用户名: 密码: 验证码:
燃烧室部件传热时空非均匀性对内燃机工作过程影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为内燃机设计三大组成部分之一的传热过程对内燃机的各种性能都有着至关重要的影响,特别是对工作过程的影响更为突出。因此,研究内燃机传热对工作过程的影响,对准确预测内燃机动力性、排放和缸内过程等都有十分重要的作用。另外,鉴于内燃机数值模拟技术的不断成熟,为了利用数值模拟方法对内燃机传热进行详细预测,需要采用耦合全仿真模拟技术,即将内燃机工作过程、燃烧室部件、冷却系统、润滑系统等耦合起来作为一个整体,进行多维多物理场的模拟计算。本文正是致力于将内燃机全仿真模拟方法应用于实际内燃机传热模拟计算中,进一步推动内燃机模拟仿真技术的发展。通过模拟计算考察燃烧室部件传热对工作过程的影响。
     1.利用耦合全仿真模拟思想,建立了缸内工作过程与燃烧室部件、燃烧室部件与冷却系统以及燃烧室部件之间动接触和静接触的耦合传热模型,从而实现燃烧室部件耦合传热的三维稳态和瞬态数值模拟计算,结果表明采用部件耦合法和流固耦合技术对燃烧室固体部件的导热问题进行模拟计算是准确可靠的;稳态耦合传热模拟计算结果显示所有燃烧室部件表面温度分布都呈现极大的空间非均匀性,活塞顶面最大温差为84℃;气缸套在缸内空间范围内壁面沿轴向最大温度差为130℃,周向温度的分布相对来说较为均匀,温差较小,气缸盖火力面范围内温度分布的空间非均匀性最为明显,最大温差为165.1℃;瞬态耦合传热模拟计算结果显示常规金属柴油机在稳定工作状态下,燃烧室部件表面温度随时间的波动幅度小于20℃,深度小于2mm。
     2.对柴油机工作过程建立准维数学模型,并利用性能试验验证了整体模型的准确性,且在此基础上考察燃烧室部件传热时间非均匀性对柴油机性能的影响。结果表明燃烧室部件传热时间非均匀性对常规金属柴油机的动力性、经济性和排放的影响十分微小,对传热性能有一定影响,但幅度也小于1%。同时模拟壁面温度变化对柴油机性能的影响,结果显示当温度变化<20℃时,其变化对发动机性能的影响十分微小,可以忽略不计;但温度变化超过100℃以后,其变化对柴油机传热、动力性、经济性和排放的影响显著加剧,特别是对排放的影响,温度变化100℃时,NO_x的生成相差14.9%,碳烟的生成相差16.5%。由此可见,对绝热发动机燃烧室部件壁面循环瞬态温度波动超过100℃时,壁面温度分布的时间非均匀性不能忽略。
     3.建立缸内工作过程的多维瞬态数值模拟计算模型,特别是辐射换热模型。通过对比不同壁面流动模型、壁面对流换热模型和辐射换热的模拟计算结果发现,壁面流动模型中复合壁函数法由于是低雷诺数模型和标准壁函数相结合的方法,使缸内多维模拟计算结果更接近于试验值;Han-Reitz模型和标准壁面传热模型比较,其计算结果更接近于试验值:使用DTRM方法对缸内辐射进行计算时,边界单元体壁面特征射线假定数目超过16以后,边界单元体壁面特征射线数量的变化对模拟计算影响极小,可以忽略;燃烧室部件壁面辐射率的变化主要影响壁面辐射热流密度和排放物的生成;辐射换热占柴油机缸内总传热量的30%左右,而活塞传热量占整体热损失的60%左右。进一步利用已经建立的多维数学模型,探讨喷雾提前角对缸内工作过程和传热的影响并进行校验。结果发现不同喷雾提前角状态下缸内压力的预测曲线与试验曲线吻合较好,进一步说明整个缸内工作过程的多维瞬态数值模拟中各种数学模型的准确性和整体模拟计算的真实性;喷雾提前角的加大会造成缸内最高压力、最高温度的提高,进而使缸内壁面换热量增加,从而影响到缸内的燃烧和排放,使NO_x的生成量增加,Soot的生成量降低。
     4.在缸内工作过程多维瞬态数值模拟计算校验基础上,利用分区求解、边界耦合法建立了缸内工作过程与燃烧室部件的三维耦合计算模型,从而实现了缸内工作过程与燃烧室部件的耦合三维全仿真模拟计算,以此考察燃烧室部件传热空间非均匀性对缸内传热、流动、喷雾、燃烧和排放的影响,结果表明燃烧室部件壁面温度的空间非均匀分布对传热的影响主要是在压缩过程和膨胀过程后期,由此可推断在进气过程和排气过程中燃烧室部件表面温度分布的非均匀性对传热会有较为明显的影响;燃烧室部件壁面温度的空间非均匀分布对缸内气体流动几乎没有任何影响,缸内流动主要取决于燃烧室部件结构、进气系统部件结构以及喷油嘴结构、喷孔位置和喷射强度等;燃油的雾化效果的计算结果发现,喷雾初期和中期燃烧室部件壁面温度的空间非均匀分布对燃油的雾化有一定影响,主要影响燃烧室底部空间和壁面附近区域,在喷雾后期,此时缸内气体温度主要取决于燃油的燃烧,壁面换热的影响本身就极小,因此壁面温度分布的空间非均匀性对雾化的影响也极小,但辐射传热对燃油雾化效果会产生显著影响,换热量的增加使整体雾化效果下降;喷雾过程燃烧室部件传热空间非均匀性对燃烧产物CO_2的生成会产生一定影响,而燃烧过程后期这种影响逐渐减弱,其对中间产物CO的生成的影响则相反,另外,辐射换热对整个燃烧过程起到至关重要的决定性作用;燃烧室部件传热空间非均匀性影响最明显的是NO_x的生成,对流换热的空间非均匀性主要影响燃烧室壁面附件区域内NO_x的生成,辐射换热的空间非均匀性主要影响整个燃烧室空间内部NO_x的生成,在燃烧室部件壁面附件区域内的影响较小;燃烧室部件传热空间非均匀性对碳烟生成的影响要远远小于对NO_x生成的影响。
Internal combustion engine design is including three parts,among them heat transfer process is of the most importance and has great influence on all kinds of engine performance, especially on in-cylinder working process.So in order to predict power,emission and in-cylinder process principle of internal combustion engine accurately,it is very important to study how heat transfer affects in cylinder working process.However,if the heat transfer process information of internal combustion engine needs to be known in detail,it is necessary to adapt coupled complete model simulation technology that working process,combustion chamber components,cooling system and lubrication system are coupled to one model in which muti-dimentional physical field simulation is done.Recently numerical simulation technology of internal combustion engine is getting more and more advanced that make it possible to finish such complicated simulation in this study.In this paper coupled complete model simulation technology is applied to actual heat transfer process simulation of internal combustion engine to realize the effect of heat transfer of combustion chamber components on in-cylinder working process,therefore,in return simulation technology of internal combustion engine is improved further.
     1.Under the thought of coupled complete model simulation,dynamic and static contact coupled heat transfer models between in-cylinder working process and combustion chamber components,between combustion chamber components and cooling system,among combustion chamber components were built to simulate coupled heat transfer among combustion chamber components in three dimensional steady and transient state.Results show that it is reliable and accurate to make such numerical simulation on heat conduction among combustion chamber components with the coupled components method and coupled fluid and solid technology.Steady coupled heat transfer simulation shows great temperature non-uniform distribution on the surface of all combustion chamber components,the greatest temperature difference on piston crown is 84℃;the greatest temperature difference inside cylinder liner along axial direction is 130℃,comparatively the temperature difference inside cylinder liner along circumferential direction is small;the non-uniform temperature distribution on cylinder head bottom is apparent,the greatest difference is 165.1℃;Transient coupled heat transfer simulation shows that for normal metal built diesel engine under stable working state surface temperature of combustion chamber components fluctuates with 20℃in amplitude and 2mm in depth.
     2.Quasi-dimensional mathematic model of working process on diesel engine was built and its accuracy was proved by performance tests.On this base the effect of heat transfer time non-uniformity of combustion chamber components on performance of diesel engine was studied.Results show the non-uniform temperature distribution on surface of combustion chamber components has little effect on power,economy and emission for normal metal built diesel,and has certain effect on heat transfer performance,however its amplitude is less than 1%.At the same time the effect of wall temperature variation amplitude on diesel engine performance was also studied.The results show when the temperature variation amplitude is less than 20℃there is little effect on engine performance which can even be ignored. However when the temperature variation amplitude is over 100℃,there is obvious effect on power,economy and emission of diesel engine,especially on emission performance,when the temperature amplitude varies 100℃,the NOx increases 14.9%,the soot increases 16.5%. Thus it can be seen that when the temperature variation of combustion chamber components surface in transient state and adiathermal situation is over 100℃the time non-uniformity of surface temperature distribution can not be ignored.
     3.Multi-dimensional transient numerical simulation model of in-cylinder working process including radiation heat transfer model was built.After comparing the simulation results of wall unit characteristic radial quantity from different wall models,convection heat transfer model and radiation heat transfer model(DTRM model),it is found that the compound wall function method which combines low Reynolds number model and standard wall function makes in-cylinder multi-dimensional numerical simulation more approximate to test results.The computation result of Han-Reitz model is more approximate to test results compared with standard wall heat transfer model.When in-cylinder radiation is simulated with DTRM method and boundary unit wall characteristic radial quantity is over 16 the computation results are hardly influenced by the characteristic radial quantity.Furthermore the effect of the combustion chamber surface radiance and spray advance angle on in-cylinder working process was analyzed using optimized multi-dimensional mathematic model,and the effect of different heat transfer models on the whole heat transfer loss was also studied. Results show in-cylinder emission formation is mainly influenced by combustion chamber surface radiance,the highest pressure and temperature in cylinder raises when spray advance angle increases,and therefore heat transfer inside cylinder wall increases,consequently,NO_x increases and Soot reduces.In different spray advance angle the predicted in-cylinder pressure curve can fit test curve well that proves the accuracy of the mathematic models involved in the multi-dimensional transient numerical simulation and the reliability of the application of whole model simulation.In addition the results show radiation heat transfer accounts for about 30%of the total heat transfer in diesel engine cylinder and heat transfer of piston accounts for 60%of the total heat loss.
     4.On the base of multi-dimensional transient numerical simulation of in-cylinder working process three dimensional coupled computation model which combines in-cylinder working process and combustion chamber components was built using partition solution method and boundary coupled method.So three dimensional complete model simulation by coupling in-cylinder working process and combustion chamber parts was realized and the effect of heat transfer space no-uniformity on in-cylinder heat transfer,flow,spray, combustion and emission is studied.Results show the effect of wall temperature space no-uniform distribution of combustion chamber components on heat transfer happens mainly at the end of compression stroke and expansion stroke.Therefore it can be concluded that wall temperature space no-uniform distribution of combustion chamber components would influence heat transfer during intake and exhaust stroke obviously.The wall temperature space no-uniform distribution of combustion chamber components is hardly related to in-cylinder gas flow,which is mainly dependent on the combustion chamber components structure,intake system structure,fuel spray nozzle structure,nozzle position and spray intensity.From the results of fuel atomization simulation it can be known the wall temperature space no-uniform distribution of combustion chamber components has certain influence on fuel atomization at the initial and middle stage of spray,mainly in the bottom space of combustion chamber and near cylinder wall.At the late stage of spray in-cylinder gas temperature is mainly dependent on fuel combustion,not on heat transfer of cylinder wall,so the wall temperature space no-uniform distribution of combustion chamber components has nearly no effect on spray.However at this time radiation heat transfer acts on spray remarkably that result in heat transfer increasing and spray getting worse.The heat transfer space no-uniformity of combustion chamber components has certain effect on CO_2 formation during spray and reduces gradually until late combustion stroke.For CO the situation is on the contrary.In addition radiation heat transfer influences the whole combustion process deeply. The heat transfer space non-uniformity of combustion chamber components directly influences the formation of NO_x and convection heat transfer space non-uniformity mainly influences the formation of NO_x near combustion chamber wall surface.The radiation heat transfer space non-uniformity mainly influences the formation of NO_x within combustion chamber space and not near the wall surface.The heat.transfer space non-uniformity of combustion chamber components has little effect on soot formation,far less than on NO_x.
引文
[1]蒋德明.高等内燃机原理.西安交通大学出版社,2002年12月.
    [2]陆瑞松.内燃机的传热与热负荷.北京:人民交通出版社,1985.
    [3]J.Yang.Convective Heat Transfer Predictions and Experiments In IC Engines.PhD Thesis.Dept of ME.University of Wiscosin-Madison,1988.
    [4]Woschni,G.Spindler,W.and Kolesa,K.Heat insulation of combustion chamber walls-A measure to decrease the fuel consumption of IC engines.SAE Paper 870339
    [5]白敏丽.发动机燃烧室耦合传热仿真模拟及实验研究[D].大连理工大学博士论文,1996
    [6]马重芳.用薄膜热电偶研究BM-450转子发动机燃烧和传热的特殊规律。旋转活塞发动机的燃烧和传热,人民交通出版社,1981
    [7]潘克煜.柴油机燃烧室壁面瞬时温度的测定和分析.内燃机工程,1982,9(2):22-30
    [8]戴毅.内燃机燃烧室表面瞬时温度的测量与多层壁燃烧室瞬态传热的理论计算.西安交通工大学硕士论文,]984
    [9]郭七一.内燃机瞬时测温技术与直喷式柴油机缸内局部瞬态传热研究[D].北京理工大学博士论文,1990
    [10]沈胜强.柴油机燃烧室表面瞬态温度与热流的试验研究.大连理工大学硕士论文,1985
    [11]俞水良,肖永宁,蒋德明。用快速响应薄膜热电偶研究内燃机壁面温度对瞬态传热的影响。中国工程热物理学会传热传质学术会议论文集,IX-7,1991
    [12]Hottel H.et al.Determination of true temperature and total radiation from luminous gas flames.Industrial and Engineering Chemistry,Vol.4,No.2(1954)
    [13]Flyrm P.et al.An experimental determination of the instantaneous potential radiant heat transfer with in an operating diesel engine.SAE 72002
    [14]Oguri T.et al.Radiant heat transfer in diesel engine.SAE 720023
    [15]J.C.Dent et al.Convective and radiative heat transfer in a high swirl direct injection diesel engine.SAE 770407
    [16]Oguri T.et al.Radiation heat transfer of combustion flames in a diesel engine.Bull,JSME,V ol.28,No.238 April 1985
    [17]T.M.Dyer.New experimental techniques for in-cylinder engine studies.SAE Trans.850396
    [18]P.Farrel,et al.Heat Transfer Measurements in Motored Engine Using Speckle Interferometry.SAE 870456
    [19]潘克煌,周龙保,杨中乐等.直喷式柴油机缸内辐射传热的试验研究.内燃机工程,1996.17(4):59-67
    [20]刘明安,陈硕,潘克煜.柴油机缸内辐射传热的实验研究.空军电讯工程学院学报,1997(2):58-61
    [2]]郭七一,薛剑青,张卫正等.柴油机缸内瞬态辐射换热实验研究。内燃机学报,1997(2):166-172
    [22]程晓舫.柴油机火焰辐射的综合测试与研究[D].大连理工大学博士学位论文,1988
    [23]高天,潘克煜,陈飞等.直喷式柴油机缸内气体辐射传热的研究.西安交通大学学报,2006(3):302-306
    [24]Furuhama,S.and Enomoto Y.Heat transfer into ceramic combustion wall of international combustion engines.SAE Paper 871035
    [25]Huang,J.C.and Borman,G.L.Measurements of instantaneous heat flux to metal and ceramic surfaces in a diesel engine.SAE Paper 870155
    [26]Morel,T.Keribar,R.and Blumberg,P.N.Cyclical thermal phenomena in engine combustion chamber surfaces.SAE Paper 850360
    [27]Morel,T.Wahiduzzaman S.and Fort,E.F.Heat transfer experiments in an insulated diesel.SAE Paper 880186
    [28]Morel,T.Wahiduzzaman S.Fort,E.F.et al.Heat transfer in a cooled and an insulated diesel engine.SAE Paper 890572
    [29]Reid,T.S.Heat transfer characteristics of an uncooled silicon nitride surface in a naturally aspirated DI diesel.MS Thesis University of Wisconsin-Madison.
    [30]钱兰,陈宁.壁温对内燃机缸内传热影响的试验研究.内燃机学报,1999(1):91-95
    [31]解茂昭.内燃机计算燃烧学.大连理工大学出版社,2005年9月.242-243
    [32]Woschni G.Universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine.SAE Paper 670931,1967
    [33]Aceves S M,Flowers D L,Martinez-Frias J et al.A sequential fluid-mechanic chemical-kinetic model of propane HCCI combustion.SAE Paper 2001-01-1027,2001
    [34]Clandia S.Andread W.and Franz C.Advanced heat transfer model for IC engine.SAE Paper 2005-01-0695,2005
    [35]贾明,解茂昭,曾文.HCCI发动机多区燃烧模型的比较研究.内燃机学报,2007,25(2):105-112
    [36]Gosman A D and Johns R J.Development of a prediction tool for in-cylinder gas motion in engines.SAE Paper,1978,780315
    [37]Gosman A D.Progress in the development of multidimensional computer models for reciprocating engines.Proc.1~(st) Int.Energy Agency Conf.,Berlin,Germany,1981
    [38]Gosman A D.Computer modeling of flow and heat transfer in engines.Progress and Prospects,Proc.JSME Syrup.Comodia Tokyo,1985,15-26
    [39]Dao K,Uyehara O A and Myers P S.Heat transfer rates at gas-wall interfaces in motored piston engine.SAE Transfer,1973,730632
    [40]Gosman A D and Harvery P S.Computer analysis of fuel air mining and combustion in an axisymmetric DI diesel.SAE Paper,1982,820036
    [41]Diwakar R.Assessment of the ability of a multidimensional computer code to model combustion in homogeneous-charge engine.SAE Paper,1982,820230
    [42]Diwakar R.Direct injection stratified charge engine computations with improved sub-models for turbnlence and wall heat transfer.SAE Paper,1982,820039
    [43]Amsden A A,Butler T D and O'Rourke P J,et al.KIVA-a comprehensive model for 2-D and 3-D engine simulation.SAE Paper,1985,850554
    [44]Ahmadi-Befrui B,Gosman A D and Issa R I,et al.Episo-an implicit non-iterative solution procedure for the calculation of flow in reciprocating engine chamers.Computer Methods in Applied Mechanics and Engineering,1990,79,249-279
    [45]Patankar S V and Spalding D B.A calculation procedure for heat,mass and momentum transfer in 3-D parabolic flow.Int.J.Heat mass transfer,1972,15-28
    [46]Hirt C W,Amsden A A and Cook J L.An arbitrary Lagrangian-Eulerian computing method for all flow speeds.J.Comput.Phys.1974,Vol.14(3):57-69
    [47]Jones W P and Launder B E.The calculation of low Reynolds numbers phenomena with a two-equation model of turbulence.Int.J.Heat mass transfer,1973,Voll6:1119-1130
    [48]Launder B E.Numerical computation of convective heat transfer in complex turbulent flows:Time to abandon wall function?Int.J.Heat mass transfer,1984,Vol27:1485-1491
    [49]Gilaber P and Pinchon P.Measurements and multi-dimensional modeling of gas wall heat transfer in a SI engine.SAE Paper,1988,880516
    [50]Jennings M J and Morel T.An improved near wall heat transfer model for multidimensional engine flow calculation.SAE Paper,1990,900251
    [51]Han ZhiYu and Reitz R D.A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling.Int.J.Heat mass transfer,1997,Vol40(3):613-625
    [52]Kong S C,Reitz R D,Christensen M et al.Modeling the effects of geometry generated turbulence on HCCI engine combustion.SAE Paper 2003-01-1088,2003
    [53]沈季胜,沈瑜铭,陈红岩等.柴油机气缸内辐射传热模型的研究历程与展望[J].内燃机工程,1999(1):72-77
    [54]Chapman,M.et al.A time-dependant spatial model for radiant heat transfer in diesel engie.SAE 831752
    [55]Chang,S.L.et al.Computation of radiation heat transfer in diesel combustion.SAE 831332
    [56]Whitehouse N.D,et al.Radiative heat transfer calculations from soot clouds for a quiescent combustion chamber diesel engine.ASME symp.FED-20 on flows in I.C.Engines Dec 1984,P89
    [57]Menguc,M.et al.Multidimensional modeling of radiative heat transfer in diesel engine.SAE 831725
    [58]Morel,T.et al.Heat radiation in D.I.Diesel engines.SAE 860445
    [59]Wahiduzzaman,S.,Morel,T.,Timar,J.,and DeWitt,D.P.Experimental and analytical study of heat radiation in a diesel engine.SAE Technical Paper870571,1987.
    [60]Cheung,C.S.,Leung,C.W.,Leung,T.P.Modeling spatial radiative heat flux distribution in a direct injection diesel engine.Journal of Power and Energy,Part A,Vol.208,pp.275-283,1994.
    [61]Furmanski,P.,Banaszek,J.,and Wisniewski,T.S.Radiation heat transfer in a combustion chamber of diesel engine with partially transparent burnt gas zone.SAE Technical Paper 980504,1998.
    [62]Qiong,W.,Xin,Z.,Pinwen,J.and Jianhua,L.Comparison of a radiation model with experiment in a diesel engine.SAE Technical Paper 981452,1998
    [63]Blunsdon,C.A.,Malalasekera,W.M.,and Dent,J.C.Application of the discrete transfer model of thermal radiation in a CFD simulation of diesel engine combustion and heat transfer.SAE Technical Paper 922305,1992
    [64]Abraham,J.and Magi,V.Application of the discrete ordinates method to compute radiant heat loss in a diesel engine.Numerical Heat Transfer,Part A,Vol.31,pp.597-610,1997
    [65]Wiedenhoefer J.F.and Reitz R.D.Multidimensional modeling of the effect of radiation and soot deposition in heavy-duty diesel engines.SAE Technological Paper 2003-01-0560,2003
    [66]周全保.研究直喷式柴油机碳粒排放及缸内辐射传热的一种数学方法.内燃机学报,1990(3):279-289
    [67]Shahed SM,Chiu W S,Lyn W T.A mathematical model of diesel combustion.Symp.On combustion in eingines,IME C94/75,1975:119-128.
    [68]Hiroyasu H,Kadota T,Arai M.Development and use of spray combustion modeling to predict diesel engine efficiency and pollutants emissions.Bull.JSME,1983,26:569-575
    [69]Zhang Zhenshun,Liang Zhenhua and Liang Tianpei.Evaluation of global radiative heat flux from heat release rate.内燃机学报,1994(4):286-295
    [70]王琼.柴油机缸内辐射传热的研究.西安,西安交通大学汽车工程系硕士学位论文,1994
    [71]刘明安,潘克煜,陈硕.计算柴油机缸内辐射传热的一个单区模型.内燃机工程,2000(2):37-41
    [72]陈硕,潘克煜,刘明安.柴油机缸内辐射传热三维数值模拟.燃烧科学与技术,1998(2):128-136
    [73]严兆大,沈纪胜,刘震涛等.用蒙特卡洛法计算柴油机缸内多元热辐射.内燃机学报,2000(2):123-128
    [74]熊仕涛,陈国华.柴油机缸内传热计算.内燃机学报,2001,19(3):215-218
    [75]陈红岩,乔信起,黄震.G4135柴油机辐射多区多维模型(Ⅰ).上海交通大学学报,2001,35(5):763-765
    [76]陈红岩,乔信起,黄震.G4135柴油机辐射多区多维模型(Ⅱ).上海交通大学学报,2001,35(5):767-770
    [77]聂宁宏,刘勇,姚寿广.柴油机缸内火焰辐射的新有效吸收系数模型.内燃机工程,2005,26(6):35-37
    [78]刘勇,聂宇宏,姚寿广.段法模型在柴油机缸内辐射传热的应用.热科学与技术,2005,4(3):237-240
    [79]姜晓光,聂宇宏,谢凯弘等.基于Fluent的柴油机缸内辐射换热分析.科学技术与工程,2008,8(15):4099-4103
    [80]孔样谦,有限单元法在传热学中的应用,科学出版社,1981。
    [81]陈国华,有限单元法在内燃机工程中的应用,华中工学院出版社,1985。
    [82]Prasad R,Savindra N.Transient heat transfer analysis in an internal combustion engine piston[J].Computer & Structures,1990,34(5):787-793
    [83]李人宪.过度工况下柴油机活塞三维温度场的求解。内燃机学报,1991,9(2):184-191
    [84]李烈兵.柴油机活塞温度场三维有限元计算及试验研究.武汉交通科技大学学报.1995,19(3):254-259
    [85]郑永刚.有限元分析活塞温度场.山东内燃机,1995(4):10-15
    [86]王希珍,周军,刘一鸣.195柴油机气缸套溫度场的三维有限元分析.合肥工业大学学报(自然科学版),2000(3):371-375
    [87]黄震,张继春,徐斌等.基于有限元的活塞优化设计分忻.昆明理工大学学报(理工版),2006(3):76-80
    [88]杜建红,张红兵,程军.内燃机气缸盖瞬态温度场数值模拟.华北工学院测试技术学报,1999,13(4):203-206
    [89]杨万里,陈国华,王春发等.内燃机燃烧室零件动态热应力研究.内燃机工程,2002,23(3):46-49
    [90]李春玲.柴油机气缸盖温度场数值模拟.柴油机设计与制造,2006,14(1):18-20
    [91]杨俊武.D6113ZQ柴油机活塞三维有限元分析及其结构改进.柴油机设计与制造,2000,8(1):25-29
    [92]Robinson D,Palaninathan R.Thermal analysis of piston casting using 3-D finite element method finite elements in analysis and design.2001,37:85-95
    [93]王东方,潘琼瑶,郑百林等.柴油机气缸盖多场耦合三维有限元分析.力学季刊,2005,26(3):511-526
    [94]王宇,白敏丽,吕继组等.利用部件整体耦合法分析柴油机气缸盖热机械强度.内燃机工程,2007,28(6):41-44
    [95]李炯,杨世文,张翼等.汽油机活塞组三维有限元耦合分析.华北工业学院学报,2004(5):319-321
    [96]马迅,赵刚.发动机活塞的热结构耦合分析.机械设计与制造,2005(11):40-43
    [97]郑百林,潘琼瑶,王锋等.柴油机活塞热机耦合三维有限元分析.同济大学学报(自然科学版),2006,34(11):1534-1538
    [98]赵宏国,白敏丽,王宇等。耦合法在柴油机传热研究中的应用.小型内燃机与摩托车,2007,36(6):1-5
    [99]钱作勤,陆瑞松,奚敏.柴油机受热部件三维循环瞬态温度场数值仿真.合肥工业大学学报(自然科学版),2000,23(S1):829-832
    [100]丁铁新,白敏丽.用耦合分析法解决内燃机活塞传热问题.小型内燃机与摩托车,2004(5):8-11
    [101]范立云,冯立岩,隆武强等.接触热阻的方法在活塞组耦合模型有限元分析的应用.内燃机工程,2005,26(4):39-41
    [102]李迎,俞小莉,李婷等.活塞-缸套瞬态耦合传热的有限元仿真.浙江大学学报(工学版),2007,42(2):347-350
    [103]李迎,俞小莉,陆国栋等.活塞-缸套周期性瞬态传热仿真.农业机械学报,2007,38(1):60-64
    [104]姜明,封汉颍.基于ANSYS的内燃机活塞-缸套耦合系统的传热模拟.科学技术与工程,2008,8(6):1437-1440
    [105]Nakai,H.and Ino,N.Effects of film temperature on piston-ring lubrication for refrigeration compressors considering surface roughness.ASME,1997
    [106]Manolache,G.and Gretu,S.Study of thermal and lubrication phenomena in the piston-ring and cylinder-sleeve tribology system of an internal combustion engine and flash temperature calculation.Lubrication Science,2000,Vol.12 No.1
    [107]Akalin,O.and Newaz,G.M.Piston-cylinder bore friction modeling in mixed lubrication regime,Part 1-Analytical results.Journal of tribology,2000,Vol.23 No.1
    [108]戴旭东,王义亮,谢友柏。以润滑油膜为动力耦合件的内燃机缸套-活塞系统中动力耦合方程的建立及求解方法.润滑与密封,2001,147(5):5-8
    [109]戴旭东,袁小阳,谢友柏.缸套-活塞系统润滑行为与动力学行为耦合分析.摩擦学学报,2003,23(6):519-523
    [110]王义亮,谢友柏.多缸内燃机缸套-活塞系统摩擦学与动力学耦合问题的研究.润滑与密封,2005,168(2):1-5
    [111]陈国华等.燃烧室耦合系统不稳定传热的数值模拟分析.国际河内航运与柴油机技术交流会,1987
    [112]白敏丽,蒋惠强,陈家骅.发动机活塞组-缸套整体耦合系统瞬态温度场数值模拟.1994,22(4):12-17
    [113]白敏丽,沈胜强,陈家骅等.燃烧室部件耦合系统循环瞬态传热模型的研究.内燃机学报,2000,18(1):100-103
    [114]白敏丽,沈胜强,陈家骅等.燃烧室部件耦合系统过渡工况传热全仿真模拟研究.内燃机学报,2001,19(3):229-234
    [115]白敏丽,沈胜强,陈家骅等。活塞环摩擦热对燃烧室部件耦合系统的传热影响模拟研究.内燃机学报,2001,19(2):182-168
    [116]白敏丽,丁铁新,吕继组.活塞组-气缸套耦合传热模拟.内燃机学报,2005,23(2):168-175
    [117]白敏丽,丁铁新,董卫军.活塞环-气缸套润滑摩擦研究.内燃机学报,2005,23(1):72-76
    [118]周龙,白敏丽,吕继组,刘佳伟.用耦合分析法研究内燃机活塞环-气缸套传热润滑摩擦问题.内燃机学报,2008,26(1):69-75
    [119]周龙,白敏丽,吕继组,刘佳伟.考虑固壁导热的活塞环-气缸套润滑摩擦特性的影响因素研究.润滑与密封。2008,33(1):33-38
    [120]杨万里,陈国华,陈燕等.内燃机燃烧室耦合零件系统过度工况的传热模拟.内燃机学报,2003,21(2):161-166
    [121]杨万里,陈燕,陈国华等.三维耦合运动零件系统热传导计算模拟研究.中国机械工程,2003,14(18):1577-1579
    [122]杨万里,陈燕,朱大林等.内燃机燃烧室零件循环瞬态传热模拟.机械工程学报,2004,40(10):39-43
    [123]刘志恩,蒋炎坤,董哲林等.汽油机活塞组-气缸套整体耦合传热模型及应用。车用发动机,2007(4):37-41
    [124]Liu Zhien.3-D Numerical Simulation Of Transient Heat Transfer Among Multi-Component Coupling System In Internal Combustion Chamber.SAE Paper 2008-01-1818,2008
    [125]Laimbock F J,Meister G,Grilc S.CFD Application in Compact Engine Development.SAE Trans.1996,05(3):1980-2044.
    [126]Siders J A,Tilley D G.Optimizing Cooling System Performance Using Computer Simulation.SAE Paper 971802,1997.
    [127]Ngy Srun A P.A Simple Engine Cooling System Simulation Model[C].SAE Paper 1999-01-0237,1999.
    [128]赵以贤,毕小平.车用内燃机冷却系的流动与传热仿真.内燃机工程,2003,24(4):1-5.
    [129]屈盛官,夏伟,黄荣华等.发动机气缸盖冷却水流动试验及CFD分析.华南理工大学学报(自然科学版),2004,32(8):42-46
    [130]白敏丽,吕继织,丁铁新.六缸柴油机冷却系统流动与传热的数值模拟研究.内燃机学报,2004.(6):525-531
    [131]杜佳正,黄荣华,王龙飞等.发动机机体缸盖冷却水CFD模拟计算与分析.柴油机设计与制造,2007,15(1):15-18
    [132]王兆文,黄荣华,成晓北等.重型车用柴油机气缸盖内流动与传热研究.汽车工程,2008,30(4):312-316
    [133]成晓北,王兆文,黄荣华等.车用柴油机冷却系统水流分布的试验研究.汽车工程,2008,30(5):407-410
    [134]Julial et al.Impeach of computer aided engineering on Ford Light Truck cooling design and development processes.Vehicle thermal management systems conference proceedings,P 25-37,1993.
    [135]李迎,愈小莉,陈红岩等.发动机冷却系统流固耦合稳态三维数值模拟仿真.内燃机学报,2007,25(3):252-257
    [136]陈红岩,李迎,愈小莉.柴油机流固耦合系统稳态传热数值仿真。农业机械学报,2007,38(2):56-60
    [137]郭立新,杨海涛,夏兴兰等.应用直接耦合法模拟计算气缸盖、气缸套温度场.内燃机工程,2007,28(5):35-40
    [138]骆清国,刘红彬,龚正波等.柴油机气缸盖流固耦合传热分析研究.兵工学报,2008,29(7):769-773
    [139]李卫民,段敏,晏辉.基于有限元柴油机气缸垫固流耦合场分析.拖拉机与农用运输车,2008,38(1):61-63
    [140]王虎,桂长林.内燃机缸体冷却液流固耦合模型的共轭传热研究.汽车工程,2008,30(4):317-321
    [14]]吕继组,白敏丽,邵治家等.计算机辅助工程(CAE)在内燃机中的应用.内燃机,2007(6):18-22
    [142]Merol T.and Fort E.Effect of insulation of strategy and design parameters on diesel engine heat rejection and performance.SAE Paper 850506,1985
    [143]Keribar R,Morel T.Thermal shock calculation in IC engines.SAE Trans 870162,1987
    [144]Morel T.Detailed analysis of heat flow patter of a piston.International Symposium COMODIA 90,1990:309-314
    [145]Doglas,M.B.and Dennis N.A.A methodology for coupled thermodynamic and heat transfer analysis of a diesel engine.Appl.Math.Modelling,1994,Vol.18
    [146]Woschni G.et al.Untersuchung des warmetransportes zwischen kolben,Kolbenringen und Zylinderbuchse,MTZ Motortechnische Zeitschrift.1998,Vol.59 No.9
    [147]Yong Liu and Reitz,R.D.Modeling of heat conduction with chamber walls for multidimensional internal combustion engine simulation.Int.J.Heat Mass Transfer,1998,Vol.41 No.6:859-869
    [148]Jun X.Stephen S.and Edwin I.Integration of 3D combustion simulation and conjugate heat transfer analysis to quantitatively evaluate component temperatures.SAE 2003-01-3128,2003
    [149]Jukka,T.et al.Heat transfer study of a high power density diesel engine.SAE 2004-01-2962,2004
    [150]S.Etemad,C.F.Stein and S.Eriksson.Heat Transfer Analysis and Cycle Averaged Heat Flux Prediction by Means of CFD and its Validation for an IC-Engine.SAE Paper 2005-01-2029
    [151]S.Etemad,T.Hagner C.F.and Stein.Accurate Modelling of the Thermal Behavior of a Diesel Engine by Means of CFD and Its Validationo SAE Paper 2007-01-1905
    [152]Filip Kitanoski and Wolfgang Puntigam.An Engine Heat Transfer Model for Comprehensive Thermal Simulations。 SAE Paper 2006-01-0882,2006
    [153]Egel Urip.An Efficient IC Engine Conjugate Heat Transfer Calculation for Cooling System Design.SAE Paper 2007-01-0147,2007
    [154]Wiedenhoefer J.F.A computational investigation on the effects of radiation and wall heat transfer on diesel engine performance[D].University of Wisconsin-Madison,2002
    [155]Dennis N.Assanis and Edward Badillo.Transient of poston-liner heat transfer in low-heat rejection diesel engines.SAE Paper 880189,1988
    [156]陈国华.陶瓷发动机燃烧室耦合系统瞬态传热模型及其应用的研究.“七五”绝热发动机技术鉴定会.1990
    [157]全玉梅.内燃机燃烧室部件整体耦合系统传热仿真模拟[D].大连理工大学硕士论文,2000
    [158]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2004,483-488
    [159]吉林工业大学内燃机教研室.内燃机理论与设计[M].机械工业出版社:1977,30-80
    [160]Zeldovich,Y.B.,Sadovnikov,P.Y.and Frank-Kamenetskii,D.A.Oxidation of nitrogen in combustion.Translation by M.Shelef,Academy of Sciences of USSR,Institute of Chemical Physics,Moscow-Leningrad,1947.
    [161]Mather,D.K.,Reitz,R.D.Modeling the influence of fuel injection parameters on diesel engine emissions.SAE 980789,1998
    [162]Magnussen,B.F.,Hjertager,B.H.On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion.Proc.of 16~(th) Symposium(International) on Combustion,pp.649-657,The Combustion Institute,Pittsburgh,1971
    [163]Tatschl,R.,Pachler,K.,Winklhofer,W.A comprehensive DI diesel combustion model for multidimensional engine simulation.Proc.Of COMODIA 98 - Int.Symposium on Diagnostics and Modelling of Combustion Engines,pp.141-148,Kyoto,Japan,1994
    [164]Karlsson,A.,Magnusson,I.,Balthasar,M.,et al.Simulation of soot formation under diesel engine conditions using a detailed kinetic soot model.SAE 981022,1998
    [165]Hiroyasu,H.,and Nishida,K.Simplified three dimensional modeling of mixture formation and combustion in a DI diesel engine.SAE 890269,1989
    [166]Nagle,J.and Strickland-Constable,R.F.Oxidation of carbon between 1000 - 2000℃.Proceedings of the Fifth Conference on Carbon.New York:Pergamon(1962).
    [167]F.J.Wallace T.K.Kao M.Tarabad.Adiabatic Diesel Engine.Transactions of CSICE,840003.
    [168]张志千,朱铁柱,沈胜强.气缸内瞬时陶瓷表面瞬时温度测试传热分析.内燃机学报.1991(1).
    [169]沈胜强.绝热柴油机缸内瞬态传热的实验研究与计算模拟[D].大连:大连理工大学,1989.
    [170]Baldwin B.,Lomax H.Thin layer approximation and algebraic model for separated turbulent flows.AIAA-78-257.1978.
    [171]P.R.Spalart,S.R.Allmaras.A one-equation turbulence model for aerodynamics flows.AIAA Paper 1992-0439
    [172]Launder,B.and D.Spalding.The numerical computation of turbulent flows.Computer Methods in Applied Mechanics and Engineering,1974(3),269-289.
    [173]Yakhot V,Orszag S A.Renormalization group analysis of turbulence I.Basic theory.Journal of Scientific'Computing,1986,1(1):39-51
    [174]Han Z,REITZ R D.Turbulence modeling of internal combustion engines using RNG k- ε Models.Combust.Sei.And Teeh 1995 106:267-295
    [175]解茂昭.非定常强压缩性湍流流动的数值模拟.工程热物理学报.1989(4):456-458
    [176]解茂昭.内燃机气缸内湍流流动的数值模拟.应用力学学报.1990(7):58-64
    [177]Shih T H,Liou W W,Shabb IR A,et al.A new k-ε eddy-viscosity model for high reynolds turbulent flows model development and validation.Computers Fluid,1995,24(3):227-238
    [178]Durbin P.A.Near-wall turbulence closure modeling without damping functions.Theor.Comput.Fluid Dyn.1991,3,1-13.
    [179]Hanjalic K.,Popovac M.and Hadziabdic M.A robust near-wall elliptic relaxation eddy-viscosity turbulence model for CFD.Int.J.Heat and Fluid Flow.2004,(25):1047-1051
    [180]Speziale,C.G.,Sarkar,S.,Gatski,T.Modeling the pressure- strain correlation of turbulence:an invariant system dynamic approach.J.Fluid.Mech.1991,227:245-272.
    [181]AVL-FIRE CFD Solver V8.4,2005
    [182]EI Tahry S H.Application of a Reynolds stress model to engine like flow calculations.ASME J.Fluids eng 1985,177:444-450
    [183]El Tahry S H.A comparison of three turbulence modeling engine-like geometric.In proceeding of international symposium on diagnostics and modeling of combustion in reciprocating engines.COMODIA 85,Tokyo,Japan,1985:203-213
    [184]Johes W P,Pascau A.Calculation of continued swirling flows with a second moment closure.ASME J.Fluids Eng.1989,Vo13:248-255
    [185]Watkins A P,Kanellakopoulos P and Lea C J.An assessment of discretization schemes and turbulence models for in-cylinder flows.COMODIA90,1990:499-504
    [186]Deschamps C J,Watkins A P.Modeling of turbulent flow through port/valve assemblies with algebraic Reynolds Stress Model.COMODIA 1994:547-552
    [187]Lebrere L,Buflat M,Le Penven Let al.Application of Reynolds Stress Modeling to engine flow calculations.Transactions of the ASME.1996,Vol.187:710-721
    [188]Lca C J,Watkins A P.Differential stress modeling of turbulent flows on model reciprocating engines.Proe.Inst.Mech.Engrs.1997,Vol221:59-77
    [189]李芳.内燃机缸内湍流流动的二阶矩封闭模型研究[D].大连理工大学博士学位论文,1999.
    [190]Spezial C G,et al.Modeling the pressure-strain correlation of turbulence:an invariant dynamical systems approach.J.Fluid Mech.1991,227:245-272
    [191]Lee M.J.Distortion of homogeneous turbulence by axisymmetric strain and dilatation.Phys.Fluid 1989,A1(9):1541-1557
    [192]Johansson A V and Hallaback M.Modeling.of rapid pressure-strain in reynolds-stress closures.J.Fluid Mech.1994.Vo1269:143-168
    [193]Launder B E,Reece G J and Rodi W.Progress in the development of a Reynolds stress turbulence.J.Fluid Mech.1975,68:557-566
    [194]Rodi W A.New algebraic stress relation for calculatkng the Reynolds stresses.Z.Angew.Math.Mech.1976,56:219-221
    [195]Smagorinsky J.General circulation experiments with the primitive equations:Ⅰ.the basic equations.Mon.Weather Rev.1963(91):99-164.
    [196]Naitoh K,Kuwaharra K.Large eddy simulation and direct simulation of compressible turbulence and combusting flows in engines based on the BI-SCALES method.Fluid Dyn.Res.1992,10:299-325
    [197]Haworth D C,Jansen K.Large -eddy simulation on unstructured deforming meshes:towards reciprocating IC engine.Computers and Fluids,2000,29:493-524
    [198]Saijyo K,Kojima T,Nishiwaki K.Computational fluid dynamics analysis of the effect of mixture heterogeneity on combustion process in a premixed charge compression ignition engine.International Journal of Engine Research,2005,6(5):487-495
    [199]史春涛,张宝欢,金则兵等.湍流模型的发展及其在内燃机CFD中的应用.拖拉机与农用运输车,2006,33(1):5-10
    [200]Popovac,M.,Hanjalic,K.Compound Wall Treatment for RANS Computations of Complex Turbulent Flows.3rd M.I.T.Conference on Computational Fluid and Solid Mechanics,Boston,2005
    [201]Popovac,M.,Hanjalic,K.Compound wall treatment for RANS computation of complex turbulent flows and heat transfer.Flow Turbulence Combust,2007,78:177-202
    [202]Kader,B.A.Temperature and concentration profiles in fully turbulent boundary layers.Int.J.Heat Mass Transfer,1981,24:1541-1544
    [203]Kuo K K.Principles of Combustion[M].New York:Wi -ley - Interscience publication.1986.
    [204]Faeth G M.Evaporation and combustion of sprays[J].Prog.Energy Combust.Sci.1983,9:1-76.
    [205]徐海涛.直喷式柴油机喷雾混合机理、建模及三维数值模拟.武汉:华中理工大学,1998,13-14
    [206]Williams F A.Spray combustion and atomization[J].Phys.Fluids,1985,1:541-545
    [207]Borman G L.Unsteady vaporization history and trajectories of fuel drops injected into swirling air [C].SAE Paper 593C,1962
    [208]Dukowicz,J.K.A Particle-Fluid Numerical Model for Liquid Sprays.J.Comp.Physics,35,229-253,1980
    [209]AVL-Fire Spray V8.4,2005
    [210]Gosman,A.D.and loannides,E.Aspects of computer simulation of liquid-fueled combustors.AIAA,81-323,1981
    [211]O'Rourke,P.J.Statistical properties and numerical implementation of a model for droplet dispersion in turbulent gas.J.Comput.Physics 83,1989.
    [212]Dukowicz,J.K.Quasi-steady droplet change in the presence of convection,informal report Los Alamos Scientific Laboratory,LA7997-MS.
    [213]Amsden A A,Orourke P J,Butler TD.KIVA- Ⅱ:A computer program for chemically reactive flows with sprays[R].Los Alamos National Laboratory Report,LA2115602 MS,1989.
    [214]Abramzon,B.and Sirignano,W.A.Droplet vaporization model for spray combustion calculations.AIAA 26~(th) Aerospace Sciences Meeting,1988.
    [215]Bai,C.and Gosman,A.D.Development of methodology for spray impingement simulation.SAE Paper 950283,1995.
    [216]Naber,J.D.and Reitz,R.D.Modeling engine spray/wall impingement.SAE-880107.
    [217]Mundo,C.,Sommerfeld,M.and Tropea,M.C.Experimental studies of the deposition and splashing of small liquid droplets impinging on a flat surface.ICLASS-94 Rouen,France,July 1994.
    [218]O'Rourke,P.J.and Amsden,A.A.A spray/wall Interaction sub-model for the KIVA-3 wall film model.SAE Paper 2000-01-0271.
    [219]V.Kunsberg Sarre,Ch.,Tatschl,R.Spray modeling/atomization-current status of break-up models.Proc.of ImechE Seminar on Turbulent Combustion of Gaseous and Liquids,Lincoln,United Kingdom,1998
    [220]史春涛,秦德,唐琦等.内燃机燃烧模型的发展现状.农业机械学报,2007,38(4):181-186
    [221]Magnussen B F,Hjertager B H.On mathematical modeling of turbulent combust ion with special emphasis on soot formation and combustion[C].Proceedings of the 16th Symposium(International) on Combust ion,The Combustion Institute,1976:719-729.
    [222]Van Kalmthout E,Veynante D,Candel S.Direct numerical simulation analysis of flame surface density equation in non-premixed turbulent combust ion[C].26th Symposium(International) on Combust ion,The Combust ion Institute,Pittsburge,1996.
    [223]Vervisch L,Hauguel R,Domingo P,et al.Three facets of turbulence combust ion modeling:DNS of premixed V-flame.LES of lifted non-premixed flame and RANS of jet-flame[J].Journal of Turbulence,2004,5(4):1-36.
    [224]Delhaye B,Cousyn B.Computation of flow and combust ion in spark ignition engine and comparison with experiment[J].SAE Paper 961960,1996.
    [225]Colin O,Benkenida A,Angelberger.A 3D modeling of mixing,ignition and combustion phenomena in highly stratified gasoline engines[J].Oil & Gas Science and Technology-rev.IFP,2003,58(1):47-62.
    [226]Colin O,Benkenida A.The 3-zones extended coherent flame model(ECFM 3Z) for computing premixed/diffusion combustion[J].Oil & Gas Science and Technology-rev.IFP,2004,59(6):593-609.
    [227]Musculus P,Cant s.A turbulent combustion model for a stratified a stratified charged,spark ignited international combustion engine.SAE Paper 2000-01-0275,2000
    [228]Veynante D,Vervisch L.Turbulent combust ion modeling[J].Progress in Energy and Combustion Science,2002,28(3):193-266.
    [229]Halstead M P,Kirsch L J,Prothero A,et al.A mathematical model for hydrocarbon auto ignition at high pressures[M].Proc.Royal.Society of London,A 246,1975:309-322.
    [230]Kong S C,Han Z and Reitz R D.The development and application of diesel ignition and combustion model for multi-dimensional engine simulation[C].SAE Paper 950278,1995
    [231]Sazhina E M,Sazhin S S,Heikal M R,et al.The shell auto ignition model:application to gasoline and diesel fuels[J].Fuel,1999(78):389-401
    [232]STAR-CD Methodology(Version 3.2).Japan:Yokohama Computational Dynamics Limited,2004.
    [233]AVL-FIRE Combustion V8.4,2005,
    [234]Menguc M,et al.Multidimentional model of radiative heat transfer in diesel engines.SAE 850503,1985
    [235]Chandrasekhr,S.Radiative transfer.New York:Dover publications Inc,1960
    [236]Wiedrhoefer J F,Reitz R D.A multidimensional radiation model for diesel engine simulation with comparison to experiment.Numerical Heat Transfer,Part A,2003,44:665-612
    [237]Lockwood F C,Shad N G.A new radiation solution method for incorporation in general combustion predication procedures.Proc.18~(th) symposium(int.) on combustion,1981,1405-1414
    [238]Modest,M.F.Radiative heat transfer.McGraw-Hill,New York,1993.
    [239]Coelho,P.J.and Carvalho,M.G.A conservative formulation of the discrete transfer method.ASME Journal of Heat Transfer,Vol.119,118-128,1997.
    [240]Edwards D.K.,Balakrishnan A.Thermal radiation by combustion gases.Int.J Heat Mass Transfer,1973,16(1):25-40
    [241]Liu J,Tiwari S N.Investigation of radiative transfer in nongray gases using a narrow band model and Monte Carlo simulation.ASME J Heat Transfer,1994,vol.116:160-166
    [242]Schenker G.N.,Keller B.Line-by-line calculations of the absorption of infrared radiation by water vapor in a box-shaped enclosure filled with humid air.In.J Heat Mass Transfer,1995,38(11):3127-3134
    [243]Smith T.F.,Shen Z.F.,Friendmen J.N.Evaluation if coefficient for the weighted sum of gray gases model.ASME J Heat Transfer,vol.104:602-608,1982
    [244]Modest M.F.The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer.ASME J Heat Transfer,vol.113:650-656,1991
    [245]Truelove J.S.A mixed gray gas model for flame radiation.United Kingdom Atomic Energy Authority,AERE-R-8494,1976
    [246]Kong s C,Marriott D,Reitz D R.Modeling and experiments of HCCI engine combustion using detailed chemical kinetics with multidimensional CFD.SAE Paper 2001-01 - 1026,2001.
    [247]Lavy J,Dabadie J C,Angelberger C et al.Innovative ultra-low NOx controlled auto-ignition combustion process for gasoline engines:the 4-space project.SAE Paper 2000-01-1837,2000.
    [248]Li G,Bo T,Chen C et al.CFD simulation of HCCI combustion in a 2-stroke DI gasoline engine.SAE Paper 2003-01-1855,2003.
    [249]吕继组,白敏丽.6110柴油机进气过程流动的多维瞬态数值模拟研究.工程热物理学报.2006,27(2):241-243
    [250]Shyy W,Burke J.Study on iterative characteristics of convective-diffusive and conjugate heat transfer problems.Number Heat Transfer,Part B,1994.26:21-27
    [251]韩鹏,陈熙.关于对流-导热耦合问题整体求解方法的讨论.全国第七届计算传热学会议论文集,北京,1997,32-37
    [252]杨沫,王育清,傅燕弘等.具有表面辐射的导热利对流耦合问题的数值模拟计算方法.西安交通大学学报,1992,26(2):26-32
    [253]AVL-FIRE FEM Interface V8.4,2005,
    [254]吕继组,白敏丽,周龙.初始条件及喷雾对柴油机缸内流动的影响研究.大工学报.2008,48(3):344-350.
    [255]吕继组,白敏丽.燃油的喷射雾化燃烧对柴油机缸内空气流动影响的研究.内燃机工程.2007,28(3):25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700