.Chicago,1996:188-196.
    [111]Mivaaki M and Misusaka.Design a Building With 20%or Greater of Damping.Proc.,10WCEE,1992,Madrid,Spain.
    [112]丁建华.结构的粘滞流体阻尼减振系统及其理论与试验研究.哈尔滨工业大学博士学位论文,2001:13-21.
    [113]欧进萍,丁建华.油缸间隙式粘滞阻尼器理论与性能试验[J].地震工程与工程振动,1999,19(4):82-89.
    [114]叶正强,李爱群等.采用粘滞流体阻尼器的工程结构减振设计研究[J].建筑结构学报.2001,2(4):61-66.
    [115]翁大根,卢著辉,徐斌等.粘滞阻尼器力学性能试验研究[J].世界地震工程,2002,18(4):30-34.
    [116]翁大根,吕西林等.消能减震结构设计参数研究与试验验证[J].地震工程与工程振动,2004,24(2):150-158.
    [117]瞿伟廉,刘嘉.天兴洲大桥主梁纵向地震反应的被动控制[J].武汉理工大学学报,2007,29(1):128-132.
    [118]谭在树,钱稼如.钢筋棍凝土框架用粘滞阻尼墙减振研究[J].建筑结构学报,1998,19(2):52-58
    [119]王亚勇,薛彦涛,欧进萍,等.北京饭店等重要建筑的消能减振抗震加固设计方法[J].建筑结构学报,2001,22(2):35-39.
    [120]欧进萍,吴斌等.耗能减振结构的抗震分析与设计方法[J].振动工程学报,1999,12(2):202-209.
    [121]J.P.Ou,B.Wu,T.T.Soong.Recent Advances in Research on Application of Passive Energy Dissipation Systems[J].地震工程与工程振动.1996,16(3):73-96.
    [122]李正英,李正良等.粘滞阻尼器拱桥结构减震控制研究[J].振动与冲击,2007,26(1):56-62.
    [123]胡庆安,崔刚,刘健新.粘滞阻尼器在斜拉桥减震设计中的应用[J].振动与冲击,2006,8:77-80.
    [124]李忠献,周莉,岳福青.城市桥梁粘滞阻尼器防地震碰撞分析与参数设计[J].地震工程与工程振动,2006,26(5):195-201.
    [125]常业军,徐清正,张富有,程文瀼.工程结构采用粘弹性阻尼器的减震原理及地震影响系数计算[J].工业建筑,2005,35(6):21-27.
    [126]张鑫,成亮,马明.粘弹性阻尼器在异型拱桥中的减震控制[J].公路交通技术,2007,1:72-77.
    [127]韩建平,李慧,杜永峰.装设粘弹性阻尼器钢筋混凝土结构抗震实用分析[J].世界地震工程,2005,21(1):117-123.
    [128]王烨华,周云,丁鲲.粘弹性阻尼减震结构研究与应用的新进展[J].防灾减灾工程学报,2006,26(1):109-122.
    [129]Jensen H,Setareh M.TMDs for vibration control of systems with uncertain properties[J].Journal of Structural Engineering,1992,118(12):3285-3296.
    [130]Rana Soong T T.Parametric study and simplied design of tuned mass dampers[J].Engineering Structures,1998,20(3):193-204.
    [131]Ou Jinping,Wo Bo.Recent Advances in Research on and Application of Passive Energy Dissipation Systems[J].Earthquake Enginering and Engineering Vibration,1996,16(3):123-125.
    [132]Hora H,Omita T,Miyano H,et al.Application of Hybrid Mass Damper with Convertible Active and Passive Mode Using AC-Servomotor to Tall Building[C].Second world Conference on Structural Control.1998:1283-1292.
    [133]Koshimura K.Vibration control of the main towers of the Akasi kaikyo Bridge[J].Struct Control.1994,2:98-106.
    [134]顾明,项海帆.用于杨浦大桥抖振控制的MTMD研究[J].振动工程学报.1998,11(1):1-8.
    [135]吴春秋,朱以文.大跨度结构TMD减振系统多点激励的地震随机响应分析[J].地震工程与工程振动.2003,23(4):
    [136]唐意,顾明.某超高层建筑TMD风振控制分析[J].振动与冲击.2006,25(6):16-19.
    [137]王均刚,马汝建,赵东,林近山.TMD振动控制结构的发展及应用[J].济南大学学报(自然科学版).2006,20(2):172-175.
    [138]顾金钧,赵煜澄,邵克华.九江长江大桥应用新型TMD抑制吊杆涡振[J].土木工程学报,1994,27(3):3-13.
    [139]葛晓明,范存心.TMD参数对高耸结构风振控制的影响[J].世界地震工程,2001,17(4):123-127.
    [140]任军,滕军,叶列平.地王大厦风振TMD主被动切换混合控制研究[J].地震工程与工程振动,2003,23(6):187-193.
    [141]Soong T T.Active structure control theory and practice[M].New York:Longman Scientific Technical,1990.
    [142]Spencer B F Jr,Nagarajaiah S.State of the art of structural control[J].ASCE Journal of Structural Engineering,2003,129(7):845-856.
    [143]Ricciardelli F,Pizzimenti A D,Mattei M.Passive and active mass damper control of the response of tall buildings to wind gustiness[J].Engineering Structures,2003,25(9):1199-1209.
    [144]Mita A,Kaneko M.Hybrid versus tuned or active mass dampers for response control of tall buildings[C].The 1~(st) International Conference on Motion and Vibration Control.Yokohama,Japan,1992:304-309.
    [145]Ou Jinping,Zhang Chunwei.Lucubrate study on characteristics of control forces in structural active mass damper control system[C].The Seventh International Conference on Motion and Vibration Control,August 8-11,2004,St.Louis MO,USA.
    [146]Zhang Chunwei,Ou Jinping.Intrinsic behavior analysis of active force in HMD systems [A].The Eighth International Symposium on Network and Center-Based Research for Smart Structures Technologies and Earthquake Engineering[C],July 6-9,2004,Osaka,Japan.
    [147]Zhang Chunwei,Ou Jinping.Numerical analysis of characteristic of control forces of active mass damper system[A].The 8th National Conference on Vibration Engineering[C].Shanghai:Tongji University Press,China,Nov,26-28,2003.
    [148]Horvat D,Barak P,Rabin M.Semi-active versus passive or active tuned mass dampers for structural control[J].Journal of the Engineering Mechanics Division,ASCE,1983,109(3):691-705.
    [149]Scruggs J T,Iwan W D.Control of a civil structure using an electric machine with semiactive capability[J].ASCE Journal of Structural Engineering,2003,129(7):951-959.
    [150]Johnson E A,Christenson R E & Spencer B F,Jr.Semi active Damping of Cables with Sang [J].Advances in Structural Dynamics,2000,6:327-334.
    [151]Ioi T,lkeda K.On the dynamic vibration damped absorber of the vibration system[J].Bulletin of Japanese Society of Mechanical Engineers,1978,21(151):64-71.
    [152]Kobori T.Past,Present and Future in Seismic Response Control in Civil Engineering Structures[C].Proceedings of 3~(rd) World Conference on Structural Control,Wiley,New York,9-14.
    [153]Yang G.Large-scale magnetorheological fluid damper for vibration mitigation:modeling,Testing and control[D].Indiana:Ph.D Dissertation University of Notre Dame.2001.
    [154]Yang G,Spencer Jr B F,Carlson J D and Sain M K.Large-scale MR fluid dampers:modeling,and dynamic performance considerations[J].Engineering Structures,2002,24(3):309-323.
    [155]Fujitani H,et al.Development of 400kN magnetorheological damper for a real base-isolated building[C].Proceedings of SPIE Conference Smart Structures and Materials.Bellirlsham:Wash,England.SPIE-Internationai Society for Optical Engineering,2003:50-57.
    [156]关新春.磁流变液及其智能结构减振驱动器的理论与试验研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2000.
    [157]欧进萍,龙旭,肖仪清等.导管架式海洋平台结构阻尼隔振体系及减振效果分析[J].地震工程与工程振动,2002,22(3):115-122.
    [158]瞿伟廉,刘嘉,涂建维等.500kN足尺磁流变液阻尼器设计的关键技术[J].地震工程与工程振动,2007,27(2):124-131.
    [159]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144-150.
    [150]涂建维.MR阻尼器的研究及其在升船机地震鞭梢效应上的应用:[博士学位论文].武汉:武汉理工大学,2003.
    [161]Ni Y Q,Ko J M,Chen Z Q,et al.Lessons learned from application of semi-active MR dampers to bridge cables for wind-rain-induced vibration control[C].Proceedings of China-Japan Workshop on Vibration Control and Health Monitoring of Structures and Third Chinese Symposium on Structural Vibration Control.Shanghai;2002.
    [162]李惠;刘敏;欧进萍;关新春.斜拉索磁流变智能阻尼控制系统分析与设计[J].中国公路学报,2005,18(4):37-41
    [163]刘健新,译.超长大桥梁建设序幕--技术者的新挑战[M].北京:人民交通出版社, 2002.
    [164]张新军,应磊东.大跨径悬索桥抗风措施研究综述[J].公路,2006,11:73-81
    [164]Gu M,Chang C C,Wu W,Xiang H F.Increasing of critical flutter wind speed of long span bridges using tuned mass dampers[J].J.of WEIA,1998,73
    [165]Astiz,Miguel A.Flutter Stability of Very Long Suspension Bridges[J].Journal of Bridge Engineering,1998,3(3):132-139
    [166]Kubo Y,Sasaki M,Nakagiri H,Sakata T.Dynamic and flutter characteristics of long-span suspension bridges with 3-dimensional cable system[C].Proc Bridges into the 21~(st) Century,Hong Kong,1995
    [167]肖汝诚,贾丽君,薛二乐等.斜拉-悬吊协作体系的设计探索[J].土木工程学报,2000,33(5):46-51
    [168]Lin T Y,Chow P.Gibraltar Strait Crossing OA Challenge to B ridge and Structural Engineers[J].Structural Engineering International,1991,(2)
    [169]Menn C,Billington D P.Breaking Barriers of Scale:a Concept for Extremely Long Span Bridges[J].Structural Engineering International,1995,(1)
    [170]Yoneda M,Ohna K,Tamaki Y.On the best cross stay location for super long span suspension bridge.In Larsen,Laro se&L ivesey(eds),Wind engineering into 21~(st) century,Rotterdam,Balkena,1089-1094,1999
    [171]马如进,陈艾荣.辅助结构对悬索桥的颤振稳定性的影响[J].结构工程师,2001,(3):52-58
    [172]周孟波.悬索桥手册[M].北京:人民交通出版社,2003
    [173]Iwamoto M,Morizono Y,Nagai M,etc.Coupled flutter behavior of ultra long span suspension bridges[C].Proc.IABSE Symposium Long Span and High Rise Structures,Japan.19981
    [174]曹丰产.桥梁气动弹性问题的数值计算[D].同济大学博士学位论文.1999年1月.
    [175]刘国俊.计算流体力学的地位、发展情况和发展趋势[J].航空计算技术,1994.(1):15-17
    [176]傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993
    [177]侯天相,周荣春.钝体绕流的非定常差分法[M].北京:宇航出版社,1986
    [178]魏淑贤,沈跃,黄延军.计算流体力学的发展及应用[J].河北理工学院学院学报.2005.27(2):610-612
    [179]苏铭德,黄素逸.计算流体力学基础(第一版)[M].北京:清华大学出版社,2004
    [180]常思勤,扈圣刚.计算流体力学进展及其在汽车设计中的应用[J].武汉汽车工业大学学报,1997.(4):12-13
    [181]李万平.计算流体力学[M].武汉:华中科技大学出版社,2004
    [182]H.K.Versteeg,W Malalasekera,An Introduction to Computational Fluid Dynamics:The Finite Volume Method.Wiley,New York,1995
    [183]刘振江,孙德芝,王发明等.计算流体力学在桥梁工程中的应用[J].黑龙江交通科 技.2000.(3):44-45
    [184]美国ANSYS公司北京办事处.ANSYS计算流体动力学分析指南,2000
    [185]祝志文.桥梁风效应的数值方法及应用[博士学位论文].长沙:中南大学土木建筑学院,2002
    [186]张志田.大跨度桥梁非线性抖振及其对抗风稳定性影响的研究[博士学位论文].上海:同济大学,2004
    [187]伊藤学,川田忠树.超长大桥梁建设的序幕--技术者的新挑战.刘健新译.第一版.北京:人民交通出版社,2002:132-153
    [188]Xie Xu and Yamaguchi.H.Static behaviors of self-anchored and partially earth-anchored long-span cable-stayed bridges.Structural Engineering Mechanics,1997.5(6):767-774
    [189]鲜荣,廖海黎.封闭式扁平钢箱梁颤振稳定性气动优化措施风洞试验研究[J].世界桥梁,2008.3:44-74
    [190]张倩,廖海黎.桥梁主梁断面气动力特性的数值模拟研究[J].四川建筑,2008.4:83-86
    [192]黄本才.结构抗风分析原理及应用[M].上海:同济大学出版社,2001
    [193]尼格姆.随机振动概论[M].何成慧等译.上海:上海交通大学出版社,1985
    [194]Shinozuka M.Simulalion of multivariate and multidimensional random processes[J].Acoust.Soc.Amer..1971.49(1):part2:357-367
    [195]Shinozuka M,Jan C M.Digital simulation of random processes and its application[J].Sound Vibr.,1972,25(1):111-128.
    [196]Yang J N.Simulation of random envelope processes[J].Sound and Vibration,1972,25(1):73-85.
    [197]Cao Y H,Xiang H F,Zhou Y.Simulation of stochastic wind velocity field on long-span bridges[J].Engrg Mech ASCE,2000,126(1):1-6
    [198]Gerch W,Yonemoto J.Synthesis of multi-variate random vibration systems:a two-stage least squares ARMA model approach[J].Sound and Vibration,1977,52(4):553-565
    [199]Spanos P-T D,Hansen J E.Linear prediction theory digital simulation of sea waves[J].Energy Resources Tech.,1981,103:243-249
    [200]Samaras E,Sinozuka M and Tsurui A.ARMA representation of random processes[J].Engrg.Mech.,ASCE.1985,111(3):449-461
    [201]Mignolet M P and Spanos P-T D.MA to ARMA modeling of wid[J].Wind Eng.Ind.Aerodyn.,1990,36:429-438
    [202]Li Y and Kareem A.ARMA representation of wind field[J].Wind Engrg.Indust.Aerodyn.,1990,36:415-427
    [203]Reed D A and Scanlan R H.Time series analysis of cooling tower loading[J].Struct.Engrg.Div ASCE,1983,109(2):538-554
    [204]lazzunni A,Spinell P.Artificial wind generation and structural response[J].Struct.Engrg.Div.,ASCE,1987,113(12):2383-2397
    [205]Huang Z,Chalabi Z S,Bedford U.K.Use of time-series analysis to model and forecast wind speed[J].Wind Eng.Ind.Aerodyn,1995,56:311-322
    [206]周述华.大跨度悬索桥空间非线性抖振响应仿真分析.西南交通大学[博士学位论文],1993
    [207]周志勇,项海帆,陈艾荣.多变量ARMA模型与大跨结构随机风场的数值仿真.自然科学进展,2001,11(6):631-634
    [208]Grossmann A,Morllet J.Decomposition of Hardy Function into Square Integrable Wavelets of Constant shape[J].SIAM J.Math.Anal.,1984,15:723-726
    [209]Grossmann A,Morllet J.Cycle-Octave and Related Transforms in Seismic Signals Aanalysis[J].Geoexploration,1985,23:85-102
    [210]Daubechies I,Grossmann A,Meyer Y.Painless Non-Orthogonal Expansions[J].Math.P hys.,1986,27:1271-1283
    [211]Meyer Y.Wavelets with Compact Support.San Francisco:W.H.Freeman Company,1987
    [212]Lewis J P.Generalized stochastic subdivision.ACM Trans Graphics,1987,6(3):167-190
    [213]Battle G.Block Spin Construction of Ondeletes(Part 1:Lemarie Functions).Commun.Math.Phys.1987,110:601-615
    [214]Mallat S.Multiresolution and Wavelets:[dissertation].Philadelphia:University of Pennsylvania,1988.
    [215]Mallat S.Multifrequency Channel Decompositions of Images and Wavelet Models.IEEE Trans.On Acoustics Speech and Signal Processing,1989,37(12):2091-2110
    [216]Daubechies I.Ten Lectures on Wavelets.SIAM,Philadelphia.1992.
    [217]Zeldin B A and Spanos P D.Random field representation and synthesis using wavelet bases[J].Appl.Mech.,1997,63:946-952
    [218]C L Pettit,N P Jones,R Ghanem.Detection and Simulation of roof-comer pressure transients[J].Wind Eng.Ind.Aerodyn.,90(2001):171-200
    [219]Yamada M,Ohkitani K.Orthogonal wavelet analysis of turbulence[J].Fluid Dyn.Res.,1991,8:101-115
    [220]T Kitagawa and T Nomura.A Wavelet-based method to generate artificial wind fluctuation data[J].Wind Eng.Ind.Aerodyn,2003,91:943-964.
    [221]王毅,陈艾荣.基于小波方法的随机脉动风模拟[A].第11届全国结构风工程学术会议论文集[C].三亚,2003.91-96
    [222]飞思科技产品研发中心.小波分析理论与MATLAB7实现[M].北京:电子工业出版社,2005.66-80
    [223]李立,廖锦翔,李亮.拟合带间歇性的人工风速序列[J].空气动力学学报,2004,22(3):365-370
    [224]B.Dubrulle.Intermittency in fully developed turbulence:log-poisson statistics and generalized scale covariance.Phys.Rev.Lett,1994,73:959-962
    [225]U.Frisch.Turbulence.Cambridge University Press,Cambridge,1995:51-153
    [226]SHE Z S,WAYMIRE E C.Quantitized energy cascade and log-Poisson statistics in fully developed turbulence[J].Physical review letters,1995,74(2):262-265
    [227]RNEODO A,MANNEVILLE S,MUZY J F,ROUX S G.Revealing a lognormal cascading process in turbulent velocity statictics with wavelet analysis[J].Phil.Trans.R.Soc.,1999,357:2415-2438
    [228]李元齐,董石麟.大跨度空间结构风荷载模拟技术研究及程序编制[J].2001,7(3):3-11
    [229]王毅.基于小波方法的随机风场模拟与分析[硕士学位论文].上海:同济大学,2004
    [230]项海帆,朱乐东.考虑约束扭转刚度影响的斜拉桥动力分析模型[A].全国桥梁结构学术大会论文集,武汉,1992
    [231]瞿伟廉,陈朝辉,项海帆.智能阻尼器在风工程中的应用[A].第九届全国结构风效应学术会议论文集[C].1999,3104-3110.
    [232]瞿伟廉,秦顺全,张金武等.海口世纪大桥施工双悬臂阶段风致抖振反应的控制[J].土木工程学报,1999,32(3):41-47.
    [233]Battaini M.,Casciati F.,Faravelli L.Fuzzy control of structural vibration.An active mass system driven by a fuzzy controller[J].Earthquake Engrg.and Sturct.Dyn.,1998,27:1267-1276.
    [234]Hung S.L.,Lai C.M.Unsupervised fuzzy neural network structural active pulse controller [J].Earthquake Engrg.and Struct.Dyn.,2001,30:465-484.
    [235]王刚,欧进萍.结构振动的模糊建模与模糊控制规则提取[C].国际结构振动控制和健康诊断学术研讨会.中国深圳.2000.
    [236]张利芬,欧进萍.结构模糊控制规则优化生成的遗传算法[C].国际结构振动控制和健康诊断学术研讨会.中国深圳.2000.
    [237]阎石,李宏男.建筑结构模糊振动控制研究[C].国际结构振动控制和健康诊断学术研讨会.中国深圳.2000.
    [238]李士勇等.模糊控制和智能控制理论与应用[M].哈尔滨工业大学出版社.1990.
    [239]瞿伟廉等.武汉天兴洲公铁两用长江大桥关键技术研究之十七:MR智能阻尼器和流体阻尼器对天兴洲大桥纵向地震、列车制动和列车行走效应的混合控制[R].中铁大桥局股份有限公司,武汉理工大学.2007.5.
    [240]http://www.bluelakeint.com/chinese/kangzhen/qitai/index1.htm
    [241]韩艳,陈政清.利用小波逆变换模拟随机风场的脉动风[J].振动工程学报,2007,20(1):52-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700