用户名: 密码: 验证码:
三维可视化集成矿山地测采信息系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对当前矿山地测采信息系统开发和应用中存在的问题,结合矿山实际需要,将可视化和集成化思想引入地测采信息系统的研究与开发,运用计算机图形学理论、地矿三维建模理论、MIS系统开发理论、三维可视化技术、智能识别技术及OpenGL技术,对矿山可视化地测采信息系统开发的基础问题及关键技术进行了深入的研究。
     论文对当前矿山地测采信息系统的研究现状及存在的主要问题进行了分析。研究了矿山地测工作的一般数据流程,结合矿山生产实际需要,提出了三维可视化地测采信息系统的集成方案,根据功能分解原理,将系统划分为基础信息平台、综合查询平台及图形处理平台三大模块,各模块之间通过数据库及接口程序进行交互。
     论文运用MIS系统开发理论、面向对象的系统分析与设计方法、构件技术、数据仓库技术、分布式应用体系结构与WebServices技术,结合矿山地测数据采集及处理流程,开发了一套基于C/B/S混合模式的地测信息管理系统,实现了地测数据的合理组织和有效管理,为矿山生产、规划决策提供了依据,同时为图形处理系统提供了基础数据。
     通过对于矿山地质编录图件的三维空间数字化研究,论文建立了基于井下测量数据的巷道自动成图算法及矿脉编录数字化算法。针对目前国内尚无地质编录数字化软件的现状,运用计算机图形学原理、智能识别技术及数字素描导线定位线技术,研制了一套基于C#.NET交互式CAD技术的地质编录智能分析系统,实现了巷道地质编录图件的数字化及自动成图。
     在分析传统矿区工程三维建模方法局限性的基础上,研究了地矿三维数据模型及数据结构的设计问题,提出了在真三维环境下,大型矿山复杂矿区工程三维立体模型的快速构建方法。在地形建模方面,引入了基于分形维数的地表插值算法,提出了改进的中点移位法结合矩形网格法的地形等值线推估算法,给出了基于三角网生长法的Delaunay子三角网构建方法及地形模型简化技术。在开拓系统建模方面,论文研究了巷道中心线加载断面的巷道生成算法,给出了巷道顶、底板表面模型的剖分连接方法,提出了巷道顶、底板合成与巷道或井筒中心线加载断面相结合的井下开拓工程三维建模方法。在岩性建模方面,给出了计算机结合经验解释进行岩性建模的方法,提出了岩性建模的一般推估过程。在矿体建模方面,给出了基于钻孔勘探线剖面图的矿体表面模型构造方法及矿体封闭方式,针对钻孔剖面圈连矿体对于薄矿脉或是极薄矿脉的不适用性,提出采用按中段矿脉来圈定矿体轮廓线的方式,采用分矿脉绘制的数字化试料平面图或中段地质平面图来进行实体模型的连接。针对传统块段建模方法所存在的缺陷,采用了八叉树结构来建立和表达块段模型,并在此基础上给出了八叉树与有向有界箱(OBB)树的相交测试算法。
     针对传统储量计算方法存在的局限性,研究了基于无偏估计的克立格空间内插与外推方法,为了消除传统实验变异函数计算方法的不稳健因素,将稳健统计学引入到变异函数的计算中,提出了一种能有效反应实际的三维稳健克立格法,并给出了变异函数的拟合算法及变异函数参数的交叉验证方法。
     研究开发了一套基于OpenGL可视化开发技术的矿山三维建模系统,实现了数据分析与管理、三维建模、储量计算与管理、图形辅助操作等功能。通过编制地测信息管理系统、地质编录智能分析系统及矿山三维建模系统之间的接口程序,实现了“地测数据一次性采集、实时传输共享、地测图件自动生成、三维可视化建模”的一体化集成。通过在矿山的实际应用,建立了某大型金矿的矿区工程三维实体模型,实现了地形、钻孔、中段巷道、开拓系统、矿体等模型的三维可视化显示;对于某铁矿山进行了矿床建模实践,在样品组合及统计分析的基础上,建立了岩性及矿体模型。通过变异函数分析,建立了铁元素矿床品位模型,并对储量进行了估算,计算结果与地质勘探报告上提供的数据基本相符。
Concerning the defects which exit in the current development and applications of geological survey and mining information system, the paper succeed in introducing the visualization and integrated thoughts into the researches and developments of geological survey and mining information system, in the light of the actual needs of mine. Moreover, the paper has conducted a further research for the basic problems and key technologies of visual geological survey and mining information system, via the applications of computer graphics theory, geological and mineral 3D modeling theory, MIS system development theory,3D visualization technology, intelligent recognition technology and the OpenGL technology.
     The research status and prime problems of current geological survey and mining information system were analyzed in the paper. In the light of the actual needs of mine, the paper studied the general data flow in the mining geological survey, and proposed an integrated solution for the 3D visual geological survey and mining information system. According to the principle of function decomposition, the total system is divided into three modules, such as the basic information platform, the integrated search platform and the graphics processing platform which interact one another via database and interface programs.
     Combined with the data acquisition and processing path in the mining geological survey, a set of geological survey and management system was developed based on C/B/S mixed mode using the MIS system development theory, object-oriented analysis and design method, component technology, database technology, distributed applications system structure and WebServices technology. The system enables the reasonable organization and an effective management of the geological survey data, also provides a foundation for the mining production, planning and decision, meanwhile, supplies the basic data for the graphics processing system.
     Through the research on the 3D digitization of 2D geologic logging datum, the roadway automatic mapping algorithm and vein logging digital algorithm were established based on the survey data taken underground. Directed towards the vacancy application of geologic logging digital software interiorly, a set of geologic logging intelligent analysis system was invented using computer graphics theory, intelligent recognition technology and traverse positioning technology based on the CAD technology realized by C#.NET, and enables roadway geologic logging data to be digital and mapped-automatic.
     On the basis of analyzed the limitation of 3D modeling method in traditional geological and mineral engineering, studied the design problems of geological and mineral data models, also the data structures, a rapid construction method of complex geological and mineral engineering 3D model of large-scale mine was proposed in the real 3D environment. In the aspect of terrain modeling, the surface interpolation algorithm was introduced based on fractal dimension. With above, the paper put forward the terrain isoline generation algorithm based on improved midpoint displacement method combined rectangular grid method, and presented the construction method of delaunay sub-triangulation network based on the triangulation growth method and simplified technology of terrain models. There was an effective research on the roadway generation algorithm of loading section of roadway on centerline in the paper, which introduced the dissection connection method of roadway roof and floor surface model, and proposed a new 3D modeling method of underground development projects, which related the combination with the synthesis of roadway roof and floor, and loading section of roadway on centerline. Through careful analysis, a method of lithology modeling was presented by computer combined with experience explain and a general estimate process of lithology modeling was brought forward. A construction method of mining surface models and the way ore body closes were proposed, based on the drilling exploration profiles. In view of drilling profile circle even ore body being not adaptable to the thin or the extremely thin veins, the paper proposed to delineate the ore body profiles according to level vein, and adopted the digital vein plan or level geology drawn, for the purpose of connecting the solid models. In order to reduce the data amount of geological block model and improve the speed and accuracy of modeling, a block model was used to subdivide the target area based on octree. An algorithm of the intersection test between octree and oriented bounding box (OBB) tree was given to improve the speed of modeling.
     Aimed at the limitation of the traditional method of calculating reserves, the Kriging spatial interpolation and extrapolation methods were carefully studied in the paper. In order to eliminate the unstable factors of the method of traditional experimental variograms calculation, and to introduce stable statistics into the calculation of variograms, a kind of effective and stable 3D Kriging method was proposed. Moreover, it also presented the fitting algorithm of variograms and the cross-validation method of the parameters of variograms.
     The research has developed a set of Mining 3D Modeling System based on OpenGL visual development technology, which enables the functions such as data analysis and management,3D modeling, reserves calculation and management, graphics auxiliary operation and so on. In the paper, an interface procedure was compiled among the geological survey information management system, the geologic logging intelligent analysis system and the Mining 3D Modeling System, which realised the "one-off acquisition of geological survey datum, real-time sharing of information transmission, automatic generation of geological survey graphics,3D visualization modeling" in an integrative way. Used in the mine practically,3D solid models for the geological and mining engineering were established in a certain large-scale gold mine, which realised 3D visual display, such as the models of terrain, drilling, level roadway, development system, orebody and so on. The deposit modeling has been practiced in a certain iron mine, with it, the paper established lithology and orebody models based on the statistical analysis and composition of samples. By analyzed variograms, the paper established grade model of iron and estimated the reserve, the calculating results were consistent to the data provided by the geological exploration report.
引文
[1]魏东,李前,杨世杰等.矿井生产管理数字化与三维可视化信息技术[J].煤炭科学技术,2004,32(10):23-25.
    [2]潘俊成,杨奎奇,时志宏.数字矿山系统体系构建分析[J].煤矿现代化,2004,(3):42-44.
    [3]赵玉兰,高化军.计算机在矿产资源储量管理中的应用[J].山东煤炭科技,2004,(6):78-79.
    [4]李义才,刘刚,吴冲龙.计算机辅助实测地质剖面图编绘系统设计[J].中国区域地质,2001,20(3):304-308.
    [5]张建桃,伏永明.基于虚拟现实技术的矿井规划与设计[J].计算机时代,2005,(3):22-23.
    [6]夏林.地采矿山地测采管理信息系统基于采场管理的研发[J].黄金科学技术,2004,12(4): 31-34.
    [7]刘刚,汪新庆,李伟忠等.资源勘查图件计算机辅助编绘系统的结构分析与开发策略研究[J].地质与勘探,2002,38(4):60-63.
    [8]杨天军,才庆祥.生产地质管理信息系统设计研究[J].矿业快报,2004,(3):8-9.
    [9]张海荣,毛善君,许友志等.煤矿地测综合管理信息系统研究[J].中国矿业大学学报,1999,28(5):429-432.
    [10]刘桥喜,毛善君,杨锋杰等.ODBC煤矿地测C/S管理信息系统的实现[J].2000,28(4):24-26.
    [11]邹艳红,毛先成.地测数据库的建立与应用[J].中南大学学报(自然科学版),2004,35(3):463-467.
    [12]萨贤春,姜在炳,李必慧等.地测信息系统及其应用[J].煤田地质与勘探,1999,27(6):21-25.
    [13]尹辉增.地籍管理信息系统中空间信息更新的改进方法研究[J].北京测绘,2005,(2):10-13.
    [14]Gibbs, Betty L. Computer software for mine design-an overview, Journal of Mines, Metals & Fuels.1996,96(7):311-315.
    [15]Peeters, S.J.C.L.; Jarosz, A.P. Use of geographical information systems in the integration and visualization of mining data, Journal of The South African Institute of Mining and Metallurgy,1999,90(7):355-359.
    [16]H. Wagner, G. B. L. Fettweis. About Science and Technology in the Field of Mining in the Western World at the Beginning of the New Century. Resources Policy,2001(27):157-168.
    [17]僧德文.地矿工程三维可视化仿真技术及其集成实现[D].北京:北京科技大学,2005.
    [18]S.亨利.采矿软件能否实现硬着陆-—发展历程与展望[J].国外金属采矿,1997,(22).
    [19]K. DielQnann. System modeling and simulation of Proeesses for visualization.29th APCOM,2001.
    [20]B. L. Gibbs.计算机在采矿工业中的应用.Mining Engineering, March 1994,208-213.
    [21]B.L. Gibbs.工业储量评估软件中构模技术的评述.第22届APCOM国际会议论文集,1990:53-60.
    [22]T.拉希,J.R.斯特格尔.小型矿山计算机模拟的实例研究.International Journal of Surface Mining and Reclamation, May 1991:123-128.
    [23]石教英,蔡文立编著.科学计算可视化算法与系统[M].北京:科学出版社,1996.
    [24]唐泽圣著.三维数据场可视化[M].北京:清华大学出版社,2000.
    [25]陈建宏.可视化集成采矿CAD系统研究[D].长沙:中南大学,2002.
    [26]S. Houlding, B. S. Trenholme. The Use of Solid Modeling in the Underground Mine Design. Computer Application in the Mineral Industry,1998(12):67-89.
    [27]P. A. Dowd. Integrated Computer Package for Geostatistical Estimation and Modeling. Institution of Mining & Metallurgy,1992(11):67-89.
    [28]武伟.国外几种采矿CAD软件的比较[J].有色金属,1996,(1):39-42.
    [29]S. F. Hoerger. Implementation of Indicator Kriging at Newmont Gold Company,23th APCOM,1992.
    [30]M. L. Pearson. Computer Graphics-More than a Drafting Machine. Mining Industry, 1992(101):124-163.
    [31]A. R. Baxter, G. B. Hooper. Use of Three-Dimensional Solids Modelling System for Baluba Center. Mining Industry,1992(101):69-93.
    [32]张生贵等.用CAD技术在微机上编制采剥进度计划[J].矿山技术,1987,1-3.
    [33]张生贵.矿山微机CAD技术的发展与应用[J].矿山技术,1988,(6).
    [34]王李管,邓顺华,陈建宏.矿床模型与开采辅助设计软件系统研究[J].中南矿冶学院学报,1994,(5).
    [35]陈建宏,邓顺华,王李管.交互式集成图形平台的露天矿模拟开采设计[J].冶金矿山设计与建设,1996,(2).
    [36]王立磊,王李管.依托DIMINE软件实现中国矿山的数字化[J].现代矿业,2009,(3):23-27.
    [37]云庆夏等.露天矿采掘计划的微机CAD优化软件包北工矿山技术[J].1988,(5).
    [38]张幼蒂等.采矿系统工程研究现状与展望[J].中国矿业,1994,(2).
    [39]林在康,燕雪峰等.采矿CAD软件包体系模型[J].中国矿业大学学报,2000,29(1).
    [40]吴炳肃,吴雨伟,候运炳.矿山地质信息管理及绘图系统的研究[J].有色金属(矿山),1994,(3).
    [41]孙豁然,许德明等.建立矿体三维实体模型的研究[J].矿业研究与开发,1999,19(5).
    [42]侯运炳,童光煦.地下矿实体矿化模型的研究[J].金属矿山,1993,(2).
    [43]方淑芬,杜新锋.煤矿地测信息系统的研制和开发[J].矿山测量,2006,(1):36-37.
    [44]陈旭瑞.矿产资源数据库系统的研究及应用[D].北京:中国科学院地质与地球物理所,2000.
    [45]李永兵,陈旭瑞,胡俊峰等.基于GIS的地质数据库系统:研究现状和发展趋势[J].地球物理学进展,2002,17(3):532-539.
    [46]邹艳红,毛先成.地测数据库的建立与应用[J].中南大学学报(自然科学版),2004,35(3):463-467.
    [47]李德仁,李清泉.地球空间信息学与数字地球[J].地球科学进展,1999,14(6):535-540.
    [48]徐冠华,孙枢,陈运泰等.迎接数字地球的挑战[J].遥感学报,1999,3(2):85-89.
    [49]承继成,林珲,周成虎等.数字地球导论[M].北京:科学出版社,2001.
    [50]李振华,胡光道,陈建国.地质数据仓库的特点及其数据组织[J].地球科学,1999,24(5):536-538.
    [51]SYBASE公司资料.Sybase System 11 Technique Overview[EB/OL].2000.
    [52]侯德义.找矿勘探地质学[M].北京:地质出版社,1990.
    [53]张华,汪云甲.基于ArcSDE的矿山地测信息系统的研究[J].河北理工学院学报,2004,26(1): 1-4.
    [54]邹艳红.矿山地测数据集成与三维立体定量可视化预测研究[D].长沙:中南大学,2005.
    [55]赵鹏大,李紫金,吴旺亮.矿床统计预测[M].北京:地质出版社,1983.
    [56]吴冲龙,汪新庆,刘刚.论地质矿产点源信息系统[M].北京:地质出版社,1995.
    [57]石若明.基于GIS的城建档案管理信息系统集成研究[D].北京:中国地质大学(北京),2006.
    [58]徐征,陈雪飞,刘晓铭等.一种构件化的动态软件系统模型[J].小型微型计算机系统,1999,(2).
    [59]曾广周,孙红梅.基于软构件的软件开发方法研究[J].计算机研究与发展,1998,(11).
    [60]吴士亮,薛恒新,韦东方.业务过程驱动的ERP系统组件化研究[J].计算机集成制造系统一CIMS,2004,10(11):1389-1395.
    [61]吴士亮,薛恒新,韦东方.ERP系统的组件化模型研究[J].计算机工程,2004,30(15).
    [62]刘明忠.面向随机协作的柔性管理信息系统框架及若干关键技术研究[D].南京:南京理工大学,2006.
    [63]Dong-Gil Na, Wooseung Jang, Dong-Won Kim. Development of a resource planning system for compound semiconductor wafer manufacturing. Journal of Materials ProcessingTechnology,2003(138):372-378.
    [64]Jean Paul, Smets Solanes. ERP5:A Next-Generation, Open-Source ERP Architecture. IT Pro of the IEEE Computer Society, August 2003.
    [65]柴晓路,梁宇奇Web Services技术、构架和应用[M].北京:电子工业出版社,2003.
    [66]潘东青.基于C/S模式的信息网络系统的设计与实理[J].计算机应用,1995,(1).
    [67]刘艳梅,宋瀚涛,董蕾.基于B/S结构的跨平台异构型数据库系统[J].计算机系统应用,1998,(8).
    [68]吴军利,陈作人.Intranet中浏览器/服务器模式的应用优势[J].微电子学与计算机,1999,(5).
    [69]易开祥,胡敏,杨建等.基于B/S模式的信息系统研究与设计[J].计算机工程,2000,(8).
    [70]戚文静,刘学.网络安全原理与应用[M].北京:中国水利水电出版社,2005.
    [71]戴英侠,连一锋,王航.系统安全与入侵检测[M].北京:清华大学出版社,2002.
    [72]冯登国.计算机通信网络安全[M].北京:清华大学出版社,2001.
    [73]Ford W. Computer Communications Security. PTR Prentice Hall,1994.
    [74]周智勇,陈建宏,潘伟等.基于.NET技术及C/B/S混合模式的金属矿山生产数据动态管理系统平台设计[J].金属矿山,2008,(11).
    [75]高德福,魏弘毅,吴庭芳等.矿山地质制图[M].北京:冶金工业出版社,1986.
    [76]东北工学院采矿系.矿图[M].北京:冶金工业出版社,1974.
    [77]成都地质学院编.构造地质学及地质制图学[M].北京:中国工业出版社,1966.
    [78]B.A.阿普罗多夫.地质制图学[M].北京:商务印书馆,1954.
    [79]张立等.C#2.0完全自学手册[M].北京:机械工业出版社,2007.
    [80]苏金明,周建斌.用VB.NET和VC#.NET开发交互式CAD系统[M].北京:电子工 业出版社,2004.
    [81]苏金明.用Visual Basic开发交互式CAD系统[M].北京:电子工业出版社,2003.
    [82]李于剑.Visual C++实践与提高-图形图像编程篇[M].北京:中国铁道出版社,2001.
    [83]陈建春.Visual C++开发GIS系统-开发实例剖析[M].北京:电子工业出版社,2001.
    [84]Fred Barwell, Richard Blair等著,康博译.VB.NET高级编程[M].北京:清华大学出版社,2002.
    [85]Eric White著,杨浩,张哲峰译.GDI+程序设计[M].北京:清华大学出版社,2002.
    [86]James W. Cooper著,赵会群等译.Visual Basic设计模式[M].北京:清华大学出版社,2003.
    [87]程朋根.地矿三维空间数据模型及相关算法研究[D].武汉:武汉大学,2005.
    [88]王宝山.煤矿虚拟现实系统三维数据模型和可视化技术与算法研究[D].郑州:解放军信息工程大学,2006.
    [89]Li R. Date Structure and Application Issues in 3D Geographic Information System[J]. Geomatics.1994,48(3):209-244.
    [90]Simon W. Houlding.3D geoscience modeling-computer techniques for geological characterization. Springer-Verlag:[s. n.],1994.
    [91]Matthias Kreuseler. Visuallization of geographically related multidimensional data in virtual 3D acenes[J]. Computer and Geoscience.2000,26(1):101-108.
    [92]韩国建,郭达志.矿体信息的八叉树存储和检索技术[J].测绘学报,1992,21(1):13-17.
    [93]程朋根,龚健雅.地勘工程3维数据模型与数据结构设计[J].测绘学报,2001,30(1):74-81.
    [94]龚健雅,夏宗国.矢量与栅格集成的三维数据模型[J].武汉测绘科技大学学报,1997,22(1): 7-15.
    [95]李清泉,李德仁.三维空间数据模型集成的概念框架研究[J].测绘学报,1998,27(4):325-330.
    [96]张煌,白世伟.一种基于三棱柱体体元的三维地层建模方法与应用[J].中国图形图像学报(A),2001,6(3):285-290.
    [97]李德仁,李清泉.一种三维GIS混合数据结构研究[J].测绘学报,1997,26(2):128-133.
    [98]边馥苓,傅仲良,胡自锋.面向对象的栅格矢量一体化的三维数据模型[J].武汉测绘科技大学学报,2000,25(4):295-297.
    [99]李建华,边馥苓.工程地质三维空间建模技术及其应用研究[J].武汉大学学报·信息科学版,2003,28(1):25-30.
    [100]洪永清,黄德才,吕丽民.面向对象建模与设计[M].北京:人民邮电出版社,1998.
    [101]唐泽圣等.三维数据场可视化[M].北京:清华大学出版社,1999.
    [102]孙敏,陈军.基于几何元素的三维景观实体建模研究[J].武汉测绘科技大学学报,2000,25(3):233-237.
    [103]张菊明.三维地质模型的设计和显示·中国数学地质进展[M].北京:地质出版社,1996.
    [104]张菊明,孙惠文,刘承柞.局部间断拟合函数在地质曲面分析和显示中的应用[A],中国数学地质进展[M].北京:地质出版社,1995.
    [105]张新宇.地学空间三维可视化储量计算辅助分析系统关键技术的研究[D].长春:吉林大学.
    [106]王润怀.矿山地质对象三维数据模型研究[D].成都:西南交通大学,2007.
    [107]王家耀.空间信息系统原理[M].北京:科学出版社,2001.
    [108]吴立新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003.
    [109]陈军.GIS空间数据模型的基本问题和学术前沿[J].地理学报,1995,50(S1):24-30.
    [110]Fohl P., Curtin K. M., Goodehild M. F., et al. A non-planar, lane-based navigable data model for ITS[C]. Proeeedings, Seventh International SymPosium on Spatial Data Handling, Delft, August,1996,1996:12-16.
    [111]Burrough P. A. Are GIS data structures too simple minded?[J]. Computers & Geosciences. 1992,18(4):395-400.
    [112]Peuquet D. J. A conceptual framework and comparison of spatial data models[J]. Cartographica.1984,21(4):66-113.
    [113]Bode T., Breunig M., Cremers A. B. First Experiences with GEOSTORE, an Information System for Geologically Defined Geometries[C]. Proceedings IGIS,1994,1994(94):35-44.
    [114]吴慧欣.三维GIS空间数据模型及可视化技术研究[D].西安:西北工业大学,2007.
    [115]Pilout M., Tempfli K., Molenaar M.. A Tetrahedron-Based 3D Vector Data Model for Geoinformation. Advanced Geographic Data Modelilng,1994(40):129-140.
    [116]葛永慧,王建民.矿井三维巷道建模方法的研究[J].工程勘察,2006,(10):46-49.
    [117]毛善君,熊伟.煤矿虚拟环境系统的总体设计及初步实现[J].煤炭学报,2005,30(5):571-575.
    [118]Li R. Generation of geometric representations of 3D objects in CAD/CAM by digital photogrammetry [J]. ISPRS Journal of Photogrammetry and Remote Sensing,1993,48(5): 2-11.
    [119]李青元.三维矢量结构GIS拓扑关系及其动态建立[J].测绘学报,1997,26(3):235-240.
    [120]肖高逾,周源华.基于分形几何的空间多面体变形法在三维地表插值中的应用[J].中国图象图形学报,2000,5(3):241-243.
    [121]徐青.地形三维可视化技术[M].北京:测绘出版社,2000.
    [122]Yokoya N, Yamamoto K, Funakubo N. Fractal-based analysis and interpolation of 3D natural surface shapes and their application to terrain modeling. Comput. Vision Graphics Image Process.1989,46:284-302.
    [123]Mandelbrot B B. The fractal geometry of nature. Freeman, San Francisco,1982.
    [124]Pentland A P. Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Mach. Intell.,1984, (6):661-674.
    [125]Kenton Musgrave F. The synthesis and rendering of eroded fractal terrains. Computer Graphics,1989,23(3):41-50.
    [126]宋丽娟,龚晓峰,钟猛.基于网格法的等值线绘制方法[J].现代电子技术,2005,(14):65-67.
    [127]成建梅,陈崇希,孙红林.三角网格等值线自动生成方法及程序实现[J].水利学报,1998,43(10):23-26.
    [128]邬伦,刘瑜,张晶等.地理信息系统——原理、方法和应用[M].北京:科学出版社,2001.
    [129]罗智勇.面向地质勘查的三维可视化系统研制与开发[D].成都:成都理工大学,2008.
    [130]胡金星,潘惫,马照亭.高效构建Delaunay三角网数字地形模型算法研究仁[J].北京大学学报(自然科学版),2003,39(5):736-741.
    [131]汤国安,刘学军等.数字高程模型及地学分析的原理与方法[M].北京:科学出版社, 2005.
    [132]李志林,朱庆.数字高程模型[M].武汉:武汉测绘科技大学出版社,2000.
    [133]张顺岚,刘钊,韩传久基于点删除网格简化算法在战场仿真中的应用[J].计算机系统应用,2005,(4):28-31.
    [134]汤国安,赵牡丹.地理信息系统[M].北京:科学出版社,2001.
    [135]ZHOU Zhi-yong, CHEN Jian-hong, YANG Li-bing, YONG Xue-yan.3D Terrain Modeling in Mine. Proceedings of Second International Conference on Modelling and Simulation, Manchester, England, UK, May.21-22,2009, pp.501-505.
    [136]熊伟,毛善君,马蔼乃等.煤矿虚拟环境的巷道几何建模及关键算法研究[J].测绘通报,2002,(8):15-21.
    [137]王宝山,魏占营.煤矿虚拟环境的巷道3维建模研究[J].测绘学院学报,2005,22(3):204-211.
    [138]葛永慧,王建民.矿井三维巷道建模方法的研究[J].工程勘察,2006,(10):46-49.
    [139]马荣华,黄杏元,贾建华等.矿山地理信息系统中巷道模型的研究[J].测绘学报,2000,29(4):355-359.
    [140]汪云甲,伏永明.矿井巷道三维自动建模方法研究.武汉大学学报(信息科学版),2006,31(12):1097-1100.
    [141]王宝山,魏占营.煤矿虚拟环境的巷道3维建模研究[J].测绘学院学报,2005,22(3):204-211.
    [142]孙卡,翁正平,张志庭等.基于带约束三角剖分的三维巷道建模方法[J].矿业研究与开发,2007,27(5):64-65.
    [143]刘亚静,李梅,姚纪明.多分辨率扩展八叉树矿体建模研究[J].煤炭科学技术,2006,34(8):57-60.
    [144]李春民,李仲学,王云海等.地矿工程三维可视化系统建模[J].金属矿山,2005,(12):44-50.
    [145]成都地质学院和昆明工学院(找矿勘探学)编写组.找矿勘探学(中册)[M].北京:地质出版社,1980.
    [146]李艳,王恩德,鲍玉斌等.基于钻孔数据的矿体三维可视化研究与实现[J].沈阳工业大学学报,2005,27(4):418-421.
    [147]高文姝,高璇,王丽丽.Micromine软件的三维地质建模及可视化技术在固体矿产储量估算中的应用[J].国土资源,2008,(S1),136-137.
    [148]李艳,王恩德,鲍玉斌等.基于钻孔数据的矿体三维可视化研究与实现[J].沈阳工业大学学报,2005,27(4):418-421.
    [149]Wu L X.Topological relations embodied in a generalized tri-prism(GTP) model for a 3D geosciences modeling system[J]. Computer & Geosciences,2004,30(4):405-418.
    [150]周智勇,陈建宏,杨立兵.大型矿山地矿工程三维可视化模型的构建[J].中南大学学报(自然科学版),2008,39(3):423-428.
    [151]贺辉.基于地质统计学与神经网络的数字化成矿预测技术研究[D].长沙:中南大学,2006.
    [152]申维.分形混沌与矿产预测[M].北京:地质出版社,2002.
    [153]柴建设,谢贤平.分形几何及其在矿石品位和储量估算中的应用[J].有色金属矿产与勘查,1994,3(6):364-367.
    [154]王志民.分形理论在距离幂次反比法估算矿体品位中的应用[J].中国锰业,1997,15(2): 20-22.
    [155]金章东.江西德兴铜厂斑岩体铜品位的分形结构[J].矿床地质,1998,17(4):363-368.
    [156]魏一鸣,童光煦.矿床品位分布的分形特征研究[J].矿业研究与开发,1996,16(1):1-4.
    [157]张济忠.分形[M].北京:清华大学出版社,1995.
    [158]Barnsley M F, et al. The science of fractal images. New York:Spring-Verlog,1988.
    [159]张哲儒,毛华海.分形理论与成矿作用[J].地学前缘(中国地质大学,北京),2000,7(1):195-204.
    [160]李长江,徐有浪,蒋叙良.论矿床的分形性质[J].浙江地质,1994,10(2):25-32.
    [161]宋保昌,张宝林等.分形理论在山西堡子湾金矿成矿预测中的应用[J].黄金科学技术,2002,10(5):6-14.
    [162]连长云,苏小四.胶东地区未发现金矿床资源总量的分形估计[J].长春科技大学学报,2000,30(1):24-27.
    [163]施俊法,王春宁.中国金矿床分形分布及对超大型矿床的勘查意义[J].地球科学——中国地质大学学报,1998,23(6):616-619.
    [164]李建威.矿产资源定量预测方法综述[J].地质科技情报,1995,14(4):57-64.
    [165]谭凯旋.砂岩铜矿床的分形分析与资源远景预测[J].湘潭矿业学院学报,1999,14(1):6-10.
    [166]B. B. Mandelbrot. The Fractal Geometry of Nature. Freermen, San Francisco, USA,1982.
    [167]Turcotte D L. Implications of chaos, scale-invariance and fractal statistics in geology. Global and Planetary Change,1990,89:310-318.
    [168]Agterberg F P, Qiuming C, Wright D F. Fractal modelling of mineral deposits[A]. International Sympsium on the Application of Computers and Operations Research in the Mineral Industries[C]. Canada, Montreal:Canadian Institute of Mining Metallurgy and Petroleum,1993.43-53.
    [169]Carlson C A. Spatial distribution of ore deposit[J]. Geology,1991,19(2):107-110.
    [170]Blenkinsop T. The fractal distribution of gold deposit:two examples from the Zimbabwe Archaen Craton[A]. Barton C C. Fractal in Petroleum Geology and Earth Processes[M]. New York and London:Plonum Press,1994.247-258.
    [171]Sanderson D J, Roberts S A. Fractal relationship between vein thickness and gold grade in drill core from La Codosera, Spain[J]. Economic Geology,1994,89:168-173.
    [172]Qiuming C, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration,1994,51:109-130.
    [173]Qiuming C, Agterberg F P, Bonham-Carter G F. A spatial analysis method for geochemical anomaly separation[J]. Journal of Geochemical Exploration,1996,56:183-195.
    [174]Mecaffrey K J W, Johnston J D. Fractal analysis of a mineralized vein deposit:Carraghinalt gold deposit, County Tyrone[J]. Mineralium Deposita,1996,31:52-58.
    [175]Allege C J. Scaling laws and geochemistry distribution[J]. EPSL,1995,132(1-4):1-13.
    [176]Kulik D A, Chernovsky M I. Fractal properties of multi-order folding as a tool for exploration of Low-grade banded iron ores in the kirivoy Rog Basin(Ukraine)[J]. Geologiskhe Rundschau,1996,85(10):3-11.
    [177]T Monecke J, BruceGemmell Jochen Monecke. Fractal distributions of veins in drill core from the Hellyer VHMS deposit, Australia:constraints on the origin and evolution of the mineralizing system[J]. Mineralium Deposita,2001,36:406-415.
    [178]Hodgson C J, Love D A. Giant mesothermal gold deposits:descriptive characteristics, genetic model and exploration area selection criteria[A]. SEG SP-2 Giant Ore Deposits[M]. [s.l.]:[s.n.],1993.157-211.
    [179]Block A, Von-Bloh W, Klenke T, et al. Multifractal analysis of the microdistribution of elements in sedimentary structure using images from scanning electron microscopy and energy dispersive X ray spectrometry[J]. Journal of Geophysical Research, B, Solid Earth and Planets,1991,96(10):16223-16230.
    [180]徐驰.人工神经网络在矿藏预测中的应用[J].中国数学地质,1997,(5):206-212.
    [181]Govindaraju R S. Artificial neural networks in hydrology I:Preliminary concepts[J]. Journal of Hydrologic Engineering,2000,5(2):115-123.
    [182]杨中宝,彭省临,王力.变结构人工神经网络模型及其在成矿预测中的应用[J].世界地质,2003,(1):41-45.
    [183]王海平,张彤.人工神经网络方法及其在遥感地质找矿中的应用——以滇西红山子区为例[J].矿床地质,2004,23(1):123-128.
    [184]邵拥军,贺辉,张贻舟等.基于BP神经网络的湘西金矿成矿预测[J].中南大学学报(自然科学版),2007,38(6):1192-1198.
    [185]曹学斌,刘进忙.基于模糊神经网络的目标识别模型[J].战术导弹控制技术,2007,(1):45-47.
    [186]D.L.特科特,陈顒,郑捷,季颖译.分形与混沌——在地质学和地球物理学中的应用[M].北京:地震出版社,1993.
    [187]孟宪国,周有武,林碧英.方位-分维估值法[J].地球科学-中国地质大学学报,1992,17(1):63-68.
    [188]申维.方位一分维估值法进一步研究[J].西安地质学院学报,1997,19(2):70-74.
    [189]Jennrich R I. Asymptotic properties of nonlinear Least squares estimators. Ann. Math. Statistic,1969,40:633-643.
    [190]候景儒,黄竞先.地质统计学及其在矿产储量计算中的应用[M].北京:地质出版社,1982.
    [191]王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1988.
    [192]孙洪泉.地质统计学及其应用[M].徐州:中国矿业大学出版社,1990.
    [193]燕永锋.“矿床数学-经济模型”软件包的开发及其在元江金矿的应用[D].昆明:昆明理工大学,2000.
    [194]侯景儒,尹镇南等.实用地质统计学[M].北京:地质出版社,1998.
    [195]侯景儒,郭光裕.矿床统计预测及地质统计学的理论与应用[M].北京:冶金出版社,1993.
    [196]林幼斌.大厂锡矿92号矿体矿化富集规律与矿产经济研究[D].昆明:昆明理工大学,2001.
    [197]陈建宏,邓顺华,王李管.三维变异函数的计算和拟合[J].中南矿冶学院学报,1994,25(6):686-690.
    [198]戚国安,吴雨沛,陈廷琨.变异函数自动拟合初探[J].北京钢铁学院学报,1984,(2):125-130.
    [199]贾明涛,王李管.三维变异函数的稳健统计学计算方法及其应用[J].中南工业大学学报,1998,29(5):422-424.
    [200]Huber P J. Robust statistics. New York:John Eiley or Sons,1981.
    [201]吴雨沛,茹湘兰.实验变异函数的稳健估计及自动拟合[J].有色金属(矿山部分),1988,3(6):19-23.
    [202]周智勇,陈建宏,张涛等.基于三维稳健克立格法的品位建模[J].金属矿山,2007,(10):78-80.
    [203]和平鸽工作室编著.OpenGL高级编程与可视化系统开发(高级编程篇)[M].北京:中国水利水电出版社,2003.
    [204]彭晓明.OpenGL深入编程与实例揭秘[M].北京:人民邮电出版社,1999.
    [205]李清泉.三维空间数据的实时获取、建模与可视化[M].武汉:武汉大学出版社,2003.
    [206]史文中,吴立新,李清泉等.三维空间信息系统模型与算法[M].北京:电子工业出版社,2007.
    [207]孙家广,杨长贵.计算机图形学(第三版)[M].北京:清华大学出版社,2000.
    [208]倪明田,吴良芝.计算机图形学[M].北京:北京大学出版社,1999.
    [209]江早,王洪成.OpenGL VC/VB图形编程[M].北京:科学出版社,2001.
    [210]彭仪普.地形三维可视化及其实时绘制技术研究[D].成都:西南交通大学,2002.
    [211]乔林,费广正.OpenGL程序设计[M].北京:清华大学出版社,2000.
    [212]廖朵朵,张华军.OpenGL三维图形程序设计[M].北京:星球出版社,1996.
    [213]李翠平,李仲学,赵文广.矿床的体视化及仿真系统框架[J].金属矿山,2001,(10):44-48.
    [214]僧德文,李仲学,李春民.采矿工程三维可视化仿真系统框架[J].中国矿业,2004,13(5): 41-43.
    [215]Erarslan. Kaan, Practical approach for 3D modeling of ore bodies and the design of development for underground of mines, Mineral Resources Engineering,2000,9(3): 128-132.
    [216]Schofield, D; Denby, B; McClarnon, D., Computer graphics and virtual reality in the mining industry, Mining Magazine,1994,171(5).
    [217]毕林,王李管,陈建宏等.基于八叉树的复杂地质体块段模型建模技术[J].中国矿业大学学报,2008,37(4):532-537.
    [218]吴慧欣,薛惠锋.基于块段模型的三维GIS混合数据结构模型研究[J].计算机应用研究,2007,24(10):273-275.
    [219]董辉.地质体三维可视化原理与方法研究[D].长沙:中南大学,2003.
    [220]王恩德,孙立双,蔡洪春等.矿体三维数据模型及品位插值方法研究[J].地质与资源,2007,16(3):222-225.
    [221]郭甲腾.基于剖面的三维地质建模与可视化研究[D].沈阳:东北大学,2006.
    [222]徐元斌,赫冀成,李宝宽等.用八叉树数据结构自动生成三维网格的算法设计[J].东北大学学报,1997,18(4):351-355.
    [223]NOBORIO H, FUKUDA S, ARIMOTO S. Conversion algorithm from the boundary representation to the octree and its complexity [J]. Transaction of the Information Processing Society of Japan,1987,28(10):1003-1011.
    [224]TAMMINEN M, SAMET H. Efficient octree conversion by connectivity labeling[J]. Computer Graphics,1984,18(3):43-51.
    [225]GOTTSCHALK S, LIN M C, MANOCHA D, et al. OBBtree:a hierarchical structure for rapid interference detection[C]//Proceedings of ACM Annual Conference on Computer Graphics. Louisiana:[s.n.].2000:171-180.
    [226]PHILIP J S, DAVID H E. Geometric tools for computer Graphics[M]. Beijing:Publishing House of Electronics Industry,2004:712-713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700