用户名: 密码: 验证码:
微型热式气体流量传感器的稳态传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题对微型热式气体流量传感器的稳态传热进行了系统研究。首先对薄膜材料热导率测量方法进行研究,建立了薄膜-衬底复合结构传热模型,以该模型为基础将基于拉曼光谱的薄膜热导率测量方法拓展到亚微米和纳米尺度,并使用该方法对传感器中的薄膜材料进行了热导率测量;其次,在准确获得微型热式气体流量传感器的材料热物性参数的基础上,对传感器的对流-导热耦合传热过程进行了研究,建立了传感器的稳态传热模型,并使用数值方法对传感器的工作传热过程进行了分析,以分析结果为基础提出了微型热式气体流量传感器的优化设计方法;再次,以优化设计方法为指导,对微型热式气体流量传感器进行了传感器工作模式设计、传感器材料选择和传感器结构参数设计工作;最后,结合实验室具体设备和工艺条件,制定了合适的传感器制做工艺路线,在工艺实验的基础上对传感器进行了制做,并对传感器进行了稳态工作性能实验测试,测试结果验证了提出的优化设计方法对提升传感器稳态工作性能的有效性。
     课题的主要研究工作如下:
     1.薄膜热导率测量方法的研究。针对高斯激光入射生热的情况对传统的基于拉曼光谱的薄膜热导率测量方法进行了修正,并以此为基础,对薄膜-衬底复合结构的传热进行了研究,分析了薄膜热导率、衬底热导率、薄膜/衬底接触面热阻对复合结构传热过程的影响,得到了薄膜热导率的解析表达式,从而实现了对基于拉曼光谱的薄膜热导率测量方法的拓展,使其可以被用来测量亚微米/纳米厚度薄膜的热导率。使用拓展的基于拉曼光谱的薄膜热导率测量方法对多孔硅薄膜试样、二氧化硅薄膜试样、氮化硅薄膜试样的热导率进行了测量,为分析传感器的稳态传热过程提供了准确的参数基础。
     2.微型热式气体流量传感器的稳态传热模型研究。对微型热式气体流量传感器的对流-导热耦合传热过程进行了分析,并对传感器的稳态传热过程进行了理论建模研究。在模型中,不仅考虑了流体通过对流传热对传感器稳态工作性能的影响,也充分考虑了传感器衬底导热作用的影响。使用有限差分的方法,对传感器的稳态传热理论模型进行了数值仿真分析。根据模型分析结果,以提升传感器的稳态工作性能为目的,分别就温敏元件的空间布置和加热元件的间隔距离提出了优化设计方法,为微型热式气体流量传感器的优化设计提供了理论基础。
     3.微型热式气体流量传感器的优化设计。对热分布型微型气体流量传感器的温度平衡工作模式进行了理论分析,得到了传感器输出信号与流量之间的关系式,从理论上证明了传感器输出信号具有高线性度。对传感器各元件的材料选择进行了研究,结合实验室本身设备和工艺条件,为提升传感器的工作性能,选择了合适的传感器衬底材料、绝缘层材料、加热元件材料、温度敏感元件材料和保护层材料,并根据提出的微型热式气体流量传感器优化设计方法,对传感器的结构参数进行了设计。
     4.微型热式气体流量传感器的制备工艺及实验测试研究。通过对各MEMS基本工艺的比较分析,并结合具体的实验室设备和工艺情况,针对设计的微型热式气体流量传感器进行了传感器衬底的制备工艺、绝缘层的制备工艺、加热元件的制备工艺、温度敏感元件和保护层的制备工艺实验研究,在工艺实验基础上制做了微型热式气体流量传感器。对制做的传感器进行了稳态性能实验测试,相关实验结果与传感器稳态传热建模仿真分析结果相符合,对提出的微型热式气体流量传感器稳态性能优化设计方法的有效性进行了验证。
In this dissertation, the steady heat transfer of the micro thermal airflow sensor is systematically studied. Firstly, the thin film thermal conductivity measurement method is studied. A heat transfer model of the thin film-substrate structure is built to extend the original Raman method for the thermal conductivity measurement of the submicrometer- or nanometer-scale thin films. The extended Raman method is applied to the thin films used in the micro thermal airflow sensor to obtain their thermal conductivities. Secondly, based on the obtained material thermal parameters, the conjugate conduction-convection heat transfer of the micro thermal airflow sensor is studied, a steady heat transfer model is built and the numerical analysis is performed. Based on the analysis results, the optimal design criteria are proposed to enhance the steady performance of the micro thermal airflow sensor. Thirdly, based on the proposed optimal design criteria, the operation mode of the micro thermal airflow sensor is designed, the materials of the micro thermal airflow sensor are chosen and the structure of the micro thermal airflow sensor is designed to enhance the steady performance of the micro thermal airflow sensor. Fourthly, according to the present experimental devices and techniques of the lab, the applicable fabrication processes of the micro thermal airflow sensor are chosen, and the designed micro thermal airflow sensors are fabricated with the achievements of the fabrication processes experiments. The obtained micro thermal airflow sensors are test for their steady performance, and the test results have confirmed the validity of the proposed optimal design criteria.
     The main contents of this dissertation are briefly stated as the followings:
     1. The study on the thin film thermal conductivity measurement method. The original Raman method for the film thermal conductivity measurement is modified to adapt the Gaussian laser condition. Then, a heat transfer model of the thin film-substrate structure is built to analyze the effects of the thin film thermal conductivity, substrate thermal conductivity and the film/substrate interface thermal resistance. An analytical process is applied to the heat transfer model and thin film thermal conductivity equation is obtained, which means that the Raman method is extended for the thermal conductivity measurement of the submicrometer- or nanometer-scale thin films. The extended Raman method is applied to the porous silicon film, silicon dioxide film and the silicon nitride film to obtain their thermal conductivities. This study provides accurate thermal parameters of the materials used in the micro thermal airflow sensor for its steady heat transfer model.
     2. The study on the steady heat transfer model of the micro thermal airflow sensor. The conjugate conduction-convection heat transfer of the micro thermal airflow sensor is analyzed, and the steady heat transfer model of the micro thermal airflow sensor is built. In this model, not only the effect of the heat transfer between the airflow and the sensor through the convection is described, but the heat transfer within the sensor through the conduction of the sensor substrate is also taken into account. The finite difference scheme is applied to the steady heat transfer model for the numerical analysis. Based on the analysis results, the optimal design criteria including the sensing elements positioning and the heating elements positioning are proposed to enhance the steady performance of the micro thermal airflow sensor. The proposed optimal design criteria lay the theoretical foundation for the design of the micro thermal airflow sensor.
     3. The study on the optimal design of the micro thermal airflow sensor. The temperature balance mode for the operation of the micro thermal airflow sensor is theoretical analyzed to describe the relationship between the sensor output signal and the flow rate. The high linearity of the sensor output signal is proved by the theoretical analysis. According to the practical condition of the experimental devices and techniques in the lab, the materials used in the micro thermal airflow sensor are studied and then chosen for the enhancement of the sensor performance, including the sensor substrate material, insulation layer material, heating element material, sensing element material and the passivation layer material. The structure of the micro thermal airflow sensor is designed according to the proposed optimal design criteria.
     4. The study on the fabrication processes and the steady performance test of the micro thermal airflow sensor. Based on the comparison of the different MEMS fabrication processes, and combined the practical condition of the experimental devices and techniques in the lab, the experiments are made separately for the fabrication of the sensor substrate, insulation layer, heating element, sensing element and passivation layer, and then the designed micro thermal airflow sensor is fabricated. The sensors are tested for their steady performance, and the test results have confirmed the validity of the proposed optimal design criteria.
引文
[1]刘冉,王晓浩,周兆英.MEMS微针阵列及其在生物医学上的应用[J].生物医学工程学杂志,2004,21(3):482-485..
    [2]段萱苡.测热式和风速计一体化传感器的研究[D].杭州:浙江大学,2006.
    [3]张威,张大成,王阳元.MEMS概况及发展趋势[J].微纳电子技术,2002,39(1):22-27.
    [4]赵晓峰,温殿忠.MEMS研究与发展前景[J].黑龙江大学自然科学学报,2002,19(1):64-69.
    [5]童志义,赵晓东.国内外MEMS器件现状及发展趋势[J].电子工业专用设备,2002,31(4):200-206.
    [6]王亚珍,朱文坚.微机电系统(MEMS)技术及发展趋势[J].机械设计与研究,2004,20(1):10-13.
    [7]黄志奇,杜平安,卢凉.微机电系统科学与技术的研究现状[J].机械设计,2003,20(11):4-6.
    [8]Nguyen N T,Wereley S T.Fundamentals and Applications of Microfluidics[M].Boston:Artech House,Inc.,2002.
    [9]Elwenspoek M,Wiegerink R J.Mechanical Microsensors[M].Verlag Berlin Heidelberg:Springer,2001.
    [10]King L V.On the convenction of heat from small cylinders in a stream of fluid:Determination of the convenction constants of small platinum wires with application to hot wires anemometry[J].Proceedings of the Royal Society of London.Series A,1914,90:563-570.
    [11]Weske J R.A hot-wire circuit with very small time lag[R].NACA Techical Note 881,1943.
    [12]Lowell H H,Patton N.Response of homogeneous and two-material laminated cylinders to sinusoidal environmental temperature change,with applcations to hot-wire anemometry and thermocouple pyrometry[R].NACA Technical Note 3514,1955.
    [13]Fingerson L M.Advances in Hot-Wire Anemometry[M]//Melnik W L,Weske J R.Practical Extensions of Anemometer Techniques.College Park:University of Maryland,1968:258-275.
    [14]Putten A F P,Middelhoek S.Integrated silicon anemometer[J].Sensors and Actuators,1983,4:387-396.
    [15]Yoon E,Wise K D.An integrated mass flow sensor with on-chip CMOS interface circuitry[J].IEEE Transactions on Electron Devices,1992,39(6):1376-1386.
    [16]高冬晖,秦明.硅热流量传感器及其封装[J].微纳电子技术,2004,5:45-51.
    [17]Chen J,Engel J,Chen N,Liu C.A monolithic integrated array of out-of-plane hot-wire flow sensors and demonstration of boundary-layer flow imaging[C]//18th IEEE International Conference on Micro Electro Mechanical Systems,2005x2005:299-302.
    [18]Alkhalfioui M,Michez A,Giani A,Boyer A,Foucaran A.Anemometer based on seebeck effect[J].Sensors and Actuators A 2003,107:36-41.
    [19]Lord R G.The dynamic behaviour of hor-wire anemometers with conduction end losses[J].Journal of Physics E:Scientific Instruments,1981,14:571-578.
    [20]Fingerson L M.Thermal anemometry,current state,and future directions[J].Review of Scientific Instruments,1994,65:285-300.
    [21]Roh S C,Choi Y M,Kim S Y.Sensitivity enhancement of a silicon micro-machined thermal flow sensor[J].Sensors and Actuators A,2006,128:1-6.
    [22]Bruschi P,Piotto M,Barillaro G Effects of gas type on the sensitivity and transition pressure of integrated thermal flow sensots[J].Sensots and Actuators A,2006,132:182-187.
    [23]Bruschi P,Diligenti A,Navarrini D,Piotto M.A double heater integrated gas flow sensor with thermal feedback[J].Sensors and Actuators A,2005,123-124:210-215.
    [24]Sun J,Qin M,Huang Q.Flip-Chip packaging for a two-dimensional thermal flow sensor using a copper pillar bump technology[J].IEEE Sensors Journal,2007,7(1):990-995.
    [25]Elwenspoek M.Thermal flow micro sensors[C]//CAS '99 Proceedings of 1999 International Semiconductor Conference.c1999:423-435.
    [26]Hohenstatt M.Thermal mass flow meters[M]//Scholz J,Ricolfi T.Sensors,a Comprehensive Survey,vol.4.Weinheim:VZH,1990:325-330.
    [27]Scholer L,Lange B,Seibel K,Schafer H,Walder M,Friedrich N,Ehrhardt D,Schonfeld F,Zech G,Bohm M.Monolithically integrated micro flow sensor for lab-on-chip applications[J].Microelectronic Engineering,2005,78-79:164-170.
    [28]Nguyen N T,Dotzel W.Asymmetrical locations of heaters and sensors relative to each other using heater array:a novel method for designing multi-range electrocaloric mass-flow sensors[J].Sensors and Actuators A,1997,62:506-512.
    [29]Meng E.MEMS Technology and devices for a micro fluid dosing system[D].Pasadena:California Institute of Technology,2003.
    [30]Lammerink T S J,Dijkstra F,Houkes Z,van Kuijk J.Intelligent gas-mixture flow sensor[J]. Sensors and Actuators A,1995,46-47:380-384.
    [31]van der Wiel A J,Linder C,de Rooij N F,Bezinge A.A liquid velocity sensor based on the hot-wire principle[J].Sensors and Actuators A,1993,37-38:693-697.
    [32]Neda T,Nakamura K,Takumi T.A polisilicon flow sensor foor gas flow meters[J].Sensors and Actuators A,1996,54:626-631.
    [33]Fingerson L M,Freymuth F.Thermal anemometers[M]//Goldstein R J.Fluid mechanics measurements.Bristol:Taylor & Francis,1996:115ff..
    [34]Lammerink T S J,Tas N R,Elwenspoek M,Fluitman H J.Micro-liquid flow sensor[J].Sensors and Actuators A,1993,37-38:45-50.
    [35]Komiya K,Higuchi F,Ohtani K.Characteristics of a thermal gas flowmeter[J].Review of Sciencitific Instruments,1988,59(3):477-479.
    [36]Glaninger A,Jachimowicz A,Kohl F,Chabicovsky R,Urban G.Wide range semiconductor flow sensors[J].Sensors and Actuators,2000,85:139-146.
    [37]Khaled A R A,Vafai K.Hydromagnetic squeezed flow and heat transfer over a sensor surface[J].International Journal of Engineering Science,2004,42:509-519.
    [38]张国瑞.有限元法[M].北京:机械工业出版社.1991:1-5.
    [39]张立文.数值模拟技术在金属材料固态加工中的应用[D].大连:大连理工大学,2004.
    [40]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998:40-46.
    [41]李人宪.有限元法基础[M].北京:国防工业出版社,2002:3-5.
    [42]Tien C L,Chen G.Challenges in microscale conductive and radiative heat transfer[J].Journal of Heat Transfer-Transactions of the ASME,1994,116(4):799-807.
    [43]黄正兴.薄膜热导率的测试与分子动力学模拟研究[D].大连:大连理工大学,2007.
    [44]Chen G.Phonon heat conduction in nanostructures.International Journal of Thermal Sciences,2000,39(4):471-480.
    [45]Chen G,Neagu M.Thermal conductivity and heat transfer in superlattices[J].Applied Physics Letters,1997,71(19):2761-2763.
    [46]过增元.国际传热研究前沿——微细尺度传热[J].力学进展,2000,30(1):1-6.
    [47]陈则韶,葛新石,顾毓沁.量热技术和热物性测定[M].合肥:中国科学技术大学出版社,1990.
    [48]Cahill D G.Thermal conductivity measurement from 30 to 750 K:the 3ω method.Review of Scientific Instruments,1990,61(2):802-808.
    [49]Cahill D G,Katiyar M,Abelson J R.Thermal conductivity of a-Si:H thin films[J].Physical Review B,1994,50(9):6077-6081.
    [50]Lee S M,Cahill D G.Heat transport in thin dielectric fihns[J].Journal of Applied Physics,1997,81(6):2590-2595.
    [51]Okuda M,Ohkubo S.A novel method for measuring the thermal conductivity of submicrometer thick dielectric films[J].Thin Solid Films,1992,213(2):176-181.
    [52]谢华清,王锦昌,奚同庚等.薄膜材料导热行为及其测试和预测[J].材料科学与工艺,2001,9(1):104-112.
    [53]Brotzen F R,Loos P J,Brady D P.Thermal conductivity of thin SiO2 films[J].Thin Solid Films,1992,207(1-2):197-201.
    [54]Goodson K E,Flik M I,Su L T et al.Annealing-temperature dependence of the thermal conductivity of LPCVD silicon dioxide layers[J].IEEE Electron Device Letters,1993,14(10):490-492.
    [55]Zhang X,Grigoropoulos C P.Thermal conductivity and diffusivity of free-standing silicon nitride thin films[J].Review of Scientific Instruments,1995 66(2):1115-1120.
    [56]Lambropoulos J C,Jolly M R,Amsden C A.Thermal conductivity of dielectric thin films[J].Journal of Applied Physics,1989,66(9):4230-4242.
    [57]Burzo M G,Komarov P L,Raad P E.Thermal transport properties of gold-covered thin-film silicon dioxide[J].IEEE Transactions on Components and Packaging Technologies,2003,26(1):80-88.
    [58]Kading O W,Skurk H,Goodson K E.Thermal conduction normal to metallized silicon-dioxide layers on silicon[J].Applied Physics Letters,1994:65(13):1629-1631.
    [59]Kading O W,Skurk H,Goodson K E.Thermal conduction in metallized silicon-dioxide layers on silicon[J].Applied Physics Letters,1994,65(13):1629-1631.
    [60]Langer G,Hartmann J,Reichling M.Thermal conductivity of thin metallic films measured by photothermal proile analysis[J].Review of Scientific Instruments,1997,68(3):1510-1513.
    [61]Perichon S,Lysenko V,Remaki B,et al.Measurement of porous silicon thermal conductivity by micro-Raman scattering.Journal of Applied Physics,1999,86(8):4700-4702.
    [62]马枫茹.拉曼光谱在血清、黑素瘤及R6G单分子检测中的应用[D].大连:大连理工大学,2007.
    [63]Burgener M L,Reedy R E.Temperature distributions produced in a two-layer structure by a scanning cw laser or electron beam[J].Journal of Applied physics,1982,53(6):4357-4363.
    [64]Tsu R,Hernandez J G.Temperature dependence of silicon Raman lines[J].Applied Physics Letters,1982,41(11):1016-1018.
    [65]Pagnier T,Barral M,Lucazeau G.Changes in the Raman spectrum of C60 thin films induced by laser and heating[J].Journal of Physics and Chemistry of Solids,1997,58(2):185-194.
    [66]McDonald F,Wetsel G C.Theory of photothermal and photoacoustic effects in condensed matter[M]// MASON W P.Physical acoustics,Vol.18.San Diego:Academic,c1988:167-277.
    [67]余宽新,江铁良,赵启夫.激光原理与激光技术[M].北京:北京工业大学出版社,2001.
    [68]Baeuerle D.Laser processing and chemisitry[M].Berlin:Spronger.2000:138.
    [69]Fishenden M,Saunders O A.An introduction to heat transfer[M].London:Clarendon Press.1950.
    [70]房振乾,胡明,窦雁巍.双槽电化学腐蚀法制备多孔硅的孔隙率研究[J].压电与声光,2007,29(2):230-236.
    [71]Gesele G,Linsmeier J,Drach V,Fricke J,Arens-Fischer R.Temperature-dependent thermal conductivity of porous silicon[J].Journal of Physics D:Applied Physics,1997,30(21):2911-2916.
    [72]Balkanski M,Wallis R F,Haro E.Anharmonic effects in light scattering due to optical phonons in silicon[J].Physical Review B,1983,28(4):1928-1934.
    [73]Burzo M G,Komarov P L,Raad P E.Influence of the metallic absorption layer on the quality of thermal conductivity measurements by the transient thermo-reflectance method[J].Microelectronics Journal,2002,33(9):697-703.
    [74]Love M S,Anderson A C.Estimate of phonon thermal transport in amorphous materials above 50K[J].Physics Review B,1990,42(3):1845-1847.
    [75]Goodson K E,Flik M I,Su,L T,Antoniadis D A.Prediction and measurement of thermal conductivity of amorphous dielectric layers[J].Journal of Heat Transfer,1994,116(2):317-323.
    [76]Cahill D G.Heat transport in dielectric thin films and at solid-solid interfaces[G]//Tien C L,Majumdar A,Gerner F.Microscle Energy Transport.Taylor & Francis,1998:108-109.
    [77]Kato R,Hatta I.Thermal conductivity measurement of thermally-oxidized SiO2 films on a silicon wafer using a thermo-reflectance technique[J].International Journal of Thermophysics,2005,26(1):179-190.
    [78]Govorkov S,Ruderman W,Horn M W,Goodman R B,Rothschild M.A new method for measuring thermal conductivity of thin films[J].Review of Scientific Instruments,1997, 68(10):3828-3834.
    [79]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [80]Kim D K,Han I Y,Kim S J.Study on the steady-state charasteristics of the sensor tube of a thermal mass flow meter[J].International Journal of Heat and Mass Transfer,2007,50:1206-1211.
    [81]Sun J B,Qin M,Huang Q A.Flip-Chip packaging for a two-dimensional thermal flow sensor using a copper pillar bump technology[J].IEEE Sensors Journal,2007,7(1):990-995.
    [82]Kim SJ,Kim D K.Sensing and modeling techniques for microscale transport[J].International Journal of Thermal Sciences,2007,46:1142-1152.
    [83]Al-Salaymeh A,Ashhab M S.Modelling of a novel hot-wire thermal flow sensor with neutral nets under different operating conditions[J].Sensors and Actuators A,2006,126:7-14.
    [84]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988.
    [85]高应才.数学物理方程及其数值解法[M].北京:高等教育出版社,1984.
    [86]Zabrodskiy S S.Several specific terms and concepts in russian heat transfer notation[J].Heat transfer:Soviet Research,1972,4(2):1-4.
    [87]Eckert E R G,Low G M.Temperature distribution in internally heated walls of heat exchangers composed of nonnuclear flow passages[R].NASA Technical Report,1951.
    [88]Perelman T L.On conjugated problems of heat transfer[J].International Journal of Heat and Mass Transfer,1961,3:293-303.
    [89]Gane C R,Stephenson P L.An explicit numerical method for solving transient combined heat conduction and convection problems[J].International Journal for Numerical Methods in Engineering,1979,14:1141-1163.
    [90]Gane C R,Oliver A J,Soulsby D R,Stephenson P L.Numerical solution of coupled conduction-convection problems using lumped parameter method[M]//Lewis R W,Morgan K,Schrefler B A.Numerical Methods in Heat Transfer,vol.2.Chichester:John Wiley & Sons,1983:227-274.
    [91]Nunge R J,Gill W N.An analytical study of laminar counter flow double-pipe heat exchanger[J].AIChE Journal,1996,12:278-289.
    [92]Mikhailov M D,Mathematical modelling of heat exchanger in single duct and double pipe heat exchangers[M]//Kakac R K,Shah R K,Bergles A E.Low ReynoldsNUmber Flow Heat Exchangers.Washington,D C:Hemisphere,1982:137-164.
    [93]Karvinen R.Method to solve some coupled convection and conduction problems[M]//Lewis R W,Morgan K,Schrefler B A.Numerical Methods in Heat Transfer.Swansea:Pineridge Press,1981:1167-1176.
    [94]Olsson D.Laminar flow heat transfer form wedge shaped bodies with limited heated conductivity[J].International Journal of Heat and Mass Transfer,1973,16:329-336.
    [95]Sohal M S,Howell J R.Determination of plate temperature in case of combined conduction.convection and radiation heat exchanger[J].International Journal of Heat and Mass Transfer,1973,16:2055-2066.
    [96]Karvinen R.Transient convective heat transfer from a wall with capactance and resistance[J].Letters in Heat and Mass Transfer,1980,7:385-390.
    [97]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
    [98]Sugavanam R.Numerical investigation of conjugate heat transfer from flush heat sources on a conductive board in laminar channel flow[D].Tucson:University of Arizona,1994..
    [99]Sugavanam R,Ortega A,Choi C Y.A numerical investigation of conjugate heat transfer from a flush heat source on a conductive board in laminar channel flow[J].International Journal of Heat and Mass Transfer,1995,38(16):2969-2984.
    [100]Jiang P X,Ren Z P,Wang B X,Wang Z.Forced convective heat transfer in a plate channel filled with solid particles[J].Journal of Thermal Science,1996,5(1):43-53.
    [101]Jilani G,Jayaraj S,Ahmad M A.Conjugate forced convection-conduction heat transfer analysis of a heat generating vertical cylinder[J].International Journal of Heat and Mass Transfer,2002,45:331-341.
    [102]Gyves T W,Irvine T F.Laminar conjugated forced convection heat transfer in curved rectangular channels[J].International Journal of Heat and Mass Transfer,2003,42:3953-3964.
    [103]Ramis M K,Jilani G,Jahangeer S.Conjugate conduction-forced convection heat transfer analysis of a rectangular nuclear fuel element with non-uniform volumetric energy generation[J].International Journal of Heat and Mass Transfer,2008,51:517-525.
    [104]Tsay Y L,Cheng J C.Analysis of convective heat transfer characteristics for a channel containing short multi-boards mounted with heat generating blocks[J].International Journal of Heat and Mass Transfer,2008,51:145-154.
    [105]郭宽良.数值计算传热学[M].合肥:安徽科学技术出版社.
    [106]Nakahashi K,Deiwert G S.Three dimensional adaptive grid method[J].AIAA Journal,1986,24:948-954.
    [107]Kim T Y,Chung W Y.Design of micro flow sensor with optimal detection spacing[C]//SICE Annual Conference 2007,September 2007,Takamatsu:Kagawa University,c2007:2459-2462.
    [108]Sabate N,Gracia I,Santander J,Cane C.A test structure for the design of thermal flow sensors[C]//Proceedings of the IEEE 2002 International Conference on Microelectronic Test Structures,Vol 15,April 2002.c2002:107-110.
    [109]Laconte J,Rue B,Raskin J P,Flandre D.Fully CMOS-SOI Compatible Low-Power Directional Flow Sensor[C]//Proceedings of IEEE Sensors,2004.c2004:864-867.
    [110]Fingerson L M,Freymuth P.Thermal anemometers[M]//Goldstein R J.Fluid mechanics measurements,Bristol:Taylor & Francis,1996:115-173.
    [111]Lammerink T S J,Tas N R,Krijnen G J M,Elwenspoek M.A new class of thermal flow sensors using AT=0 as a control signal[C]//Proceedings of the Thirteenth Annual International Conference on Micro Electro Mechanical Systems.Miyazaki:2000.
    [112]Qing S,Taro T.Dependence of thermal conductivity of porous silicon on porosity characterized by photoacoustic technique[J].Review of Scientific Instruments,2003,74:601-603.
    [113]Benedetto G,Boarino L,Spagnolo R.Evaluation of thermal conductivity of porous silicon layers by a photoacoustic method[J].Applied Physics A,1997,64:155-159.
    [114]Bernini U,Lettieri S,Maddalena P,Vitiello R,Francia G Di.Evaluation of the thermal conductivity of porous silicon layers by an optical pump-probe method[J].Journal of Physics:Condensed Matter,2001,13:1141-1150.
    [115]Lysenko V,Gliba V,Strikha V,Dittmar A,Delhomme G,Roussel Ph,Barbier D,Jaffrezic-Renault N,Martelet C.Nanoscale nature and low thermal conductivity of porous silicon layers[J].Applied Surface Science,1998,123-124:458-461.
    [116]Lysenko V,Roussel Ph,Remaki B,Delhomme G,Dittmar A,Barbier D,Strikha V,Martelet C.Study of nano-porous silicon with low thermal conductivity as thermal insulating material[J].Journal of Porous Materials,2000,7:177-182.
    [117]Steiner P,Lang W.Micro-machining applications of porous silicon[J].Thin Solid Films,1995,255(1-2):52-58.
    [118]Loni A,Simons A J,Cox T I,Calcott P D J,Canham I T.Electroluminescent porous silicon device with an external quantum efficiency greater than 0.1% under CW operation[J].Electronics Letters,1995,31(15):1288-1289.
    [119]Canham L T,Cox T I,Loni A,Simons AJ.Progress towards silicon optoelectronics using porous silicon technology[J].Applied Surface Science,1996,102:436-441.
    [120]Kronast W,M(u|¨)ller B,Siedel W,Stoffel A.Single-chip condenser microphone using porous silicon as sacrificial layer for the air gap[J].Sensors and Actuators,2001,87(3):188-193.
    [121]Herwaarden A W,Duyn D C,Oudheusden B W,Sarro P M.Integrated thermopile sensors[J].Sensors and Acutators,1989,A21-A23(1-3):621-630.
    [122]胡明,张伟,张绪瑞,杨海波.微结构参数对多孔硅层热绝缘性能的影响[J].传感技术学报,2006,19(5):2359-2364.
    [123]Kaltsas G,Nassiopoulos A A,Nassiopoulou A G.Characterization of a silicon thermal gas-flow sensor with porous silicon thermal isolation[J].IEEE Sensors Journal,2002,2:463-475.
    [124]林军,张丽珠.多孔硅蓝光发射与发光机制[J].物理学报,1996,45(1):121-125..
    [125]徐泰然.MEMS和微系统——设计与制造[M].北京:机械工业出版社,2004.
    [126]Manabe Y,Mitsuyu T.Silicon nitride thin films prepared by the electron cyclotron resonance plasma chemical vapor deposition method[J].Journal of Applied Physics,1989,66(6):2475.
    [127]Iijima M,Watanabe Y.Ultrasonic Joining of Silicon Nitride Plates Without an Adhesive Material Using a 19 kHz Vibration System[J].Japanese Journal of Applied Physics,2001,40:3789-3791.
    [128]陈俊芳,吴先球,樊双利,王鑫,任兆杏.氮化硅钝化膜的制备和应用[J].量子电子学报,2005,22:102-105.
    [129]关旭东.硅集成电路工艺基础[M].北京:北京大学出版社,2003.
    [130]Quirk M,Serda J.Semiconductor manufacturing technology[M].Upper Saddle River,NJ:Prentice Hall,2001.
    [131]Kern W,Ban V.Chemical vapor deposition of inorganic thin films[M]//Vossen J L,Kern W.Thin film processes,New York:Academic,1978:257-331.
    [132]Boltake B I.Diffusion in semiconductors[M].New York:Academic,1963.
    [133]Shaw D.Atomic diffusion in semiconductors[M].New York:Plenum,1973.
    [134]王兴.微电子机械系统中重要材料——多孔硅的制备和应用的研究[D].天津:天津大学,2003.
    [135]韩建忠,倪国强,崔梦,胡明,田斌.应用于MEMS的多孔硅的制备方法研究[J].电子元件与材料,2004,23(6):32-34.
    [136]Wu W F,Chiou B S.Properties of radio frequency magnetron sputtered silicon dioxide films[J].Applied Surface Science,1996,99(3):237-243.
    [137]Bravo T,Tersalvi A,Tosi A.Comparison of SiOx and polymide as a dielectric layer on stainless steel in thin film pressure sensor manufacture[J].Sensors and Actuators,1992,32(123):611-615.
    [138]Serikawa T,Shirai S.Ultra-thin silicon-oxide films by sputter-deposition and their application to high-quality poly-Si TFTS[J].Applied Surface Science,1998,51(4):781-783..
    [139]金桂,周集成.射频磁控溅射SiO_2薄膜的制备与性能研究[J].武汉理工大学学报,2006,28(8):12-15.
    [140]何乐年,徐进,王德苗.等离子体气相沉积非晶SiO_2薄膜的特性研究[J].真空科学与技术,2000,20(4):247-250.
    [141]Bartzsch H,Gl(o|¨)β D,B(o|¨)cher B,Frach P,Goedicke K.Properties of SiO_2 and Al_2O_3 films for electrical insulation applications deposited by reactive pulse magnetron sputtering[J].Surface and Coatings Technology,2003,174-175:774-778.
    [142]余京松,马青松,葛曼珍,杨辉,江仲华.氮化硅薄膜的制备技术fJ].中国陶瓷工业,1999,6(1):20-22.
    [143]庄大明,张绪寿.工艺因素对离子束增强沉积氮化硅薄膜组成与结构的影响[J].磨擦学学报,1995,15(2):97-104.
    [144]Sarita T,Satake T,Adachi H,Ogata T,Kobayashi K.Mass spectrometric and kinetic study of low pressure chemical vapor deposition of Si_3N_4 thin films from SiH_2Cl_2 and NH_3[J].Journal of the Electrochemical Society,1994,141:3505-3511.
    [145]Zambom L S,Mansano R D,Furlan R,Verdonck P.LPCVD deposition of silicon nitride assisted by high density plasmas[J].Thin Solid Films,1999,343-344:299-301.
    [146]刘学建,黄智勇,蒲锡鹏,黄莉萍.SiH_4-NH_3-N_2体系LPCVD氮化硅薄膜的研究[J].电子元件与材料,2003,22(7):14-16.
    [147]简崇玺.LPCVD制备氮化硅薄膜工艺[J].集成电路通讯,2008,26(2):18-21.
    [148]吴大维,范湘军.PECVD法氮化硅薄膜的研究[J].材料科学与工程,1997,15(1):46-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700