用户名: 密码: 验证码:
水流脉动壁压特性及其相似律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着高坝的不断兴建,泄洪消能防护结构因为水流脉动荷载的强烈作用而发生破坏的问题受到了极大的关注。目前在建和拟建的大坝,无一例外要对泄洪消能防护结构的稳定性问题进行系统的研究。虽然对水流脉动荷载的研究已经取得了一定成果,但是由于在理论上缺乏足够的认识,许多决定结构安全性的关键数据仍然要通过相应的水工模型试验来获得。因此如何利用模型试验结果来正确估计原型上的脉动荷载就成为工程上所关心的内容。对于脉动壁压在缝隙内的传播规律,理论计算还只限于简单边界条件下的问题,而系统的试验研究成果也比较少。本文将对这些问题进行深入的研究,具体内容包括:
     (1)综合流场影响理论和涡旋传递理论对脉动壁压的成因与机理进行了探讨,从N-S方程出发讨论了脉动壁压的相似性问题。
     (2)对脉动壁压相似律试验结果的幅值特征进行了分析,内容包括脉动壁压强度、偏差系数、峰度系数、概率密度函数和特征函数等,并在分析结果的基础上综合研究了系列比尺模型脉动壁压幅值特征的相似律问题。
     (3)对脉动壁压相似律试验结果的相关特征及频谱特征进行了分析,内容包括自相关函数、时间积分尺度、瞬时空间相关函数、空间积分尺度和功率谱密度函数等,并在分析结果的基础上综合研究了系列比尺模型脉动壁压相关特征和频谱特征的相似律问题。
     (4)对脉动壁压在缝隙内传播规律试验结果进行了分析,内容包括缝隙内脉动压强沿程分布和缝隙宽度的影响,衬砌底板块上下表面点脉动压强特征、上下表面脉动荷载特征、脉动上举力特征和脉动壁压点面转换关系等。
     (5)通过大涡模拟对脉动壁压进行了数值计算,并将计算结果与试验结果进行了对比。
     综合以上研究发现,水跃区和冲击射流区内脉动壁压符合重力相似律。脉动壁压在缝隙内以压力波的形式传播,沿程分布规律与衬砌底板块上表面脉动壁压的分布规律一致,强度则随缝隙宽度的增大而减小。
In recent years, as a continual construction of high dams, it is paid more attention to that the protective structures of energy dissipators failed during the flood discharge. Associated with this process are severe pressure fluctuations which must be a matter of concern in the structural design of the protective structures of energy dissipators. The study on the pressure fluctuations had achieved great success in the past years, but because of the lack of sufficient theoretics, hydraulic model experiments however play an important role in the design of the protective structures. A similarity law of the pressure fluctuations is a key criterion that ensures the safety of the results measured from the model being transformed to the prototype. As to the characteristics of the propagation of the pressure wave within the contraction joints, theoretical calculation can only solve the simple boundary condition problems, and the experiment results are not enough at present. To resolve the above problems, this paper will discuss the following things:
     (1) Based on Navier-Stokes equation and theory of vorticity transport, the genesis and mechanism of the pressure fluctuations is discussed, and its similarity law is derived.
     (2) It is analyzed in the paper of the characteristics of the amplitude value of the pressure recorded in the experiments. It consists of the computation of average, standard deviation, skewness, kurtosis, probability density function and characteristic function of the pressure data, etc. From the results, a similarity law of the amplitude value of the pressure is discussed.
     (3) It is analyzed in the paper of the characteristics of the correlation and spectrum of the pressure recorded in the experiments. It consists of the computation of autocorrelation, integral time-scale, spatial correlation, integral length-scale, and power spectral density function of the pressure data, etc. From the results, a similarity law of the correlation and spectrum of the pressure is discussed.
     (4) It is analyzed in the paper of the characteristics of the propagation of the pressure wave within the contraction joints recorded in the experiments. It consists of the spatial distribution of the point pressure fluctuations within the joints and the influence of joints width, point pressure fluctuations on the slabs upper faces and lower faces, hydrodynamic loads, uplift loads, transform between point pressures and forces, etc.
     (5) Finally, a numerical calculation using large eddy simulation equation is carried out to computing the pressure fluctuations in the hydraulic jump, and its computing results is compared with the results from the experiments.
     From the above study, it can be drawn that in the hydraulic jumps and plunge pools, the similarity law of the pressure fluctuations obeys the Froude law. The propagation form of the pressure fluctuations in the joints is pressure wave. It has the similar spatial distribution of the pressure fluctuations between the upper faces and lower faces of the slabs. The attenuation of the pressure amplitude increases directly with the joint width.
引文
[1] Bruce M. Abraham, Direct Measurements of Turbulent Boundary Layer Wall Pressure Wavenumber-frequency Spectra on Smooth and Riblet-coated Plates: [Doctor of Philosophy Dissertation], Connecticut; University of Connecticut, 2000
    [2] C. Edward Bowers and Joel Toso, Karnafuli Project, Model Studies of Spillway Damage J. Hydr. Eng, ASCE, 1988, 114 (5): 469~483
    [3] 练继建、崔广涛、黄锦林,导墙结构的流激振动研究,水利学报,1998 (11):33~37,68
    [4] 水流动水压强对溢流坝挑流鼻坎下游河床影响的模型试验和原型观测,高速水流译文集(长科院),北京,水利电力出版社
    [5] 陈永灿、许协庆,射流对下游河床冲击作用的数值模拟,水动力学研究与进展:A 辑,1992,7(3):319~326
    [6] B. B. 布哈诺夫等,萨彦舒伸斯克水电站宣泄小流量时主要建筑物的振动(张志勇),水利水电快报,1994 (12):8~11
    [7] 张声鸣、陈建,水垫塘底板稳定研究,长江科学院院报,1997,14(3):5~9
    [8] D. A. 欧文、H. T. 法尔维、W. 威瑟斯,消力池底板上的压力脉动(高菁),水利水电快报,1998,19(5):9~13
    [9] 张建民,挑流消能水垫塘底板冲刷稳定机理研究:[博士学位论文],成都,四川大学,2000
    [10] 肖兴斌,水流脉动压力研究进展的若干问题综述,水电工程研究,1992(12):62~70,76
    [11] L?fdahl. L., K?lvesten. E., and Stemme. G., Small Silicon Pressure Transducers for Space-Time Correlation Measurements in a Flat Plate Boundary Layer, Journal of Fluids Engineering, 1996, 188(3): 457~463
    [12] 张铁生、肖兴斌,水流脉动压力研究进展综述,中南水力发电,1995(2):68~72,23
    [13] 李建中、宁利中,高速水力学,西安:西北工业大学出版社,1994:73~81
    [14] Arndt. R. E. A., Long. D. F., Glauser. M. N., The Proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet, Journal of Fluid Mechanics, 1997, 340: 1~33
    [15] 王玲玲、黄细彬、金忠青,用奇怪吸引子理论研究紊流脉动压力特性,河海大学学报,2001,29(3):8~11
    [16] 彭新民、郭航忠、张蕊,水流脉动压力的小波分析研究,水利学报,2003(8):26~31
    [17] 梁在潮,工程湍流,武汉:华中理工大学出版社,1999
    [18] 梁在潮,脉动壁压,全国第一届水动力学学会论文集,1993
    [19] Willmarth. W. W., and Wooldridge. C. E., Measurements of the Fluctuating Pressure at the Wall Beneath a Thick Turbulent Boundary Layer, Journal of Fluid Mechanics, 1962, 14(2): 187~210
    [20] Johansson. A. V., Her. J., and Haritonidis. J. H., On the Generation of High-Amplitude Wall-Pressure Peaks in Turbulent Boundary Layers and Spots, Journal of Fluid Mechanics, 1987, 175: 119~142
    [21] Karangelen. C. C., Wilczynski. V., and Casarella. M. J., Large Amplitude Wall Pressure Events Beneath a Turbulent Boundary Layer, Journal of Fluids Engineering, 1993, 115(4): 653~659
    [22] Abraham and Keith, Wavenumber Spectra of High Magnitude Wall Pressure Events in a Numerically Simulated Turbulent Boundary Layer, Journal of Fluids Engineering, 1997, 119: 281~288
    [23] Corcos. G. M., Resolution of Pressure in Turbulence, Journal of the Acoustical Society of America 1963, 35(2): 192~199
    [24] Keith. W. L., Hurdis. D. A., and Abraham. B. M., A Comparison of Turbulent Boundary Layer Wall Pressure Spectra, Journal of Fluids Engineering, 1992, 114(3): 338~347
    [25] Farabee. T. M., and Casarella. M. J., Spectral Features of Wall Pressure Fluctuations beneath Turbulent Boundary Layers, Physics of Fluids A, 1991, 3(10): 2410~2420
    [26] Panton. P. L., and Robert. G., The Wavenumber-Phase Velocity Representation for the Turbulent Wall-Pressure Spectrum, Journal of Fluids Engineering, 1994, 116: 477~483
    [27] Keith. W. L., and Abraham. B. M., Effects of Convection and Decay of Turbulence on the Wall Pressure Wavenumber-Frequency Spectrum, Journal of Fluids Engineering 1997, 119: 50~55
    [28] Corcos. G. M., Resolution of Pressure in Turbulence, Journal of the Acoustical Society of America, 1963, 35(2): 192~199
    [29] Wills. J. A. B., Measurements of the Wave-number/Phase Velocity Spectrum of Wall Pressure beneath a Turbulent Boundary Layer, Journal of Fluid Mechanics, 1970, 45(1): 65~90
    [30] Blake. W. K., and Chase. D. M., Wavenumber-Frequency Spectra of Turbulent Boundary Layer Pressure Measured by Microphone Arrays, Journal of the Acoustical Society of America, 1971, 49(3): 862~876
    [31] Farabee. T. M., and Geib. F. E., Measurements of Boundary Layer Pressure Fluctuations at Low Wavenumbers on Smooth and Rough Walls, Proceedings of the ASME Symposium on Flow Noise Modeling, Measurement, and Control, Noise Control and Acoustics, 1991, 11: 55~68
    [32] Karangelen. C. C., Casarella. M. J., and Farabee. T. M., Wavenumber-Frequency Spectra of Turbulent Wall Pressure Fluctuations, Proceedings of the ASME Symposium on Flow Noise Modeling, Measurement, and Control, Noise Control and Acoustics, 1991,11: 37~44
    [33] Manoha. E., Wall Pressure Wavenumber-Frequency Spectrum Beneath a Turbulent Boundary Layer Measured with Transducers Calibrated with an Acoustical Method, Proceedings of the ASME Symposium on Flow Noise Modeling, Measurement, and Control, Noise Control and Acoustics, 1991, 11: 21~35
    [34] Herbert. K., and Leehey. P., Wall Pressure Spectrum in a Flat Plate Turbulent Boundary Layer and Downstream of a Turbulent Boundary Layer Manipulator, Proceedings of the ASME Symposium on Flow-Induced Vibration and Noise, Flow-Structure and Flow-Sound Interactions, Noise Control and Acoustics, 1992, 13: 147~163
    [35] Smol’yakov. A. V. and Tkachenko. V. M., The Measurement of Turbulent Fluctuations, New York: Springer-Verlag, 1983: 178~190
    [36] Chase. D. M., The Character of the Turbulent Wall Pressure Spectrum at Subconvective Wavenumbers and a Suggested Comprehensive Model, Journal of Sound and Vibration, 1987, 112(1): 125~147
    [37] Manoha. E., The Wavenumber-Frequency Spectrum of the Wall Pressure Fluctuations beneath a Turbulent Boundary Layer, Proceedings of the AIAA Aeroacoustics Conference, State College, PA, American Institute of Aeronautics and Astronautics, 1996: Paper 96-1758
    [38] Sherman. C. H., Ko. S. H. and Buehler. B. G., Measurement of the Turbulent Boundary Layer Wave-vector Spectrum, Journal of the Acoustical Society of America, 1990, 88(1): 386~390
    [39] Bull. M. K., Wall-Pressure Fluctuations Associated with Subsonic Turbulent Boundary Layer Flow, Journal of Fluid Mechanics, 1967, 28(4):719~757
    [40] 崔广涛,水流脉动压力随机分析,天津大学 95 周年校庆论文
    [41] 梁兴蓉,挑流冲刷过程的压力谱场特性的随机分析,高速水流,1984(2):25~33
    [42] 王木兰,水流脉动压力的数据处理、工程应用及机理研究的进展,河海大学科技情报,1990,10(3):28~43
    [43] 董志勇、吴持恭、杨永全,掺气对射流冲击水垫塘底部脉动压强频谱特性的影响,成都科技大学学报,1994(1):9~13
    [44] 孙小鹏,脉动压力的随机数学模拟,水利学报,1991(5):52~56
    [45] 王雨苗、路观平、张法宝,水流脉动压力的谱特性及相干尺度,合肥工业大学学报(自然科学版),1998,21(5):71~76
    [46] Lumley. J. L., The Structure of Inhomogeneous Turbulence, Atmosphere Turbulence and Wave Propagation, 1967, 166~178
    [47] Lumley. J. L., Coherent Structures in Turbulence, In: Transition and Turbulence; Proceedings of the Symposium on Transition and Turbulence in Fluids, Madison, WI, New York: Academic Press, 1981, 215~242
    [48] Berkooz. G., Holmes. P., Lumley. J. L., The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows, Ann. Rev. Fluid Mech., 1993, 25: 539~575
    [49] Glauser, M. N., Leib, S. J., George, W. K., Coherent Structures in the Axisymmetric Turbulent Jet Mixing Layer, In: F. Durst et al. (Eds.), Turbulent Shear Flows, 5, Berlin: Springer, 1987: 134~145
    [50] Bonnet, J. P. Delville, J. Glauser, M. N., Collaborative Testing of Eddy Structure Identification Methods in Free Turbulent, Experiments in Fluids, 1998, 25: 197~225
    [51] Moin, P., Moser, R. D., Characteristic-eddy Decomposition of Turbulence in a Channel, J. Fluid Mech. 1989, 200: 471~509
    [52] Glezer, A. Kadioglu, A. J. Pearlstein, A. J., Development of an Extended Proper Orthogonal Decomposition and Its Application to a Time Periodically Forced Plane Mixing Layer. Phys. Fluids A, 1989, 1: 1363~1373
    [53] Delville, J. Ukeiley, L. Cordier, L. etc., Examination of Large-Scale Structures in a Turbulent Plane Mixing Layer. Part ?. Proper Orthogonal Decomposition, Journal of Fluid Mechanics, 1999, 391: 91~122
    [54] Banks, H. T. del Rosario, Ricardo C. H. Smith, Ralph C., Reduced-order Model Feedback Control Design: Numerical Implementation in a Thin Shell Model, IEEE Transactions on Automatic Control, 2000, 45(7): 1312~1324
    [55] Blossey, Peter N. Lumely, John L., Reduced-order Modeling and Control of Near-wall Turbulent Flow, Proceedings of the IEEE Conference on Decision and Control, 1999, 3: 2851~2856
    [56] Cazemier, W. Verstappen, R. W. C. P. Veldman, A. E. P., Proper Orthogonal Decomposition and Low-dimensional Models for Driven Cavity Flows, Physics of Fluids, 1998, 10(7): 1685~1699
    [57] Gunes, H. Low-order Dynamical Models of Thermal Convection in High-aspect Ratio Enclosures, Fluid Dynamics Research, 2002, 30(1): 1~29
    [58] Narayanan, S. Khibnik, A. I. Jacobson, C. A. etc. Low-dimensional Models for Active Control of Flow Separation, IEEE Conference on Control Applications – Proceedings, 1999, 2: 1151~1156
    [59] Park, H. Sirovich, L., Turbulent Thermal Convection in a Finite Domain: PartⅡ. Numerical Results, Phys. Fluids A, 1990, 2(9): 1649~1658
    [60] Pelliccia-Kraft, B. J. Watt, D. W. Visualization of Coherent Structure in Scalar Fields of Unsteady Jet Flows With Interferometric Tomography and Proper Orthogonal Decomposition, Experiments in Fluids, 2001, 30(6): 633~644
    [61] Podvin, Berengere Lumley, John. Low-dimensional Approach for the Minimal Flow Unit, Journal of Fluid Mechanics, 1998, 362: 121~155
    [62] Podvin, Berengere, On the Adequacy of the Ten-dimensional Model for the Wall Layer, Physics of Fluids, 2001, 13(1): 210~224
    [63] Poje, Andrew C. Lumley, J. L. Model for Large-scale Structures in Turbulent Shear Flows, Journal of Fluid Mechanics, 1995, 285: 349~369
    [64] Prabhu, R. D. Collis, S.S. Chang, Y. The Influence of Control on Proper Orthogonal Decomposition of Wall-bounded Turbulent Flows, Physics of Fluids, 2001, 13(2): 520~537
    [65] Ravindran, S. S. Reduced-order Approach for Optimal Control of Fluids Using Proper Orthogonal Decomposition, International Journal for Numerical Methods in Fluids, 2000, 34(5): 425~448
    [66] Ravindran, S. S. Reduced-order Adaptive Controllers for Fluid Flows Using POD, Journal of Scientific Computing, 2000, 15(4): 457~478
    [67] Reichert, R. S. Hatay, F.F. Biringen, S. Huser, A. Proper Orthogonal Decomposition Applied to Turbulent Flow in a Square Duct, Physics of Fluids, 1994, 6(9): 3086~3092
    [68] Rempfer, Dietmar Fasel, Hermann F., Evolution of Three-dimensional Coherent Structures in a Flat-plate Boundary Layer, Journal of Fluid Mechanics, 1994, 260: 351~375
    [69] Robinson, S. K. Coherent Motions in the Turbulent Boundary Layer, Annu. Rev. Fluid Mech. 1991, 23: 601~639
    [70] Rocha, Marcelo M. Cabral, Sandro V. S. Riera, Jorge D. Comparison of Proper Orthogonal Decomposition and Monte Carlo Simulation of Wind Pressure Data, Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84(3): 329~344
    [71] Rodriguez, J. D. Sirovich, L. Low-dimensional Dynamics for the Complex Ginzburg-Landau Equation, Physica D, 1990, 43(1): 77~86
    [72] Sahan, R. A. Gunes, H. Liakopoulos, A. Modeling Approach to Transitional Channel Flow, Computers & Fluids, 1998, 27(1): 121~136
    [73] 刘士和,湍流结构的正交分解与低阶近似及湍流相干模式的识别,武汉水利电力大学学报,2000,33(2):2~5
    [74] 陆晶,正冲击射流脉动壁压的正交分解与低阶近似,长江科学院院报,2003,20(6):6~8
    [75] 陆晶、孟学军,正交分解法在脉动壁压研究中的应用,长江科学院院报,2005,22(5):92~94
    [76] 陆晶、刘士和,垂直冲击射流脉动壁压深化研究,武汉大学学报(工学版),2004,37(3):23~26
    [77] 陆晶、万胜红,紊流边界层脉动壁压研究,江西水利科技,2004,30(2):71~73
    [78] 宫武旗、黄淑娟、徐忠,边界层中湍动能和耗散能最大的尺度分量特征研究,航空学报,2001, 4:293~297
    [79] 汤一波、金忠青,脉动压力的紊流分形特征,水科学进展,1998,9(4):361~366
    [80] 宫武旗、黄淑娟、徐忠,用小波理论研究湍流边界层湍动能的特征,工程热物理学报,2001,22(5):585~588
    [81] 张声鸣,消力池导墙脉动压力特性的研究,长江科学院院报,1995,12(1):11~18
    [82] 张声鸣、陈建,导墙动水压力特性研究,长江科学院院报,1996,13(1):14~20
    [83] 张声鸣,挑流消能导墙动水压力特性试验研究报告,长江科学院,1995
    [84] 马吉明、杨开林,淹没水跃导墙上脉动压力的幅频特性,水利学报,1996(12):70~75,83
    [85] 水利电力部中南勘测设计院,乌江渡水电站高速水流原型观测成果总报告,1983
    [86] 孙时元,黄龙滩电厂厂房右导墙动水压力观测,高速水流,1984(2):55~57
    [87] 陈玲玲、钱胜国,三峡溢流坝左导墙流激振动有限元计算分析,人民长江,2000,31(3):7~9
    [88] 陆晶、孟学军,消力池导墙脉动壁压的正交分解与低阶近似,水力发电,2005,31(6):18~20
    [89] 崔广涛、林继镛、梁兴蓉,拱坝溢流水舌对河床作用力及其影响的研究,水利学报,1985(8):58~63
    [90] 崔莉、张廷芳,射流冲击下护坦板失稳机理的随机分析,水动力学研究与进展,A 辑,1992(2):212~218
    [91] 崔广涛、陈荣光、林继镛,关于挑跌流对河床的动水压力及岩基的防护问题,天津大学学报,1982(2):23~36
    [92] 刘沛清、邓学萦,多级板块缝隙中脉动压力传播过程数值研究,力学学报,1998(6):662~670
    [93] 张廷芳、崔莉、李鉴初,挑跌水流作用下水垫塘护坦板稳定性研究,水利学报,1992(2):34~40
    [94] 刘沛清、李福田,水垫塘内淹没冲击射流的大尺度涡结构及其特征,水利学报,2000(1):60~66
    [95] 董志勇,冲击射流,北京:海洋出版社,1997
    [96] 杨敏,高坝消力塘水动力特性与防护结构的安全研究:[博士学位论文],天津:天津大学,2003
    [97] 许多鸣、余常昭,平面水射流对槽底的冲击压强及脉动特性,水利学报,1983(5):52~58
    [98] 罗铭、郭亚昆,有界二元掺气射流水下扩散规律研究,水利学报,1992(7):29~34
    [99] 林继镛、练继建,二元射流作用下点面脉动壁压的幅值计算,水利学报,1988(12):34~40
    [100] 柴华、冬俊瑞、李永祥,热膜测速技术在挑射水流运动特性及高坝消能机理研究中的应用,水利学报,1999(10):45~51
    [101] 安芸周一,关于自由跌落水舌的水垫效果的研究(崔广涛),国外科技增刊(2):水工高速水流,天津:天津大学图书馆,1981:39~86
    [102] 余常昭,紊动射流,北京:高等教育出版社,1993
    [103] 郑明珠、张玉珍,挑射水流冲坑内压力初探,高速水流,1984(2):34~40
    [104] 柴华、冬俊瑞、刘沛清,溢流坝挑流下游冲坑水流压强脉动特性研究,泄水工程与高速水流,1992(3):9~15
    [105] 李士豪,护坦上脉动压力,大连工学院学刊,1957(4):1~7
    [106] 罗赞诺夫,负压与高速水流情况下的过水建筑物设计问题,北京:中国工业出版社,1963
    [107] 清华大学水利系试验研究报告,坝身双层泄水孔水流脉动压力及其模型律研究,1978
    [108] 赵世俊、李桂芬、周胜,水流脉动压力研究中的几个问题,水利学报,1959(2):42~50
    [109] 陈鹦、孟继组,厂房顶溢流脉动的相干结构与相似律的研究,水利水运科学研究,1984(1):70~76
    [110] 黄涛,水流压力脉动的特性及模型相似律,水利学报,1993(1):51~57
    [111] 孙建、阎晋垣、张宗孝等,掺气分流墩墩头脉动壁压及其模型律试验研究,水利学报,1996(1):63~68
    [112] 张声鸣,水跃区水流脉动压力相似律的试验研究,长江科学院院报,1991,8(4):1~9
    [113] 倪汉根,水流脉动压力的相似律,大连工学院学报,1982,21(1):107~113
    [114] 王怀志,关于水工模型试验中近壁层流动雷诺应力缩尺影响的估计,水利学报,1981(1):49~54
    [115] 赵耀南,壁压脉动的相似律,高速水流,1986(3):36~43
    [116] 赵耀南,重力相似紊流结构中微结构相似律,水利学报,1988(8):44~48
    [117] 谢省宗,关于泄水建筑物紊流压力脉动问题的几点看法,高速水流,1984(2):1~11
    [118] 夏毓常、张黎明,水工水力学原型观测与模型试验,北京:中国电力出版社,1999
    [119] 阎诗武,泄水结构流激振动研究进展,泄水工程与高速水流,1994(3):42~62
    [120] G. Rehbinder, Slot Cutting in Rock with a High Speed Water Jet, Int. J. Rock Mech. Min. Sic., 1977, 14: 229~234
    [121] 姜文超、梁兴蓉,应用紊流理论探讨脉动压力沿缝隙的传播规律,水利学报,1983(9):53~59
    [122] 赵耀南、梁兴蓉,水流脉动压力沿缝隙的传播规律,天津大学学报,1988(3):55~65
    [123] Virgilio Fiorotto and Andrea Rinaldo, Turbulent Pressure Fluctuations under Hydraulic Jumps, Journal of Hydraulic Research, 1992, 30(4): 499~520
    [124] 刘沛清、冬俊瑞、余常昭,在岩缝中脉动压力传播机理探讨,水利学报,1994(12):31~36
    [125] 刘沛清、李忠义、冬俊瑞,用二维瞬变流方程分析缝面层中脉动压力传播规律,水利学报,1996(4):27~32
    [126] 刘沛清、邓学蓥,多级板块缝隙中脉动压力传播过程数值研究,力学学报,1998,30(6):662~671
    [127] 李爱华、刘沛清,脉动压力在消力池底板缝隙传播的瞬变流模型和渗流模型统一性探讨,水利学报,2005,36(10):1236~1240
    [128] 李爱华、刘沛清,脉动压力在板块缝隙中传播衰变机理研究,水利水电技术,2006,37(9):33~37
    [129] 张建民、杨永全、戴光清等,水垫塘底板缝隙中脉动压力传播特性,四川大学学报(工程科学版),2000,32(3):5~8
    [130] 王玉蓉、张建民、刁明军等,脉动水压力沿缝隙传播的试验研究,水利学报,2002(12):44~48
    [131] J. F. Melo, A. N. Pinheiro, and C. M. Ramos, Forces on Plunge Pool Slabs: Influence of Joints Location and Width, Journal of Hydraulic Engineering, 2006, 132(1): 49~60
    [132] A. 斯波里亚里克、B.马克西莫维克、G. 哈依丁,因压强脉动而作用在消力池底板上的不恒定冲击力,国际水工模型试验会议译文选集,泄水建筑物高速水流情报网,1984(1)
    [133] 黄涛,高坝泄水建筑物的几个水力学问题,水利学报,1983(2):44~49
    [134] 崔广涛,水流点脉动压力和面脉动荷载转换问题的探讨,溢洪道设计规范专题六,天津大学水工高速水流研究室,1985(10)
    [135] Gao-Jizhang et al. , A Study of Hydrodynamic Loads on Concrete Slab of Plunge Pool, Int. Symp. On Hydraulic Research in Nature and Laboratory, Wuhan, China, 1992
    [136] 高盈孟、唐建华、陈雪珍,高水头大流量泄洪消能研究—小湾水垫塘保护型式及衬砌结构稳定研究,电力工业部昆明勘测设计研究院科学研究所,1995(5)
    [137] Alberto Bellin and Virgilio Fiorotto, Direct Dynamic Force Measurement on Slabs in Spillway Stilling Basins, Journal of Hydraulic Engineering, 1995, 121(10): 686~693
    [138] 廖华胜、许唯临、杨永全等,多股射流入射水垫塘点面脉动压力特性,四川联合大学学报(工程科学版),1999,3(1):20~24
    [139] 练继建,二元射流作用下边壁动水荷载及其应用:[硕士学位论文],天津:天津大学,1987
    [140] 崔广涛、练继建、彭新民等,水流动力荷载与流固相互作用,北京:中国水利水电出版社,1999
    [141] 窦国仁,紊流力学,北京:人民教育出版社,1981
    [142] R. H. Kraichnan, Pressure Fluctuations in Turbulent Flow over a Flat Plate, The Journal of The Acoustical Society of America, 1956, 28(3): 378~390
    [143] Walter Frost and Trevor H. Moulden, Handbook of Turbulence, Plenum Press, 1977
    [144] 梁在潮、黄纪忠,论脉动壁压的振幅、频率的概率分布规律,武汉水利电力学院学报,1980(1):69~81
    [145] C. F. N. 科恩、P. M. 格兰特,自适应滤波器(邵祥义等),上海:复旦大学出版社,1990
    [146] MATLAB Function Reference. The MathWorks, Inc. 2006
    [147] 胡广书,数字信号处理,北京:清华大学出版社,2003
    [148] 潘士先,谱估计和自适应滤波,北京:北京航空航天大学出版社,1991
    [149] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, 1985
    [150] Dryden, H. L. and A. M. Kuethe, Natl. Advisory Comm. Aeronaut. Tech. Repts. No. 342, 1930
    [151] S. Narasimhan, and Ved P. Bhargava, Pressure Fluctuations in Submerged Jump, Journal of the Hydraulics Division, 1976, 102(HY3): 3391~350
    [152] Rangaswami Narayanan, Pressure Fluctuations beneath Submerged Jump, Journal of the Hydraulics Division, 1978, 104(HY9): 1331~1342
    [153] M. K. Akbari, M. K. Mittal and P. K. Pande, Pressure Fluctuations on the Floor of Free and Forced Hydraulic Jumps, International Conference on the Hydraulic Modelling of Civil Engineering Structures,1982(9): 87~96
    [154] Joel W. Toso and C. Edward Bowers, Extreme Pressures in Hydraulic-Jump Stilling Basins, Journal of Hydraulic Engineering, 1988, 114(8): 829~843
    [155] 崔广涛、杨敏,肋形溢流坝与挑流水垫塘研究,水利水电技术,2003,34(9):32~35
    [156] 张兆顺、崔贵香、许春晓,湍流理论与模拟,北京:清华大学出版社,2005
    [157] Freedman. D. and Diaconis. P. , On the Histogram as a Density Estimator: Theory, Probability Theory and Related Fields, 1981,vol.57(4), 453~476 L2
    [158] 罗抟翼、程桂芬,随机信号处理与控制基础,北京:化学工业出版社,2002
    [159] J. O. Hinze, Turbulence, McGraw-Hill, 1975
    [160] 梁在潮,紊流相干结构与脉动壁压,水利学报,1985(8):12~17
    [161] Schuster A. On the Investigation of Hidden Periodicities with Application to a Supposed 26Day Period of Meteorological Phenomena, Terr. Mag. ,1898, 3(1): 13~41
    [162] Yule G. U. On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer’s Sunspot Numbers, Philos. Trans. R. Soc. London, ser. A, 1927,226(6): 267~298
    [163] Walker G. On Periodicity in Series of Related Terms, Proc. R. Soc. London, ser A, 1931,131: 518~532
    [164] Wiener N. Generalized Harmonic Analysis, Acta Math. , 1930, 55: 117~258
    [165] Tukey J. W. The Sampling Theory of Power Spectrum Estimates, J. Cycle Res. , 1957, 6: 31~52
    [166] Bartlett M. S. Smoothing Periodograms from Time Series with Continuous Spectra, Nature, London, 1948, 161(5): 686~687
    [167] Levinson N. The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction, J. Math. Phys. , 1947, 25: 261~278
    [168] Burg J. P. ,Maximum Entropy Spectral Analysis, Proc. 37th Meeting of Society Exploration Geophysicists, Oklahoma City, 1967
    [169] 李治勤,流速及管道特性对水击的影响,太原理工大学学报,2000,31(2):156~168
    [170] 王福军,计算流体动力学分析-CFD 软件原理与应用,北京:清华大学出版社,2004
    [171] Tennekes. H. and Lumley. J. L. , A First Course in Turbulence, MIT Press, 1973
    [172] Bradshaw. P. , Introduction to Turbulence and its Measurement, Pergamon Press, 1971
    [173] Deardorff. J. W. , A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers, Journal of Fluid Mechanics, 1970, vol. 41, Pt. 2, 453~480
    [174] Ferziger. J. H. , Large Eddy Numerical Simulations of Turbulent Flows, AIAA , San Diego, CA. 1976,76~347
    [175] Wilcox. D. C. , Turbulence modeling for CFD, DCW Industries, Inc. 1994
    [176] Leonard. A. , Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows, Advances in Geophysics, 1974, Vol. 18A, 237~248
    [177] Smagorinsky. J. , General Circulation Experiments with the Primitive Equations. I. The Basic Experiment, Mon. Weather Rev. , 1963, Vol. 91, 99~164
    [178] Rogallo. R. S. and Moin. P. , Numerical Simulation of Turbulent Flows, Annual Review of Fluid Mechanics, 1984, Vol. 16, 99~137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700