用户名: 密码: 验证码:
横向交变电场电色谱的传递理论和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对三腔室横向交变电场电色谱的传热、传质理论以及该电色谱的应用进行了系统的研究。
     首先构建了横向电场电色谱测温系统,测定了电色谱冷却和施加电场的动态升温过程,研究了电流强度和流动相离子强度对柱内温度分布的影响。建立了横向电场电色谱过程的传热模型,模拟从非稳态操作到稳态操作的温度分布。利用该模型可同时获得柱内电压分布、有效电压和功耗等参数,分析电色谱放大的温度效应,以及各种条件下的温度分布行为。
     制备了不同配基修饰密度的离子交换介质,研究了电色谱的蛋白质动态吸附行为。结果表明,由于高配基密度介质的表面电荷密度较高,孔内电渗流对促进传质的作用更明显,故蛋白质动态吸附容量随电场强度增加较多。
     建立横向交变电场离子交换电色谱过程的理论模型,利用上述蛋白质动态吸附实验结果,验证了模型的可靠性。系统分析了电色谱过程的传质和色谱行为。理论分析发现,电渗引起的孔内对流受蛋白质不可逆吸附的影响,孔内对流速度对吸附饱和度呈负指数下降趋势;在电场作用下,吸附剂内蛋白质浓度分布呈现出沿电场方向的偏移,在操作的初始时刻电场作用效果有利于提高动态吸附容量。
     利用填充阴离子交换介质Q Sepharose Fast Flow的横向电场色谱,研究了卵清蛋白质的分离纯化,获得了高纯度卵铁传递蛋白和卵清白蛋白。与普通离子交换色谱相比,横向电场电色谱的分离能力提高一倍以上,证明了该横向电场电色谱的高容量分离纯化性能。
This thesis is concerned with the studies of ion-exchange electrochromatography with an oscillatory electric field perpendicular to mobile-phase flow driven by pressure (pIEEC). The electrochromatography is composed of a three-compartment column developed in the laboratory. The work has investigated heat and mass transport phenomena systematically by both experiments and mathematical modeling.
     First of all, an experimental system for in-column temperature measurements was constructed, and the dynamic processes of the in-column temperature in electrochromatography were examined. With the experimental system, the effect of electric current strength and mobile-phase ionic strength on the in-column temperature was investigated. Then, a heat transfer model for the pIEEC was established for the dynamic process modeling. It was confirmed that the model was in good agreement with the measurements. By the model calculations, we could also obtain the in-column voltage distribution, effective voltage applied to the central compartment and the efficiency of energy consumption. Moreover, the model was used for scale-up analysis and for investigation of temperature distribution under various conditions.
     Protein ion-exchangers of different ion-exchange capacities were prepared to study the dynamic protein adsorption processes of the pIEEC. The results indicated that electric field for the pIEEC was more effective for the high ion-capacity resin. Namely, there existed more significant electroosmotic flow in the high ion-capacity resin, which enhanced the intraparticle mass transfer of protein, leading to the increase of dynamic protein adsorption capacity.
     A mathematical model of the pIEEC was developed, and the model parameters were determined by independent experiments or calculations. The model was found in good agreement with the above experimental results. The model was then used to analyze the pIEEC process. It was found that protein adsorption affected the intraparticle electroosmotic flow, which decreased exponentially with increasing protein adsorption. Moreover, protein distribution in adsorbents was found to present excursion along the electric field direction. At the beginning of the pIEEC, intraparticle convection caused by the electric field contributed more to the enhancement of dynamic binding capacity.
     The pIEEC (2 mL) was finally used to separate hen egg-white (HEW) proteins. The results were compared with those of normal ion exchange chromatography (IEC). Q Sepharose FF was packed into the central compartment as the chromatographic bed. It was confirmed that the dynamic binding capacity (DBC) of different proteins (ovotransferrin and ovalbumin) in the HEW solution increased 2.3 times when an oscillatory electric current of 30 mA at 1/20 Hz was applied in the transverse column direction. Then, the HEW proteins were separated by the pIEEC at loading amounts 2.3-fold higher than those by the IEC, and similar separation efficiencies of the two chromatographic modes were achieved. Both the recovery yield and purity reached 73% to over 90%. The results indicate that the pIEEC is promising for high-capacity purification of proteins.
引文
[1]师治贤,王俊德.生物大分子的液相色谱分离和制备.北京:科学出版社, 1992, 1~8
    [2]孙彦,生物分离工程,北京:化学工业出版社,1998
    [3]施良和编,凝胶色谱法,北京:科学出版社,1980
    [4] Locascio G. A., Tigier H. A., Batlle AMdC. Estimation of molecular weights of proteins by agarose gel filtration. J Chromatogr, 1969, 40:453-457
    [5] Jason J. C., Ryden L., Protein purification: principles, high resolution methods and applications. New York: John Wiley & Sons, Inc., 1998
    [6] Himmelhoch S. R., Chromatography of proteins on ion-exchange adsorbents. Meth Enaymol, 1971, 22: 273-286
    [7] He B., Huang W., Ion exchange and adsorption resin. Shanghai: Shanghai Science and Technology Education Press, 1995
    [8] Narayannan S. R., Preparative affinity chromatography of proteins. J Chromatogr, 1994, 658: 237-258
    [9] Burnouf T., Radosevich M.. Affinity chromatography in the industrial purification of plasma proteins for therapeutic use. J Biochem Biophys Methods, 2001, 49: 575-586
    [10] Hjerten S., General aspects of hydrophobic interaction chromatography. J Chromatogr, 1973, 87: 325-331
    [11] Porath J., Sundberg L. and Fornstedt N. et al. Salting-out in amphiphilic gels as a new approach to hydrophobic adsorption. Nature, 1973, 245 (5426): 465-466
    [12] Reversed Phase Chromatography: Principles and methods. Amersham Pharmacia Biotech, 18-1134-16
    [13] Olson C. V., Reifsnyder D. H. and Canonva-Davis E. et al., Preparative isolation of recombinant human insulin-like growth factor 1 by reversed–phase high-performance liquid chromatography. J Chromatogr A, 1994, 675: 101-112
    [14] Kawasaki T., Specification of the adsorption model in hydroxyapatite chromatography. III. Competition model in gradient chromatography and another relevant model. Sep Sci Technol, 1988, 23: 1105-1117
    [15]刘国诠,生物工程下游技术(第二版),北京:化学工业出版社,2003,265-276
    [16] Patro S. Y., Przybycien T. M., Self-interaction chromatography: A tool for the studying of protein-protein interaction in bioprocessing environments. Biotechnol Bioeng, 1996, 52(2):193-203
    [17] Wallen P., Bergsdorf N. and Ranby M., Purification and identification of two structural variants of porcine tissue plasminogen activator by affinity adsorption on fibrin. Biochim Biophys Acta, 1982, 719:318-328
    [18]佟晓冬,流化床吸附分离蛋白质的基础研究,博士学位论文,天津大学,2002.
    [19]杨征,膨胀床色谱的流体力学和蛋白质吸附特性,硕士学位论文,天津大学,2005.
    [20]佟晓冬,白姝,孙彦,磁稳流化床及其在生物分离中的应用,化工进展,2002,20(12):43-45.
    [21]丁勇,高密度核壳型磁性琼脂糖介质及磁稳流化床吸附蛋白质的研究,硕士学位论文,2005.
    [22] Linda L. L., Rigid macroporous copolymers as stationary phases in high- performance liquid chromatography. J. Chromatogr., 1991, 544: 201.
    [23] Chang S. H., Gooding K. M. and Regnier F. E., Use of oxiranes in the preparation of bonded phase supports. J. Chromatogr., 1976,120: 321.
    [24] Horvath J., Boschetti E. and Guerrier L. et al., High performance protein separation with novel strong ion-exchangers. J. Chromatogr. A, 1994, 679:11.
    [25] Luo R. G., Hsu J. T., Rate parameters and gradient correlations for gradient-eluent chromatography. AIChE J., 1997, 43: 464.
    [26] Wang D. M., Hao G. and Shi Q. H. et al., Fabrication and characterization of superporous cellulose bead for high-speed protein chromatography, J. Chromatogr. A, 2007, 1146:32-40.
    [27] Carta G., Ubiera A. R., Pabst T. M., Protein mass transfer kinetics in ion exchange media: Measurement and interpretations. Chem Eng Technol, 2005, 28(11): 1252-1264
    [28] Moore S. and Stein W. H., Chromatography of amino acids on sulfonated polystyrene resins. J. Biol. Chem., 1951, 192: 663.
    [29] Alpert A. J. and Regnier F E., Preparation of a porous microparticulate anion-exchange chromatography supportfor proteins. J.Chromatogr., 1979, 185: 375.
    [30] Muller W., New ion-exchangers for the chromatography of biopolymers. J.Chromatogr., 1990, 510: 133.
    [31] Irvine R. F., Letcher A. J. and Lander D. J. et al, Inositol triphosphates in carbochal-stimulated rat parotid glands. Biochem. J., 1984, 223: 237.
    [32] Meek J. L., Inositol bis- tris-, and tetrakis- phosphate(s): Analysis in tissue by HPLC. Proc. Natl. Acad. Sci. USA., 1986, 83: 4162.
    [33] Chew C. S., Brown M. R., Release of intra-cellular Ca2+ and elevation of inositol triphosphates by secretagogues in parietal and chief cells isolated from rabbit gastric mucosa. Biochim. Biophys. Acta., 1986, 88: 116.
    [34] Scott C. S., Patel M., Stark A. N. et al., FPLC of leukaemia cell N-Acetylβ-D-Hexosaminidases. Leukaemia Res., 1987, 11: 437
    [35] Gadam S. D., Cramer S. M., Salt effects in anion exchange displacement chromatography: Comparison of pentosan polysulfate and dextran, sulfate displacers. Chromatographica, 1994, 39(7/8): 409.
    [36] Lundell N., Markides K., Two-dimensional liquid chromatography of peptides: An optimization strategy. Chromatographia, 1992, 34(5-8): 369.
    [37] Langmuir I., The adsorption of gases on plane surface of glass, mica and platinum. Am Chem Soc, 1918, 40: 1361-1403
    [38]周盈,蛋白质离子交换吸附平衡理论研究,硕士学位论文,天津大学,2003
    [39] Rasmusson M., Wall S., Surface electrical properties of polystyrene latex: 1. electrophoresis and static conductivity. J. Colloid. Interf. Sci., 1999, 209: 312-326.
    [40] Rasmusson M., Mellander B. E. and Ennis J., Surface Electrical Properties of Polystyrene Latex: 2. ESA and Dielectric Response. J. Colloid. Interf. Sci., 1999, 209: 327-340.
    [41] Biefer G. J., Mason S. G., Electroosmosis and streaming in natural and synthetic fibers. J. Colloid. Interf. Sci., 1954, 9: 20-35.
    [42]宋世谟,王正列,李文斌,物理化学(第三版),北京:高等教育出版社,1993.
    [43] Robson M. M., Cikalo M. G. and Myers P., Capillary electrochromatography: A review, J.Microcol. Sep., 1997, 9: 357-372.
    [44] Leinweber F. C., Pfafferodt M. and Seidel-Morgenstern A. et al., Electrokinetic effects on the transport of charged analytes in biporous media with discrete ion-permselective regions, Anal. Chem., 2005, 77: 5839-5850.
    [45] Rathore A. S. and Horvath C., Capillary electrochromatography: theories on electroosmotic flow in porous media, J. Chromatogr. A, 1997, 781: 185-195.
    [46] Fawcett W. R. and Smagala Th. G., New developments in the theory of the diffuse double layer, Langmuir, 2006, 22: 10635-10642.
    [47] Knox J. H., Grant I. H. Miniaturisation in pressure and electroendosmotically driven liquid chromatography: some theoretical conderations. Chromatographia, 1987, 24: 135-143.
    [48] Knox J. H. Thermal effects and band spreading in capillary electro-separation. Chromatographia, 1988, 26: 329-337.
    [49] Knox J. H., Grant I. H., Electrochromatography in packed tubes using 1.5 to 50μm silica gels and ODS bonded silica gels. Chromatographia, 1991, 32: 317.
    [50] Rice C. L. and Whitehead R. Electrokinetic flow in a narrow cylindrical capillary, the Journal of Physical Chemistry, 1965, 69: 4017-4024.
    [51] Stol R., Poppe H. and Kok W. Th., Modelling of the pore flow in capillary electrochromatography, J. Chromatogr. A, 2000, 887: 199-208.
    [52] Anderson J. L. and Idol W. K., Eletroosmosis through pores with nonuniformly charged walls, Chem. Eng. Commun. 1985, 38: 93-106.
    [53] Potocek B., Gas B., Kenndler. E and Stedry M, Eletroosmosis in capillary zone electrophoresis with non-uniform zeta potential, J Chromatogr. A, 1995, 709: 51-62
    [54] Santiago J. G., Comments on the conditions for similitude in electroosmotic flows, Journal of Colloid and Interface Science, 2007, 310: 675-677.
    [55] Herr. A. E., Molho J. I., Santiago J. G, Mugal M. G., Kenny T. W. and Garguilo M. G., Electroosmotic capillary flow with nonuniform zeta potential, Anal. Chem. 2000, 72: 1053-1057.
    [56] Fu L. M., Lin. J. Y. and Yang. R. J., Analysis of electroosmotic flow with step change in zeta potential, Journal of Colloid and Interface Science, 2003, 258: 266-275.
    [57] Zembala M., Electrokinetics of heterogeneous interfaces, Advances in Colloid and Interface Science, 2004, 112: 59-92.
    [58] Mirbozorgi S. A., Niazmand H. and Renksizbulut M., Electro-osmotic flow in reservoir-connected flat microchannels with non-uniform zeta potential, Journal of Fluids Engineering, 2006, 128: 1133-1143.
    [59] Miller N. P., Berg J. C. and O’Brien R. W., The electrophoretic mobility of a porous aggregate, Journal of Colloid and Interface Science, 1992, 153: 237-243.
    [60] Miller N. P. and Berg J. C., Experiments on the electrophoretic mobility of a porous aggregates, Journal of Colloid and Interface Science, 1993, 159: 253-254.
    [61] Chen G. F. and Tallarek U., Effect of intraparticle porosity and double layer overlap on electrokinetic mobility in multiparticle systems, Langnuir, 2003, 19: 10901-10908.
    [62] Ahrer K. and Jungbauer A., Chromatographic and electrophoretic characterization of protein variants, J. Chromatogr. B, 2006, 841: 110-122.
    [63]邹汉法,刘震,叶明亮,张玉奎,毛细管电色谱及其应用,北京,科学出版社,2001.
    [64]张维冰,毛细管电色谱理论基础,北京,科学出版社,2006
    [65]谭国民,横向交变电场中的蛋白质电色谱研究,博士学位论文,天津大学,2005.
    [66] Nerenberg S. T., Pogojeff G., Preparative electrochromatography and electrophoresis using adopted sephadex and other columns Amer. J. Clin. Path., 1969, 51(6):728.
    [67] LuzzioA.J., Isolation and purification of hepatits B by electrochromatography. J. Inf. Dis., 1975, 131: 359.
    [68] Tsuda T., Chromatographic behavior in electrochromatography. Anal. Chem., 1987, 59: 521.
    [69] Rudge S. R., Basak S.K. and Ladisch M.R., Solute retention in electrochromatography by electrically induced adsorption. AIChE J. 1993, 39(5):797-808.
    [70] Basak S. K. and Ladisch M.R., Mechanistic description and experimental studies of electrochromatography of proteins. AIChE J., 1995, 41(11): 2499-2507.
    [71] Tellez C. M, Cole K D., Preparative electrochromatography of proteins in various types of porous media. Electrophoresis, 2000, 21: 1001-1009.
    [72] Xue, B., Sun, Y., Fabrication and characterization of a rigid magnetic matrix for protein adsorption, J. Chromatogr. A 2002, 921, 109–119.
    [73] O’Farrell P. H., Separation techniques based on the opposition of two counteracting forces to produce a dynamic equilibrium. Science, 1985, 227: 1586-1588.
    [74] Cole K. D., Cabezas H. Jr. Recent progress in the electrochromatography of proteins. Appl. Biochem. Biotechnol. 1995, 54: 159-172.
    [75] Cole, K.D., Todd P. and Srinivasan K. et al., Free-solution electrophoresis of proteins in an improved density gradient column and by capillary electrophoresis. J. Chromatogr. A, 1995, 707: 77-85.
    [76] Cole K. D. and Cabezas, H. Jr., Improved preparative electrochromatography column design. J. Chromatogr. A, 1997, 760: 259-263.
    [77] Cole K. D., Preparative concentration and size fractionation of DNA by porous media using a combination of flow and low electric field strength. Biotechnol. Prog., 1991,13: 289-295.
    [78] Thome B. and Ivory C. F., Continuous fractioination of enantiomer pairs in free solution using an electrophoretic analog of simulated moving bed chromatography, J. Chromatogr. A, 2002, 953: 263-277.
    [79] Ivory C. F., Preparative free-flow electrofocusing in a vortex-stabilized annulus, Electrophoresis, 2004, 25: 360-374.
    [80] Thome B. and Ivory C. F., True moving bed electrophoresis using stepped electric field gradients, Electrophoresis, 2007, 28: 1477-1487.
    [81]王东海,刘铮,交变电场下离子交换色谱分离过程,化工学报,2001,52:311-315.
    [82]殷钢,李琛,詹劲等,羟基磷灰石电色谱中电渗流动与分离过程特性,化工学报,2001,52:666-671.
    [83] Liu Z., Yin G., Feng S-H et al. Oscillatory electroosmosis-enhanced intra/inter-particle liquid transport and its primary applications in the preparative electrochromatography of proteins. J Chromatogr. A, 2001, 921: 393–399.
    [84] Stol R, Poppe H, Kok W. T. Optimization of particle dimensions for high efficiency in capillary electrochromatography. Anal. Chem,. 2003, 75: 5246-5253.
    [85] Liu Z., Huang Z., Cong, J-Y. et al. Continuous separation of proteins by multichannel flow electrophoresis. Sep. Sci. Tecnol., 1996, 31:1427-1442.
    [86] Liu Z., Yang H., Huang Z. et al. Multichannel flow electrophoresis in an alternating electric field. Sep. Sci. Tecnol., 1996, 31: 2257-2271.
    [87] Keim C. and Ladisch M.R. New system for preparative electrochromatography of proteins. Biotechnol. Bioeng., 2000, 70:72-81.
    [88] Rathore A.S., Reynolds K.J., Colón L.A. Joule heating in packed capillaries used in capillary electrochromatography. Electrophoresis, 2002, 23: 2918-2928.
    [89] Tan G. M., Shi Q. H. and Sun Y., Retention behavior of proteins in size-exclusion electrochromatography with a low-voltage electric field perpendicular to the liquid phase streamline, Electrophoresis, 2005, 26: 3084-3093.
    [90] Tan G. M., Dong X. Y. and Sun Y., Oscillatory transverse electric field enhances protein resolution and capacity of size-exclusion chromatography, J. Sep. Sci., 2006, 29: 684-690.
    [91] Tan G. M., Shi Q. H. and Sun Y., Oscillatory transverse electric field enhances mass transfer and protein capacity in ion-exchange electrochromatography, J Chromatogr. A, 2005, 1098: 131-137.
    [92] Kaczmarski K., Antos D. and Sajonz H., Comprarative modeling of breakthrough curves of bovine serum albumin in anion-exchange chromatography, J. Chromatogr. A, 2001, 925
    [93] Liapis A. I. and McCoy M. A., Theory of perfusion chromatography, J. Chromatogra., 1992, 599: 87-104.
    [94] Liapis A. I., Xu Y. and Crosser O. K.,“Perfusion chromatography. The effect of intraparticle convective velocity and micro-sphere size on column performance, J Chromatogr. A, 1995, 702: 45-57.
    [95] Heeter G. A., Ph. D Dissertation, University of Missouri-Rolla, U. S., 1997.
    [96] Zhang Y., Shi W. and Zhang L., Some aspects of chromatographic behavior in capillary electrochromatography. J. Chromatogr. A, 1998, 802: 59-71.
    [97] Griffiths S. K. and Nilson R. H., Hydrodynamic dispersion of a neutral nonreacting solute in electroosmotic flow, Anal. Chem., 1999, 71: 5522-5529.
    [98] Cohen A.S., Paulus A. and Karger B.L., High-performance capillary electrophoresis using open tubes and gels, Chromatographia, 1987, 24: 15-24.
    [99] Chen G. F., Tallarek U., Zhang Y. K. et al. Influence of moderate Joule heating on electroosmotic flow velocity, retention, and efficiency in capillary electrochromatography, J. Chromatogra. A, 2004, 1044:287-294.
    [100] Grushka E., McCormick R. M. and Kirkland J. J., Effect of Temperature Gradients on the Efficiency of Capillary Zone Electrophoresis Separations. Anal. Chem., 1989, 61(3):241-246.
    [101] Xuan X. C., Joule heating in electrokinetic flow. Electrophoresis, 2008, 298:33–43.
    [102] Jones A. E. and Grushka E., Nature of temperature gradients in capillary zone electrophoresis, J. Chromatogra. A, 1989, 466:219-225.
    [103] Bello M. S. and Righetti P. G., Unsteady heat transfer in capillary zone electrophoresis:I. A mathematical model, J. Chromatogra. A, 1992, 606(1): 95-102.
    [104] Bello M. S. and Righetti P. G., Unsteady heat transfer in capillary zone electrophoresis:II. Computer simulations, J. Chromatogra. A, 1992, 606(1): 103-111.
    [105] Ross D. and Locascio L. E., Microfluidic temperature gradient focusing, Anal. Chem. 2002, 74: 2556-2564.
    [106] Balss K. M., Ross D., Begley H. C. et al., DNA hybridization assays using temperature gradient focusing and peptide nucleic acids, J. Am. Chem. Soc., 2004, 126: 13474-13479.
    [107] Evenhuis C. J., Guijt M. R., Macka M. et al., Variation of zeta-potential with temperature in fused-silica capillaries used for capillary Electrophoresis, 2006, 27(3): 672-676.
    [108] Lyklema J., Fundamentals of Interface and Colloid Science, Academic Press, New York 1995.
    [109] Rathore A. S., Joule heating and determination of temperature in capillary electrophoresis and capillary electrochromatography columns, J. Chromatogr. A, 2004, 1037: 431-443.
    [110] Gobie W. A. and Ivory C. F., Thermal model of capillary electrophoresis and a method for counteracting thermal band broadening, J. Chromatogr. A, 1990, 516(1): 191-210.
    [111] Knox J. H., McCormack K. A., Temperature effects in capillary electrophoresis. 1: Internal capillary temperature and effect upon performance, Chromatographia, 1994, 38: 207-214.
    [112] Keim C. and Ladisch M., Model for temperature profiles in large diameter electrochromatography columns, AIChE J., 2003, 49: 402-410.
    [113] Ivory C.F. and Gobie W. A., Continuous counteracting chromatographic electrophoresis. Biotechnol. Prog. 1990, 6: 21-32.
    [114] Llu K. K., Davis K. L. and Morris M. D., Raman Spectroscopic Measurement of Spatial and Temporal Temperature Gradients in Operating Electrophoresis Capillaries, Anal. Chem., 1994, 66: 3744-3750.
    [115] Tallarek U., Rapp E. and Scheenen T. et al., Electroosmotic and Pressure-Driven Flow in Open and Packed Capillaries: Velocity Distributions and Fluid Dispersion, Anal. Chem., 2000, 72: 2292-2301.
    [116] David R., Gaitan M. and Locascio L. E., Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye, Anal. Chem., 2001, 73: 4117-4123.
    [117] Willem H.J., Westerhuis et al. Reevaluation of the electrophoretic migration behavior of soluble globular proteins in the native and detergent-denatured states in polyacrylamide gels. Anal. Biochem., 2000, 284: 143–152.
    [118]柴诚敬,张国亮.化工流体流动与传热[M].北京:化学工业出版社,2006,318-322.
    [119] Shackman J. G., Munson M. S. and Kan C. W. et al., Quantitative temperature gradient focusing performed using background electrolytes at various pH values, Electrophoresis, 2006, 27: 3420-3427.
    [120] Moharram M. A., Soliman M. A. and El-Gendy H. M., Electrical conductivity of Poly(acrylic acid)-Polyacrylamide complexes, J. Appl. Poly. Sci., 1998, 68: 2049-2055.
    [121] Fand R. M., Kim B. Y. K. and Lam A. C. C. et al., Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres, J. Fluids Engineering, 1987, 109: 268-274.
    [122] Fand R. M. and Thinakaran R., The influence of the wall on flow through pipes packed with spheres, J. Fluids Engineering, 1990, 112: 84-88.
    [123] Fand R. M., Varahasamy M. and Greer L. S., Empirical correlation equations for heat transfer by forced convection from cylinders embedded in porous media that account for the wall effect and dispersion, Int. J. Heat Mass Transfer. 1993, 36: 4407-4418.
    [124] Varahasamy M. and Fand R. M., Heat transfer by forced convection in pipes packed with porous media whose matrices are composed of spheres, Int. J. Heat Mass Transfer. 1996, 39: 3931-3947.
    [125] Bejan A., Conection Heat Transfer, 2nd ed., Wiley, New York, 1995.
    [126] Lienhard IV J. H. and Lienhard V J. H., A heat transfer textbook, 3rd ed., Phlogiston Press, Cambrigde Massachusetts, 2005.
    [127] Churchill S. W. and Chu H. H. S., Correlating equations for laminar and turbulent free convection from a vertical plate., Int. J. Heat Mass Transfer, 1975, 18: 1323-1329.
    [128] Bejan A. and Anderson R., Natural convection at the interface between a vertical porous layer and an open space, J. Heat Transfer, 1983, 105: 124-129.
    [129]陈卫东,蛋白质离子交换吸附的理论和应用研究,博士学位论文,天津大学,2002.
    [130]李威,色素亲和色谱和流通色谱模型研究,硕士学位论文,天津大学,2005.
    [131] Chen W. D., Dong X. Y. and Sun Y., Analysis of diffusion models for protein adsorption to porous anion-exchange adsorbent, J. Chromatogr. A, 2002, 962, 29-40.
    [132] Chang C. and Lenhoff A. M., Comparison of protein adsorption isotherms and uptake rates in preparative cation-exchange materials. J Chromatogr A, 1998, 827: 281-293.
    [133] Hunter A. K. and Carta G., Protein adsorption on novel acrylamido-based polymeric ion-exchangers. IV. Effects of protein size on adsorption capacity and rate. J Chromatogr A, 2002, 971: 105-116
    [134] Arve B. H. and Liapis A. I., Modeling and analysis of biospecific adsorption in a finite bath. AIChE J, 1987, 33: 179-193
    [135] Arve B. H. and Liapis A. I., Modeling and analysis of elution stage of biospecific adsorption in finite bath. Biotechnol Bioeng, 1988, 31: 240-249
    [136] Tilton R. D., Robertson C. R. and Gast A. P., Lateral diffusion of bovine serum albumin adsorbed at the solid-liquid interface., J. Colloid Interface Sci, 1990, 137: 192-203
    [137] Wesselingh J.A. and Bosma J.C., Protein ion-exchange adsorption kinetics. AIChE J, 2001, 47: 1571-1580
    [138]杨坤,蛋白质离子交换色谱的吸附传质动力学研究,博士学位论文,天津大学,2007.
    [139] Afeyan N. B., Gordon N. F. and Mazaroff I. et al., Flow-through particles for high-performance liquid chromatographic separation of biomolecules: perfusion chromatography, J. Chromatogra., 1990, 519: 1-29.
    [140] Sun G. Y., Shi Q. H. and Sun Y., Novel biporous polymeric stationary phase for high-speed protein chromatography, J. Chromatogr. A, 2004, 1061: 159-165.
    [141] Toufik J. and Labarre D., Relationship between reduction of complement activation by polysaccharide surfaces bearing diethylaminoethyl groups and their degree of substitution, Biomater., 1995, 16: 1081-1088.
    [142] Shi Q. H., Zhou X. and Sun Y., A Novel superporous agarose medium for high-speed protein chromatography. Biotechnol Bioeng, 2005, 92(5): 643-651.
    [143] Zhang S.P., Sun Y., Ionic strength dependence of protein adsorption to dye-ligand adsorbents. AIChE J, 2002, 48: 178-186
    [144] Gutenwik J., Nilsson B. and Axelsson A., Effect of hindered diffusion on the adsorption of proteins in agarose gel using a pore model. J Chromatogr A, 2004, 1048: 161-172.
    [145] Gutenwik J., Nilsson B. and Axelsson A., Coupled diffusion and adsorption effects for multiple proteins in agarose gel. AIChE J, 2004, 50: 3006-3018.
    [146] Shi Q. H., Zhou Y. and Sun Y., Influence of pH and ionic strength on the steric mass-action model parameters around the isoelectric point of protein, Biotechnol. Prog. 2005, 21: 516-523.
    [147] Tallarek U., Paces M. and Rapp E., Perfusive flow and intraparticle distribution of a neutral analytes in capillary electrochromatography, Electrophoresis, 2003, 24: 4241-4253.
    [148] Deen W. M., Hindered transport of large molecules in liquid-filled pores, AIChE J., 1987, 1409-1425.
    [149] Gutenwik J., Nilsson B. and Axelsson A., Effect of hindered diffusion on the adsorption of proteins in agarose gel using a pore model. J Chromatogr A, 2004, 1048: 161–172.
    [150] Gutenwik J., Nilsson B. and Axelsson A., Coupled diffusion and adsorption effects for multiple proteins in agarose gel. AIChE J, 2004, 50: 3006–3018.
    [151] Renkin E. M., Filtration, diffusion, and molecular sieving through porous cellulose membranes, The Journal of General Physiology, 1954, 225-243.
    [152] Johnson E. M., David A. B. and Jain R. K. et al., Hindered diffusion in agarose gels: test of effective medium model, Biophysical Journal, 1996, 70: 1017-1026.
    [153] Johnston S. T., Deen W. M., Hindered convection of proteins in agarose gels, J. Mem. Sci., 1999, 153: 271-279.
    [154] Kosto K. B., Deen W. M., Hindered convection of macromolecules in hydrogels, Biophysical Journal, 2005, 88: 277-286.
    [155] Li W., Zhang S. P. and Sun Y., Modeling of the linear-gradient dye-ligand affinity chromatography with a binary adsorption isotherm, Biochem Eng J, 2004, 22: 63-70.
    [156] Arve B.H., Liapis A.I., The modeling and analysis of the elution stage of biospecific adsorption in fixed beds, Biotechnol Bioeng, 1987, 30: 638-649.
    [157] Boyer P.M., Hsu J.T., Experimental studies of restricted protein diffusion in an agarose matrix, AIChE J, 1992, 38: 259-272.
    [158] Levenspiel O., Chemical Reaction Engineering (3rd edition). New York: Wiley, 1999.
    [159] Dutta D., Electrokinetic transport of charged samples through rectangular channels with small zeta potentials, Anal. Chem., 2008, 80: 4723-4730.
    [160] Quarteroni A. and Valli A., Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin Heidelberg, 1994.
    [161]胡健伟,汤怀民,微分方程数值方法,科学出版社,北京,1999.
    [162] Anderson J. L. and Malone D. M., Mechanism of osmotic flow in porous membranes, Biophysical Journal, 1974, 14: 957-982.
    [163] Dziennik S. R., Belcher E. B. and Barker G. A. et al., Effects of ionic strength on lysozyme uptake rates in cation exchangers. I: Uptake in SP Sepharose FF, Biotechnology and Bioengineering, 2005, 91: 139-153.
    [164] Awáde A. C., Efstathiou T., Comparison of three liquid chromatographic methods for egg-white protein analysis. J. Chromatogr. B, 1999, 723: 69-74
    [165] Vachier M. C., Piot M. and Awáde A. C., Isolation of hen egg white lysozyme, ovotransferrin and ovalbumin, using a quaternary ammonium bound to a highly crosslinked agarose matrix. J. Chromatogr. B, 1995, 664: 201-210
    [166] Bosma J.C. and Wesselingh J.A., pH dependence of ion-exchange equilibrium of proteins.. AIChE J, 1998, 44: 2399-2409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700