用户名: 密码: 验证码:
新疆喀拉通克铜镍硫化物矿床成矿作用与成矿潜力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中亚造山带是世界上重要的成矿带,也是铜镍岩浆硫化物矿床发育的成矿带之一。其中,喀拉通克铜镍硫化物矿床是该成矿带的典型矿床。该矿床成矿岩体小,岩体基性程度相对低,矿床规模大,工业矿体分布较为集中,矿石品位高,从而为研究该类矿床的成因提供了有利条件。论文选择喀拉通克铜镍硫化物矿床为对象,通过岩石学、矿物学、PGE地球化学以及Nd、Sr、Pb、Os同位素等的分析测试,对喀拉通克矿床的成矿作用和成矿过程进行研究,探讨了硫化物熔离机制、铂族元素的赋存规律、铂族矿物成因和同位素体系间“脱耦”等问题,建立了成岩成矿模式。并通过研究喀拉通克矿床的铂族元素、铜、镍的特征和分布规律,综合对比喀拉通克、金川、黄山东、白马寨和Voisey'sBay铜镍硫化物矿床的铂族元素特征,对喀拉通克矿床的成矿潜力进行分析,取得的主要进展如下:
     (1)利用ICP-MS分析测试了岩石、矿石的PGE含量,并对铂族矿物(PGM)进行了电子探针分析,分析数据丰富了喀拉通克铜镍矿床的研究资料。
     (2)研究了铂族矿物的粒径、寄主矿物等微观特征,并通过质量平衡计算、相图分析探讨了该矿床铂族矿物的成因和形成过程,不仅为铂族元素选冶提供了第一手资料,而且为成矿作用和铂族元素富集规律研究提供了矿物学依据。
     (3)相似的铂族元素配分曲线和大多数硫化物Co/Ni比值小于1,表明该矿床Y1-Y9岩体群和G21岩体来自同一岩浆系统,为同源岩浆演化的产物,这与岩石主量元素提供的成因信息一致。
     (4)区域构造、岩石组合、年代学及岩石地球化学研究表明,喀拉通克矿床形成于早二叠世后碰撞伸展阶段的拉张环境,岩浆源区由被消减板片交代的地幔楔物质和软流圈地幔物质组成,且以软流圈地幔物质为主。岩石圈伸展减薄,软流圈物质上涌并发生减压部分熔融,在软流圈物质加热下地幔楔发生14%的部分熔融,产生铂族元素不亏损的初始岩浆。
     (5)PGE特征显示喀拉通克成矿母岩浆为高镁拉斑玄武质岩浆,组成类似于金川母岩浆,为携带大量硫化物熔体和橄榄石等矿物的“晶粥”。在深部岩浆房,初始岩浆局部混染少量地壳物质,橄榄石、辉石和铬铁矿等矿物发生分离结晶作用,使得岩浆中硫化物达到饱和而熔离,少量硫化物预先熔离伴随橄榄石等的丢失,导致成矿母岩浆亏损铂族元素。
     (6)选择性混染导致岩浆中Os的含量和初始Os同位素组成增高,而对Sr、Nd、O同位素体系的影响较弱,造成Os、Sr、Nd、O同位素问发生“脱耦”。
     (7)喀拉通克矿床铂族矿物以Pt、Pd、Ni的碲化物、铋化物固溶体系列矿物为主,分布不均一,主要分布在磁黄铁矿、镍黄铁矿等硫化物中。粒径多在3-5um。矿物组合、质量平衡计算和相图分析显示,铂族元素主要以铂族矿物的形式存在,多数铂族矿物为岩浆熔离成因,个别矿物颗粒可能为热液叠加作用的产物。
     (8)喀拉通克矿床浸染状矿石宏观上具有最先成矿的特点,相似的Pd/Ir、Pt/Pd、Cu/Pd比值及IPGE与PPGE之间分异不明显,说明浸染状矿石是含矿岩浆较快速度冷凝与就地结晶分异的产物。而致密块状矿石宏观上晚于浸染状矿石侵位,具有岩浆通道贯入成矿的特征,IPGE比PPGE更加亏损,且IPGE与PPGE之间分异显著,这意味着硫化物熔体在深部岩浆房与更多的橄榄石、铬铁矿等矿物反应,而后贯入到构造破碎带,经历单硫化物固溶体分离结晶后形成块状矿石。
     (9)在考虑矿床成岩成矿大陆动力学背景的基础上,以成矿作用和深部成矿过程为核心,建立了喀拉通克铜镍矿床的成岩成矿模式。
     (10)喀拉通克、金川、白马寨、黄山东和Voisey's Bay铜镍矿床均经历了深部硫化物熔离作用,硫化物熔离导致母岩浆亏损PGE,但对Ni和Cu而言可能起到预富集作用。因此,在目前的勘查深度内喀拉通克铜镍矿床的PGE成矿潜力有限,而铜、镍的成矿潜力较大。
The Central Asian Orogen belt is an important metallogenic zone hosting many Ni-Cu magmatic sulfide deposits in the world. Kalatongke deposit is the biggest and representative one in Xinjiang, it is associate with small rock masses and lack of ultramafic rocks, which is charactered by concentrative industrial ore bodies with high tenor. All these provide some investigative advantages for the ore genesis of magmatic sulfide deposit. Kalatongke deposit was selected for detailed study on the base of petrology, mineralogy, PGE geochemistry, Nd, Sr, Pb and Os isotope geochemistry, focusing on the key issues of magmatic sulfide deposits:①the metallogenes and its deep process;②the factors controlling on the sulfide segregation, the relationship between crustal contamination and sulphide segregation;③what is the cause for the decoupling of the Sm-Nd-O and Re-Os isotopic systems. Systematically comparison for the characters of PGE between Kalatongke and the other ones such as Jinchuan, Baimazhai, Huangshandong and Voisey's Bay deposit.were carried out, the characters and distribution regularity of PGE, Ni and Cu from Kalatongke deposit were studied, in order to analyse its metallogenic potential. The following are the main results:
     (1)The PGE content of rocks, ores and platinum-group mineral (PGM) from the Kalatongke Ni-Cu sulfide deposit, have been analyzed by the ICP-MS and electron microprob respectively, analytic results enriches the researchful data of Kalatongke Ni-Cu deposit.
     (2)The microcosmic characters such as grain scale and its hosting minerals have been researched. Studies on the oregenesis of PGM are performed using mass balance calculation and phase plots. All these provide not only first-hand data for PGE beneficiation, but also mineralogical evidence for research on the metallogenes and enrichment regularity of PGE.
     (3)The Kalatongke deposit has similar mantle-normalized pattern, and smaller Co/Ni ratio than the unity of most sulfides, showing that the rock bodies from Y1 to Y9 and G21 derived from the same magma system, it is consisted with the genesic information from the main oxides of rocks.
     (4)Petrogeochemistry, district rock assemblage, structure and chronology have proved that, Kalatongke sulfide deposit formed in the postcollisional extension setting at the early Permian. Its mantle source is composed of mantle wedge components matasomasised by the fluid from the subducting slab and aesethenosphere, aesethenosphere melt because of the decompression and underwell. Then, the mantle wedge melted by 14 percent degree and gave rise to a tholeitiitic basalt, which should be undepleted in platinum group element.
     (5)The characteristics of PGE suggest that Kalatong parental magma is likely of a high magnesium tholeitiitic basalt, and similar to that of the Jinchuan deposit, consisting of "crystal mushes" formed by accumulation of suspended olivine crystals and sulfide melt. Primary magma underwent minor crustal contamination to some extent locally in the stage chamber. Olivine, pyroxene and chromite crystallization is the main control factor resulting in the magma sulfur saturation and segregation, minor sulfide presegregation induced the parental magma depleted in platinum group element.
     (6)The select contamination would heighten the Os content and the initial Os composition, on the contrary, it has little influence on the Sr, Nd,O isotopic system resulting in decoupling of the Os and Sr, Nd,O isotopic due to the lower Sr、Nd、REE contents in sulfide.
     (7)PGM are predominated by the (Pt, Pd, Ni)-Te-Bi solide solution mainly closed in sulfide. Mineral assemblage, mass balance calculation and phase charts show that PGE are at large in PGM, most of which are from the magma segregation, individual one maybe come from the hydrothermal fluid.
     (8)The disseminated ores from the different ore body of Kalatongke deposit, which is the earliest mineralization than the massive ores in macro scale, have similar Pd/Ir、Pt/Pd and Cu/Pd ratio, imply that they have slight fractionation between the IPGE and PPGE due to the faster cooling and in situ crystallization and fractionation of the parental magma. On the contrary, for the dense massive ores with visible fractionation between the IPGE and PPGE, they have the mineralization characters injected in the magma conduit and more depleted in IPGE than PPGE. As suggest that the sulfide melt suffered more separation and crystallization of olivine and chromite in deep, then, the sulfid melt laterly injected the structure crash belt and came into being the massive ores, which consists of monosulfide solide solution underwent separation crystallization.
     (9)Mineralization mode focusing on the minerogenesis and deep mineralization process is established, on the base of continental kinetic setting of Kalatongke deposit.
     (10)Comparison for the characters of PGE among the five deposits mentioned above show that, they are all depleted in PGE due to minor sulfide presegregation event in deep, but it maybe play an import role for the mineralization of Cu and Ni.. So Kalatongke deposit has limited metallogenic potentiality for PGE, but has better capacity of Cu and Ni in the operational exploration depth.
引文
1. 白云来,张汉成,李卫红,等.论甘肃北山中部镍铜成矿系统的构造背景[J].,2002,11(2):29-44
    2. 蔡忠贤,陈发景,贾振远.准噶尔盆地的类型和构造演化[J].地学前缘,2000,7(4):431-440
    3. 柴凤梅.新疆北部三个与岩浆型Ni-Cu硫化物矿床有关的镁铁-超镁铁质岩的地球化学特征对比研究[D].北京:中国地质大学博士学位论文,2006,1-164
    4. 柴凤梅,张招崇,毛景文,等.新疆哈密白石泉含铜镍镁铁-超镁铁质岩体铂族元素特征[J].地球学报,2006,27(2):123-128
    5. 柴凤梅,张招崇,董连慧,等.新疆中天山白石泉含铜镍矿镁铁-超镁铁岩体地球化学特征与岩石成因[J].岩石学报,2007,23(10):2366-2378
    6. 陈殿芬.我国一些铜镍硫化物矿床主要金属矿物的特征[J].岩石矿物学杂志,1995,14(14):345-354
    7. 陈立辉,韩宝福.新疆北部乌恰沟地区镁铁质侵入岩的年代学、地球化学和Sr-Nd-Pb同位素组成:对地幔源区特征和深部过程的约束[J].岩石学报,2006,22(05):1201-1214
    8. 陈列锰,宋谢炎,Danyushevsky LV,等.金川岩体母岩浆成分及其分离结晶过程的熔浆热力学模拟[J].地质学报,2009,83(9):1302-1315
    9. 陈毓川等.阿尔泰黄金、有色金属开发区成矿地质条件与矿产资源评价研究[R].1995,国家305项目科研报告
    10.陈毓川,刘德权,应立娟,等.新疆觉罗塔格成矿带与南阿尔泰成矿带的对比研究[J].矿床地质,2009,28(1):l-14
    11.成杭新,谢学锦,严光生,等.中国泛滥平原沉积物中铂钯丰度值及地球化学省的初步研究[J].地球化学,1998,27(2):101-107
    12.成杭新,刘占元,赵传冬.初论盘江流域铂、钯地球化学巨省[J].长春科技大学学报,2000,30(3):226-229
    13.储雪蕾,孙敏,周美夫.化学地球动力学中的铂族元素地球化学[J].岩石学报,2001,17(1):1 12-122.
    14.董连慧,徐兴旺,屈迅,等.初论环准噶尔斑岩铜矿带的地质构造背景与形成机制[J].岩石学报,2009,25(4):713-737
    15.高亚林.金川矿区地质特征-时空演化及深边部找矿研究[D].兰州:兰州大学博士学位论文,2009,
    16.耿林,翟裕生,彭润民.中国铂族元素矿床特征及资源潜力分析[J].地质与勘探,2007,43(1):1-7
    17.宫红良,陈正乐,胡远清,等.阿尔泰额尔齐斯带东段酸性岩墙群地球化学特征及其地质意义[J].岩石学报,2007,23(5):889-899
    18.顾连兴.不同成因类型磁黄铁矿中镍、钴的地球化学[J].地质与勘探,1974,10(3):65-70
    19.韩宝福,何国琦,王式洮.后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质[J].中国科学(D辑),1999,29:16-21.
    20.韩宝福,季建清,宋彪,等.新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的 SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报,2004,49(22):2324-2328
    21.韩宝福,季建清,宋彪,等.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)-后碰撞深成岩浆活动的时限[J].岩石学报,2006,22(5):1077-1086
    22.韩春明,肖文交,赵国春,等.新疆喀拉通克铜镍硫化物矿床Re-Os同位素研究及其地质意义[J].岩石学报,2006,22(1):163-170.
    23.何国琦,李茂宋,刘德权,等.中国新疆古生代地壳演化及成矿[M].乌鲁木齐:新疆人民出版社,1994
    24.何国琦,刘建波,张越迁,等.准噶尔盆地西缘克拉玛依早古生代蛇绿混杂岩带的厘定[J].岩石学报,2007,23(7):1573-1576
    25.胡霭琴,张国新,陈义兵,等.新疆大陆基底分区模式和主要地质事件的划分[J].新疆地质,2001,19(1):12-19
    26.洪大卫,王式洗,谢锡林,等.兴蒙造山带正ε(Nd,t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2):441-456
    27.黄继钧.喀拉通克铜镍硫化物矿床的岩浆深渊熔离-贯入及其形成力学机理[J].矿物岩石,1990,10(4):97-104
    28.黄继钧.喀拉通克铜镍硫化物矿区一号矿床构造控岩控矿作用分析[J].地质与勘探,1995,31(6):23-30
    29.贾志永,张铭杰,汤中立,等.新疆喀拉通克铜镍硫化物矿床成矿岩浆作用过程[J].矿床地质,2009,28(5):673-686
    30.姜常义,穆艳梅,白开寅,等.南天山花岗岩类的年代学、岩石学、地球化学及其构造环境[J].岩石学报,1999,15:298-308
    31.姜常义,姜寒冰,叶书锋,等.新疆库鲁克塔格地区二叠纪脉岩群岩石地球化学特征,Nd、Sr、Pb同位素组成与岩石成因[J].地质学报,2005,79(6):823-834
    32.姜常义,钱壮志,夏明哲,等.新疆喀拉通克镁铁质岩体群的岩石成因研究[J].岩石学报,2009,25(4):738-748
    33.江荣伏.金川矿区深部找矿方向探讨[J].地质与勘探,2003,39(5):35-38
    34.靳湘云.由供应短缺走向供需基本平衡-2004年铂市场回顾及2005年预测[J].中国金属通报,2005(9):27-38
    35.李刚柱.新疆喀拉通克铜镍硫化物矿床成矿岩浆作用[D].兰州:兰州大学硕士学位论文,2008
    36.李海鸥,姜枚,王亚军,等.新疆富蕴-库尔勒剖面接收函数方法获得的地壳上地幔结构成像[J].地质学报,2006,80(1):135-141
    37.李锦轶,肖序常.对新疆地壳结构与构造演化几个问题的简要评述[J].地质科学,1999,34(4):405-419
    38.李锦轶,肖序常,陈文.准噶尔盆地东部的前晚奥陶世陆壳基底——来自盆地东北缘老君庙变质岩的证据[J].中国区域地质,2000,19(3):297-302
    39.李锦轶.新疆东部新元古代晚期和古生代构造格局及其演变[J].地质论评,2004,50(3),304-322
    40.李锦轶,何国琦,徐新,等.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报,2006,80(1):148-168
    41.李华芹,蔡红,谢才富,等.新疆北部有色贵金属矿床成矿作用年代学[M].北京:地质出 版社,1998
    42.李文渊.岩浆Cu-Ni-PGE矿床研究现状及发展趋势[J].西北地质,2007,40(2):1-28
    43.梁云海,李文铅,李卫东.新疆准噶尔多旋回开合构造特征[J].地质通报,2004,23(3):279-285
    44.林锦富,喻亨祥,余心起,等.新疆东准噶尔萨北富碱花岗岩SHRIMP锆石U-Pb测年及其地质意义[J].岩石学报,2007,23(8):1876-1884
    45.林锦富,喻亨祥;吴昌志,等.东准噶尔萨北锡矿SHRIMP锆石U-Pb测年及地质意义[J].中国地质,2008,35(6):1 197-1205
    46.刘楚雄,许保良,邹天人,等.塔里木北缘及邻区海西期碱性岩岩石化学特征及其大地构造意义[J].新疆地质,2004,22:43-49
    47.刘德权,唐延龄,周汝洪.新疆北部古生代地壳演化及成矿系列[J].矿床地质,1992,11(4):307-314
    48.刘家远,喻亨祥,吴郭泉.新疆北部卡拉麦里富碱花岗岩带的碱性花岗岩与锡矿[J].有色金属矿产与勘查,1997,6(3):129-135
    49.刘家远,喻亨祥,吴郭泉.新疆东准噶尔两类碱性花岗岩及其地质意义[J].矿物岩石地球化学通报,1999,18:89-94
    50.刘民武.中国几个镍矿床的地球化学比较研究.西安:西北大学博士学位论文,2003
    51.龙晓平,孙敏,袁超,等.东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约[J].岩石学报,2006,22(1):31-40
    52.骆华宝.岩浆型铜镍矿床中紫硫镍矿的成因矿物学研究[J].地质与勘探,1994,30(1):38-40
    53.毛景文,杨建民,屈文俊,等.新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义[J].矿床地质,2002,21(4):323-330
    54.毛景文,Franco P,张作衡,等.天山-阿尔泰东部地区海西晚期后碰撞铜镍硫化物矿床:主要特点及可能与地幔柱的关系[J].地质学报,2006,80(7):925-942
    55.牛贺才,许继峰,于学元,等.新疆阿尔泰富镁火山岩系的发现及其地质意义[J].科学通报,1999,44:1002-1004
    56.牛贺才,单强,张海祥,等.东准噶尔扎河坝超高压变质成因石英菱镁岩的40Ar/39Ar同位素年代学信息及地质意义[J].岩石学报,2007,23(7):1627-1634
    57.帕拉提·阿布都卡迪尔,黄建华,吴兆宁.喀拉通克铜镍矿床伴生贵金属赋存富集规律[J].新疆工学院学报,1996,17(2):79-85
    58.帕拉提·阿布都卡迪尔,黄建华.1997.新疆喀拉通克铜镍矿床伴生贵金属成矿地球化学研究[J].贵金属地质,6(1):22-26
    59.潘长云,王润民,赵昌龙.新疆喀拉通克Yl含矿岩体的岩石化学特征及其与成矿的关系[J].岩石学报,1994,10(3):261-274
    60.钱壮志,王建中,姜常义,等.喀拉通克铜镍矿床铂族元素地球化学特征及其成矿作用意义[J].岩石学报,2009,25(4):832-844
    61.钱壮志,孙涛,汤中立,等.东天山黄山东铜镍矿床铂族元素地球化学特征及其意义[J].地质论评,2009,55(6):873-884
    62.秦克章,丁奎首,许英霞,等.东天山图拉尔根、白石泉铜镍矿床钴、镍赋存状态及原岩含矿性研究[J].矿床地质,2007,26(1):1-14
    63.冉红彦,肖森宏.喀拉通克含矿岩体的微量元素与成岩构造环境[J].地球化学,1994, 23(4):392-401
    64.任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3):85-93
    65.沈渭洲.同位素地质学教程.北京:原子能出版社,1997
    66.宋谢炎,胡瑞忠,陈列锰.铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义[J].地学前缘,2009,16(4):287-305
    67.宋谢炎,胡瑞忠,陈列锰.铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义[J].地学前缘,2009,16(4):287-305
    68.宋谢炎,肖家飞,朱丹,等.岩浆通道系统与岩浆硫化物成矿研究新进展.地学前缘,2010,17(1):153-163
    69.苏尚国,沈存利,邓晋福,等.铂族元素的地球化学行为及全球主要铂族金属矿床类型[J].现代地质,2007,21(2):361-270
    70.苏玉平和唐红峰.型花岗岩的微量元素地球化学[J].矿物岩石地球化学通报,2005,24(3):245-251
    71.苏玉平,唐红峰,刘丛强,等.新疆东准噶尔苏吉泉铝质A型花岗岩的确立及其初步研究[J].岩石矿物学杂志,2006,25(3):175-184
    72.孙赫,秦克章,李金祥,等.地幔部分熔融程度对东天山镁铁质-超镁铁质岩铂族元素矿化的约束-以图拉尔根和香山铜镍矿为例[J].岩石学报,2008,24(5):1079-1086
    73.谭娟娟,朱永峰.布什维尔德铂族元素矿床:铂族矿物赋存状态及其成因[J].地学前缘,2009,16(2):227-238
    74.陶琰,胡瑞忠,漆亮,等.四川力马河镁铁-超镁铁质岩体的地球化学特征及成岩成矿分析[J].岩石学报,2007,23(11):2785-2800
    75.唐冬梅.东天山后碰撞镁铁质-超镁铁质镍铜硫化物矿床PGE地球化学示踪与富集规律研究[D].北京:中国科学院地质与地球物理博士学位论文,2009
    76.唐冬梅,秦克章,孙赫,等.东疆天宇岩浆Cu-Ni矿床的铂族元素地球化学特征及其对岩浆演化、硫化物熔离的指示[J].地质学报,2009,83(5):680-697
    77.唐红峰,苏玉平,刘丛强,等.新疆北部卡拉麦里斜长花岗岩的锆石U-Pb年龄及其构造意义[J].大地构造与成矿学,2007,31(1):110-117
    78.汤中立和李文渊.金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M].北京:地质出版社,1995
    79.汤中立.超大型Ni-Cu(Pt)岩浆矿床的划分与找矿[J].地质与勘探,2002,38(3):1-7
    80.汤中立,钱壮志,姜常义等.中国镍铜铂岩浆硫化物矿床与成矿预测[M].北京:地质出版社,2006
    81.田战武.新疆喀拉通克铜镍矿成矿预测研究[D].西安:长安大学硕士学位论文,2007,1-68
    82.童英,洪大卫,王涛,等.阿尔泰造山带南缘富蕴后造山线形花岗岩体锆石U-Pb年龄及其地质意义[J].岩石矿物学杂志,2006,25(2):85-89
    83.王登红,陈毓川,徐志刚,等.新疆北部Cu-Ni-PGE硫化物矿床成矿系列探讨[J].矿床地质,2002,19(2):147-154
    84.王登红,陈毓川,徐志刚,等.阿尔泰成矿省的成矿系列及成矿规律[M].北京:原子能出版社,2002
    85.王福同,马天林,刘光海等.新疆喀拉通克Cu-Ni-Au成矿带成矿作用与找矿模式[M]. 北京:地质出版社,1992
    86.王京彬,徐新.新疆北部后碰撞构造演化与成矿[J].地质学报,2006,80(1):23-31
    87.王京彬,王玉往,周涛发.新疆北部后碰撞与幔源岩浆有关的成矿谱系[J].岩石学报,2008,24(4):743-752
    88.王敏芳,邓晓东,毕诗健.丰山斑岩型铜(钼)矿床中铂、钯的富集特征研究[J].地质与勘探,2009,45(2):38-45
    89.王清利.天山及邻区古生代构造-岩浆-成矿事件年代学研究[D].北京:中国地质科学院博士学位论文,2008
    90.王润民,赵昌龙.新疆喀拉通克一号铜镍硫化物矿床[M].北京:地质出版社,1991
    91.王生伟,孙晓明,石贵勇,等.2006.云南白马寨铜镍硫化物矿床铂族元素地球化学及其对矿床成因的制约[J].地质学报,80(9):1474-1486
    92.王有标.新疆铜镍硫化物矿床的基本地质特点[J].新疆地质,1990,8:305-320
    93.魏民.新疆喀拉通克Cu,Ni矿区矿体数学特征及隐伏矿体预测[J].地球科学,1990,15(6):555-563
    94.吴利仁.论中国基性、超基性岩成矿专属性[J].地质科学,1963,(1):29-41
    95.夏林圻,张国伟,夏祖春,等.天山古生代洋盆开启、闭合时限的岩石学约束-来自震旦纪、石炭纪火山岩的证据[J].地质通报,2002,21(2):55-62
    96.夏林圻,李向民,夏祖春,等.天山石炭—二叠纪大火成岩省裂谷火山作用与地幔柱[J].西北地质,2006,39(1):1-49
    97.夏明哲.新疆东天山黄山岩带镁铁-超镁铁质岩石成因及成矿作用[D].西安:长安大学博士学位论文,2009
    98.夏祖春,徐学义,夏林忻,等.天山石炭-二叠纪后碰撞花岗质岩石地球化学研究[J].西北地质,2005,38(1):1-14
    99.肖文交,韩春明,袁超,等.新疆北部石炭纪-二叠纪独特的构造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约[J].岩石学报,2006,22(5):1062-1076
    100.肖序常,汤耀庆,冯益民,等.新疆北部及其邻区大地构造[M].北京:地质出版社,1992
    101.解广轰,汪方亮,范彩云,等.金川超镁铁岩侵入体及超大型硫化物矿床的成岩成矿机制[J].中国科学(D辑),1998,28:31-36
    102.谢学锦.全球地球化学填图[J].中国地质,2003,30(1):1-9
    103.许成,黄智龙,刘丛强,等.铂族元素地球化学研究评述[J].地学前缘,2003,10(4):520-528
    104.许继峰,梅厚钧,于学元,等.准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩消减板片部分熔融的产物[J].科学通报,2001,46(8):684-688
    105.徐芹芹,季建清,韩宝福,等.新疆北部晚古生代以来中基性岩墙群的年代学、岩岩石学、地球化学研究[J].岩石学报,2008,24(5):977-996
    106.徐学义,马中平,夏祖春,等.天山石炭-二叠纪后碰撞花岗岩的Nd、 St、Pb同位素源区示踪[J].西北地质,2005,38(2):1-18
    107.徐学义,夏林圻,马中平,等.北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J].岩石学报,2006,22(1):83-94
    108.闰升好,陈文,王义天,等.新疆额尔齐斯金成矿带的40Ar/39Ar年龄及其地质意义[J].地质学报,2004,(4):500-506
    109.余旭.新疆喀拉通克基性岩体的地球化学特征与岩石成因[D].西安:长安大学硕士学位论 文,2008
    110.杨炳滨.新疆北部岩浆型铜镍硫化物矿床控矿因素的研究[J].矿产与地质,1994,8:330-333
    111.杨富全,毛景文,夏浩东,等.新疆北部古生代浅成低温热液型金矿特征及其地球动力学背景[J].矿床地质,2005,24(3):242-263
    112.杨合群,汤中立,苏犁,等.金川硫化铜镍矿床成矿岩浆性质和源区特征讨论[J].甘肃地质学报,1997,6(1):44-52
    113.杨甲全,钟莉,邓刚.北山地区坡北1号、2号基性-超基性岩体成矿预测及找矿方向[J].新疆地质[J].20()2,20(3):214-218
    114.杨文平,周刚,张招崇,等.阿尔泰造山带南缘镁铁质岩体的地球化学特征及铜镍硫化物型矿床找矿前景[J].地质通报,2004,23(4):390-399
    115.袁超,肖文交,陈汉林,等.新疆东准噶尔扎河坝钾质玄武岩的地球化学特征及其构造意义[J].地质学报,2006,80(2):254-263
    116.翟裕生,邓军,李晓波.区域成矿学[M].北京:地质出版社,1999
    117.赵泽辉,郭召杰,韩宝福,等.新疆东部-甘肃北山地区二叠纪玄武岩对比研究及其构造意义[J].岩石学报,2006,22(5):1279-1293
    118.赵振华,王中刚,邹天人,等.新疆乌伦古富碱侵入岩成因探讨[J].地球化学,1996,25(3):205-22
    119.赵振华,白正华,熊小林,等.西天山北部晚古生代火山-浅侵位岩浆岩40Ar/39Ar同位素定年[J].地球化学,2003,32:317-32
    120.赵振华,王强,熊小林,等.新疆北部的两类埃达克岩[J].岩石学报,2006 22(5):1249-1265
    121.赵玉梅.新疆喀拉通克铜镍矿床矿石矿物微区分析[D].西安:长安大学硕士学位论文,2009
    122.张海祥,牛贺才,Hiroaki Sato,等.新疆北部晚古生代埃达克岩、富铌玄武岩组合:古亚洲洋板块南向俯冲的证据[J].高校地质学报,2004,10(1):106-113
    123.张海祥,沈晓明,马林,等.新疆北部富蕴县埃达克岩的同位素年代学及其对古亚洲洋板块俯冲时限的制约[J].岩石学报,2008,24(5):1054-1058
    124.张洪,刘宏云,陈方伦.铂-钯区域地球化学勘查[J].地球化学,2002,31(1):55-65
    125.张铭杰,王先彬,李立武.地慢流体组成[J].地学前缘,2000,7(2):401-412
    126.张铭杰,孟广路,胡沛青,等.祁连古大洋地慢流体组成-来自玉石沟橄榄岩的证据[J],兰州大学学报,2008,44(4):1-9
    127.张前锋,胡蔼琴,张国新,等.阿尔泰地区中、新生代岩浆活动的同位素年龄证据[J].地球化学,1994,23(3):269-280
    128.张招崇,王福生.一种判别原始岩浆的方法-以苦橄岩和碱性玄武岩为例[J].吉林大学学报,2003,33(2):130-134
    129.张招崇,闫升好,陈柏林,等.新疆喀拉通克基性杂岩体的地球化学特征及其对矿床成因的约束[J].岩石矿物学杂志,2003,22(3):220-221.
    130.张招崇,闫升好,陈柏林等.阿尔泰铜矿带东段找矿靶区优选及评价[R].国家305项目2001BA609A-07-02专题科研报告,2005
    131.张招崇,阎升好,陈柏林,等.阿尔泰造山带南缘镁铁质-超镁铁质杂岩体的Sr、Nd、O同位素地球化学及其源区特征探讨[J].地质论评,2006,51(1):38-42.
    132.张作衡,柴凤梅,杜安道,等.新疆喀拉通克铜镍硫化物矿床Re-Os同位素测年及成矿物质来源示踪[J].岩石矿物学杂志,2005,24(4):285-294
    133.张作衡.关于《新疆喀拉通克铜镍硫化物矿床Re-Os同位素测年及成矿物质来源示踪》—文中值计算错误的更正[J].矿物岩石学杂志,2006,25(1):44
    134.赵莉,张招崇,闫升好,等.新疆阿尔泰库卫岩体的SHRIMP锆石U-Pb年龄及其地球化学特征[J].岩石矿物学杂志,2006,25(3):194-202
    135.赵泽辉,郭召杰,韩宝福,等.新疆东部-甘肃北山地区二叠纪玄武岩对比研究及其构造意义[J].岩石学报,2006,22(5):1279-1293
    136.周刚,张招崇,杨文平,等.新疆阿尔泰山南缘玛音鄂博断裂南侧变质基性岩的发现及其地质意义[J].地球科学,2005,30(6):738-746
    137.周刚,张招崇,王新昆,等.新疆玛因鄂博断裂带中花岗质糜棱岩锆石U-Pb SHRIMP和黑云母40Ar/39Ar年龄及意义[J].地质学报,2007,81(3):359-369
    138.周刚,秦纪华,张招崇,等.新疆富蕴县苏普特一带双峰式火山岩的发现及其地质意义[J].地质论评,2007,53(3):337-348
    139.周晶,季建清,韩宝福,等.新疆北部基性岩脉40Ar/39Ar年代学研究[J].岩石学报,2008,24(5):997-1010
    140.周涛发,袁峰,谭绿贵,等.新疆萨吾尔地区晚古生代岩浆作用的时限、地球化学特征及地球动力学背景[J].岩石学报[J],2006,22(5):1225-1237
    141.邹海洋.新疆喀拉通克铜镍硫化物矿床成岩成矿模式及找矿预测研究[D].长沙:中南大学博士论文,2002
    142. Ahmed AH, Arai S, Abdel-Aziz YM, et al. Spinel composition as a petrogenetic indicator of the mantle section in the Neoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco[J]. Precam Res,2005,138:225-234
    143. AmelinY, Li CS and Naldrett AJ. Geochronology of the Voisey's Bay intrusion, Labrador Canada,by precise U-Pb dating of coexisting bad deleyite, zircon, and apatite[J]. Lithos, 1999,47:33-51
    144. Amelie YLC, Valeyer O and Naldrett AJ. Nd-Sr-Pb isotope systematics of assimilation in the Voisey's Bay and Mushuan intrusions, Labrador Canada[J]. Econ Geol,2000,95:815-830
    145. Arculus R J, Johnson RW. Island-arc magma source:a geochemicalassessment of the role of slab-derived components and crustal consamination[J].Geochemical Journal,1981, 15:109-133
    146. Baker JA, Menzies MA, Thirlwall MF, et al. Petrogenesis of Quaternary intraplate volcanism, Sana'a Yenmen:Implication and polybaric melt hybridization[J]. J Petrol,1997,38: 1359-1390
    147. Barnes S J,Naldrett AJ, Gorton MP. The origin of the fractionation of platinum-group elements in terrestrial magmas[J].Chem Geol,1985,53:303-323
    148. Barnes S-J. Unusual nickel and copper to noble metal ratios from the Rana layered intrusion,northern Norway[J]. Nor Geol Tidsskr,1987,67,215-231
    149. Barnes S-J and Lightfoot PC.Formation of magmatic nickel sulfide ore deposits and processses affecting their copper and platinum-group element contents[J]. Econ Geol 100th anniversary volume,2005,179-213
    150. Barnes S-J, Hazel M, Prichard H M, et al. The location of the chalcophile and siderophile elements in platinum-group element ore deposits(a textural, microbeam and whole rock geochemical study):Implications for the formation of the deposits[J]. Chem Geol,2008, 248:295-317
    151. Bickle MJ. The magnesium contents of komatitic liquids[A]. In:Arndt NT, Nisbet EG, eds. Komatiites[C].London:George Allen and Unwin,1982,479-494.
    152. Bird P. Continental delamination and the Colorado plateau[J]. J Geophys Res,1979, 84(B13):7561-7571
    153. Borisov A, Palme H. Solubilities of noble metals in Fe-containing silicate melts as derived from experiments in Fe-free systems[J]. Ame Mineral,2000,85(11-12):1665-1673
    154. Boyd R and Mathiesen C O.The nickel mineralization of Rana mafic intrusion Nord land Norway[J]. Can Mineral,1979,17:287-298
    155. Brenan JM. The platinum-group elements:"Admirably Adapted" for science and industry[J]. Elements,2008,4:227-232
    156. Brill BA. Trace-element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn Deposit, Australia[J]. Can Mineral,1989,27:263-274
    157. Brugmann GE, Arndt NT and Hofmann AW. Noble metal abundances in a Komatiite Suites from Alexo Ontrio, and Gorgona Island, Colombia[J]. Geochim Cosmochim Acta,1987,57: 2159-2169
    158. Brugmann GE, Naldrett AJ, Asif M, et al. Siderophile and chalcophile metalsas tracers of the evolution of the Siberian trap in the Noril'sk region, Russia[J]. Geochim Cosmochim Acta, 1993,57:2001-2018
    159. Buchanan DL and Nolan J. Soubility of sulfur and sulfide immiscibility in synthetic tholeiitic melts and their relevance to Bushveld-complex rocks[J]. Can Mineral,1979,17:483-494
    160. Campbell IH, Naldrett A J. The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides[J]. Econ Geol,1979,74:1503-1505
    161. Campbell I H, Naldrett AJ and Barnes S-J. A model for the origin of the platinum rich sulfide horizons in the Bushveld and Stillwater Complexes[J]. J Petrol,1983,24:133-165
    162. Campbell IH and Griffiths RW. The evolution of mantle's chemical structure[J]. Lithos,1993, 30:389-399
    163. Campbell IH. Implications of Nb/U, Th/U and Sm/Nd in plume magma for the relationship between continental and oceanic crust formation and the depleted mantle [J]. Geochmi Cosmochim Acta,2002,66(9):1651-1661
    164. Capobianco CJ and Drake MJ. Partitioning of ruthenium, rhodium and palladium between spinel and silicate melt and implications for platinum group element fractionaton trends[J]. Geochim Cosmochim Acta,1990,61:4139-4149
    165. Carlson RW, Shirey SB and SchOnbachler M. Application of PGE radioisotope systems in geo-and cosmochemistryin cosmochemistry[J]. Elements,2008,4:239-245
    166. Chai G,Naldrett A J.PGE mineralization of the Jinchuan Ni-Cu sulfide deposit NW China[J].Econ Geol,1992a,187:1475-1495
    167. Chai G, Naldrett A J. Petrology and Geochemistry of Jinchuan Ultramafic Intrusion: Cumulate of a High-Mg Basaltic Magma[J]. J Petrol,1992b,33:277-303
    168. Chen B, Jahn B M. Genesis of postcollisional granitoids and basement nature of the Junggar terrane, NW China:Nd-Sr isotope and trace element evidence[J]. Journal of Asian Earth Sciences,2004,23:691-703
    169. Chen Y. Paragenesis of Platinum-Group minerals[J]. Geoscience,2001,15(2):131-142
    170. Claesson S, Vetrin V, Bayanova T, et al. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia:a record of geological evolution from the Archaean to the Palaeozoic[J].Lithos,2000,51(1):95-108
    171. Crocket JH, Fleet ME, Stone WE. Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basaltic melt:the significance of nickel content[J]. Geochim Cosmochim Acta,1997,-61:4139-4149
    172. Crocket JH. PGE in fresh basalt, hydrothermal alteration products, and volcanic incrustations of Kilauea volcano, Hawaii[J]. Geochim Cosmochim Acta,2000,64:1791-1807
    173. Crocket JH. Platinum-group element geochemistry of mafic and ultramafic rocks[A].//In: Cabri LJ(ed). The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum Group Elements[C]. Ottawa:Springer-Verlag Berlin Heidlberg,2002:619-636
    174. DeWall SA, Xu ZH, Li CS, et al. Emplacement of viscous mushes in the Jinchuan ultramafic intrusion, western China[J]. Can Mineral,2004,42,371-392
    175. Ding X, Ripley EM, Li CS, et al. Geochronology, minerology, and isotope geochemistry of the Eagle and East Eagle conduit-type Cu-Ni sulfide-bearing mafic-ultramafic intrusions in the midcontinent Rift System, upper Michigan[J]. Northwestern Geology(Sup),2009,42:127
    176. Distler VV, Kryachko VV and Yudovskaya MA. Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex[J]. Mineral Petrol,2008,92(1-2):31-58
    177. Ebel DS and Naldrett AJ. Crystallization of sulfide liquids and the interpretation of ore composition[J].Can J Earth Sci,1997,34:352-365
    178. Eckstrand R. Ni-Cu-Cr-PGE mineralization types:Distribution and classification[a]. In: Mungall JE(eds). Exploration for platinum-group elements deposits[C]. Mine Assoc Can Short Course Notes,2005,35:487-494
    179. Emslie RF, Hamilton MA and Theriault RJ. Petrogenesis of a mid-Proterozoic anorthosite-mangerite-charnockite-granite(AMCG)complex:Isotopic and chemical evidence from the Nain Plutonic Suite[J]. J Geol,1994,102:539-558
    180. Esser BK, Turekian KK. The osmium isotopic composition of the continental crust[J]. Geochim. Cosmochim Acta,1993,57,3093-3104
    181. Farrow C E G, Watkinson D H.1999. An evaluation of the role of fluids in Ni-Cu-PGE-bearing, mafic-ultramafic systems[A]. In:Keays RR, Lesher CM, Lightfoot PC, Farrow CEG (eds) Dynamic processes in magmatic ore deposits and their application in mineral exploration[C]. Geol Assoc Can Short Course Notes 13:3-67
    182. Fincham CJB and Richardson FD. The behaviour of sulphur in silicate and aluminate melts[J]. Proc R Soc Lond Ser A,1954,223:40-62
    183. Finnigan CS, Brenan JM, Mungall JE, et al. Experiments and models bearing on the role of chromite as a collector of platinum group minerals by local reduction[J]. J Petrol,2008,49: 1647-1665
    184. Fleet ME, Chryssoulis SL, Stone WE, et al. Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system:Experiments on the fractional crystallization of sulfide melt[J]. Contrib Mineral Petrol,1993,115:36-44
    185. Fleet ME, Crocket JH, Stone WE. Partition of platinum Group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt[J]. Geochim Cosmochim Acta,1996,60(13): 2397-2412
    186. Foster JG, Lambert DD, Frick LR, et al. Re-Os isotopic evidence for genesis of Archean nickel ores from uncontaminated komatiites[J]. Nature,1996,382:703-706
    187. Foster JG, Hutchinson D. Melts, Magma, Metals and Magmatic Sulfides:Source Variability and Multi-Stage Sulfide Saturation[J]. Northwestern Geology(Sup),2009,42:14
    188. Francis RD. Sulfide globules in mid-ocean ridge basalts (MORB) and the effect of oxygen abundance in Fe-S-0 on the ability of those liquids to partition metals from MORB and komatiitic magmas[J]. Chem Geol,1990,185:199-213
    189. Frey FA, Green DH, et al. Integrated models of basalt petrogenesis:Astudy of quarti tholeiites to olivine melilities from south eastern Australia utilizing geochemical and experimental petrological data[J]. J Petrol,1978,19:463-513.
    190. Fujinawa A. Tholeiitic and calc-alkaline magma series, at Adatara volcano, northeast Japan:I. Geochemical constraints on their origin[J]. Lithos,1988,22:135-158
    191. Furman TY, Bryce JG., et al. East African rift system(EARS) plume structure:insight from quaternary mafic lavas of Turkana, Kenya [J]. J Petrol,2004,45:1069-1088
    192. Garuti G, Fershtater G, Bea F, et al. Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the Central and Southern Urals:preliminary Results[J]. Tectonophysics,1997,276:181-194
    193. Gibson SA, Kirkpatrick RJ, Emmemann R, et al. The trace element compositeon of lavas and dykes from a 3km vertical section through a lava pile in Eastern Iceland[J]. J. Geophys Res,1982,87:6532-6546
    194. Ghiorso MS and Sack RO. Chemical mass transfer in magmatic processes IV:A revised and internally consistent thermodynamic model For the interpolation and extrapolation of liquidus-solidus equilibria in magmatic systems at elevated temperatures and pressure[J]. Contrib Mineral Petrol,1995,119:197-212
    195. Ghorfi MEI, Melcher F and Oberthur, et al. Platinum group minerals in podiform chromitites of Bou Azzer ophiolite, Anti Atlas, Central Morocco[J]. Mineral Petrol,2008,92(1-2):59-80
    196. Gibson S A, Kirkpatrick RJ, Emmemann R, et al. The trace element compositeon of lavas and dykes from a 3km vertical section through a lava pile in Eastern Iceland[J]. J. Geophys Res, 1982,87:6532-6546
    197. Godel B, Barnes S-J. Platinum-group elements in sulfide minerals and the whole rocks of the J-M Reef (Stillwater Complex):Implication for the formation of the reef[J]. Chem Geol, 2008,248:272-294
    198. Guo ZF, Wilson M, Liu JQ. Post-collisional adakites in south Tibet:Product s of partial melting of subduction modified lower crust[J]. Lithos,2007,96(122):205-224
    199. Green DH. Genesis of archean periodtic magmas and constraints on archean geothermal gradients and tectonics[J]. Geology,1975,3:15-18
    200. Haughton DR, Roeder PI and Skinner BJ. Solubility of sulfur in mafic magmas[J]. Econ Geol, 1974,69:451-467
    201. Helmy HM, Ballhaus C and Berndt-Gerdes.The formation of Pt, Pd and Ni tellurides during cooling of Fe-Ni-Cu sulphide:results of experiments and implications for natural system[J]. Geochem Miner Petrol,2005,43:87-92
    202. Henderson P. Rare earth element geochemistry[M]. Netherlands:Elsevier Science Publishers B V,1984
    203. Hess PC. Phase equilibria constraints on the origin of ocean floor basalts[A]. In:Morgan J P, Blackman D K, Sinton J M(eds). Mantle flow and Melt Generation at Mid-Ocean Ridges[C]. Geophysical Monograph, American Geophysical Union,1992,71:67-102
    204. Hoatson DM, Blake DH. Geology and economic potential of the Palaeoproterozoic layered mafic-ultramafic intrusions in the East Kimberley, Western Australia[J].Bull Aust Geol Surv Organ,246:469
    205. Hoffman E, MacLean WH. Phase relations of michenerite and merenskyite in the Pd-Bi-Te system[J]. Econ Geol,1976 71,1461-1468
    206. Hofmann AW. Chemical differentiation of the Earth:the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters,1988, 90:297-314
    207. Holzheid A and Lodders K. Solubility of copper in silicate melts as a function of oxygen and sulfur fugacities, temperature and silicate composition[J]. Geochim Cosmochim Acta,2001, 65:1933-1951
    208. Hunter AG. Intracrustal controls on the coexistence of tholeiitic and calc-alkaline magma series at Aso Volcano, SW Japan[J]. J Petrol,1998,39(7):1255-1284
    209. Irvine TN. Crystallization sequences of the Muskox intrusion and other layered intrusions:II origin of chromitite layers and similar deposits of other magmatic ores[J]. Geochim Cosmochim Acta,1975,39:991-1020
    210. Irvine TN, Keith DW and Todd SG..The J-M platinum palladium reef:II,Origin by double difffusive convective magma mixing and implication for the Bushveld Complex[J]. Econ Geol,1983,78:1287-1334
    211. Jahn BM, Wu F, Chen B. Granitoids of the central Asian orogenic belt and continental growth in the Phanerozoic:Transactions of theRoyal Society Edinburgh[J].Earth Sciences, 2000,91,181-193
    212. Johan Z. Alaskan-type complexes and their platinum-group element Mineralization[A]. In:Cabri IJ (eds). The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-group elements[C].Can Inst Min Metall, Spec,2002,54:669-719
    213. Keays RR, Nickel EH,Groves DI, et al. Iridium and palladium as discriminants of volcanic-exhalative, hydrothermal,and magmatic nickel sulfide mineralization[J]. Econ Geol,1982,177:1535-1547
    214. Keays, RR.The role of komatiitic and picritic magmatism and Ssaturation in the formation of the ore deposits[J].Lithos,1995,34,1-18
    215. Keays RR and Lightfoot PC. Formation of Ni-Cu-Platinum group element sulfide mineralization in the Sudbury impact melt sheet[J]. Mineral Petrol,2004,82:217-258
    216. Kerr A and Ryan B. Threading the eye of the needle:Lessons from the Search for a) another Voisey's Bay in Labrador, Canada[J]. Econ Geol,2000,95:725-748
    217. Lambert DD, Forster, JG and Frick LR. Geodynamics of Magmatic Cu-Ni-PGE sulfide deposits:New insights from the Re-Os isotopic System[J]. Econ Geol,1998,93,2:121-136
    218. Lambert DD, Foster FLR, Li CS, et al. Re-Os isotopic systematics of the Voisey's Bay Ni-Cu-Co magmatic ore system, Labrador, Canada[J]. Lithos,1999,47,69-88
    219. Lambert DD, Frick LR, Foster JG, et al. Re-Os isotopic systematics of the Voisey's Bay Ni-Cu-Co magmatic sulfide system. Canada:II. Implications for parental magma chemistry, ore genesis, and metal redistribution [J]. Econ Geol,2000,95,867-888
    220. Le Bas MJ. IUGS Reclification of the High-Mg and Picritic Volcanic Rocks[J]. J Petrol, 2000,41:1467-1470
    221. Lesher CM, Campbell IH. Geochemical and fluid dynamic modelling of compositional variations in Archean komatiite-hosted nickel sulfide deposits in Western Australia[J]. Econ Geol,1993,88,804-816
    222. Lesher CM, Stone WE. Exploration geochemistry of komatiites[A]. In:Wyman DA(Ed), Trace Element Geochemistry of Volcanic Rocks:Applications for Massive Sulfide Exploration[C]. Geol Assoc Can, Short Course Notes,1996,12:153-204
    223. Lesher CM, Burnham OM, Keays RR,et al. Geochemical discrimination of barren and mineralized komatiites in dynamic ore-forming magmatic systems[A]. In:Keays RR, Lesher CM, Lightfoot PC & Farrow CEG(eds). Dynamic Processes in Magmatic Ore Deposits and their Application in Mineral Exploration[C].Geol Assoc Can, Short Course Notes,1999,13, 451-477
    224. Lesher CM and Burnham OM. Multicomponent elemental and isotopic mixing in Ni-Cu-(PGE) ores at Kambalda, Western Australia[J]. Can Mineral,2001,39,421-446
    225. Li CS, Barnes S-J, Makovicky E, et al. Partitioning of Ni Cu Ir Rh Pt and Pd between monosulfide solid solution and sulfide liquid:Effects of composition and temperature[J]. Geochim Cosmochim Acta,1996,60:1231-1238
    226. Li CS, Lightfoot PC, Amelin Y, et al. Contrasting petrological and geochemical relationships in the Voisey's Bay and Mushuau intrusions, Labrador, Canada:Implications for Ore Genesis[J].Econ Geol,2000,95:771-799
    227. Li CS and Naldrett AJ. Melting reactions of gneissic inclusions with enclosing magma at Voisey's Bay, Labrador, Canada:Implications with respect to ore genesis[J]. Econ Geol,2000, 95:801-814
    228. Li CS, Maier WD, DeWaal, SA. Magmatic Ni-Cu versus PGE deposits:contrasting genetic controls and exploration implications[J]. S Afr J Geol,2001a,104:309-318
    229. Li CS, Naldrett AJ, Ripley EM. Critical Factors for the Formation of Nickel-Copper deposit in an evolved magma system:lessons from a comparison of the Pants Lake and Voisey'S Bay Sulfide Occurrences in Labrador, Canada[J]. Mniner Deposita,2001b,36:85-92
    230. Li C, Xu ZH, de Waal SA, et al. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China:implications for ore genesis[J]. Mineral Deposita, 2004,39:159-172
    231. Li CS and Ripley EM. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits[J]. Mineral Deposita,2005, 40:218-230
    232. Lightfoot PC, Hawkesworth CJ. Flood basalts and magmatic Ni,Cu and PGE sulphide mineralization:Comparative geochemistry of the Noril'sk(Siberian Trap)and West Greenland Sequences[A]. In:Mahoney JJ, Coffin MF(eds). large igneous province[M]. Washington DC, Amercian Geophysical Union:1997,357-380
    233. Lightfoot PC, Naldrett AJ.Geological and geochemical relationships in the Voisey's Bay intrusion, Nain Plutonic Suite,Labrador, Canada[A].In:Keays RR, Lesher CM, Lightfoot PC, Farrow CEG (eds) Dynamic processes in magmatic ore deposits and their application in mineral exploration[C].Geol Assoc Can Short Course Notes,1999,13:1-30.
    234. Lightfoot PC, Keays RR. Siderophile and chalcophile metalvariations in flood basalts from the Siberian Trap, Noril'sk Region:implications for the origin of the Ni-Cu-PGE sulfideores[J]. Econ Geol,2005,100:439-462
    235. Li J, Agee CB. Geochemistry of Mantle-Core Differentiation at High Pressure[J]. Nature, 1996,381:686-689
    236. Li XH, SuL, Chung SL, et al. Formation of the Jinchuan Ultramafic Intrusion and the World's Third Largest Ni-Cu Sulfide Deposit:Associated with the 825 Ma South China Mantle Plume? [J] Geochemistry Geophysics Geosystems,2005,6:1-16
    237. Lorand J-P. Are spinel lherzolite xenoliths representative of thesulfur content of the upper mantle?[J]. Geochim Cosmochim Acta,1990,54,1487-1492
    238. Lorand J-P, Alard O, Luguet A, et al. Sulfur and selenium systematics of the subcontinental lithosperic mantle:inferences from the Massif Central xenolith suite(France). Geochim Cosmochim Acta,2003,67(21):4137-4151
    239. Lorand J-P, Luguet A and Alard 0. Platinum-group elements:A new set of key tracers for the earth's interior [J]. Elements,2008a,4:247-252
    240. Lorand J-P, Luguet A, Alard O, et al. Abundance and distribution of platinum-group elements in orogenic lherzolites;a case study in a Fontete Rouge lherzolite. Chem Geol, 2008b,248(3-4):174-194
    241. Luguet A, Pearson D G, Selby D, et al. Highly Siderophile Element Geochemistry [J]. Chem Geol,2008,248:115-118
    242. Luhr JF. Experimental phase relations of water-and sulfur-saturated arc magmas and the 1982 eruption of El Chichon Volcano[J]. J Petrol,1990,31:1071-1114
    243. MacLean WH. Liquidus phase relations in the FeS-FeO-Fe3O-SiO2 systems and their application in geology[J]. Econ Geol,1969,64:865-884
    244. Maier WD, Barnes S-J, DeWaal SA. Exploration for magmatic Ni-Cu-PGE sulphide deposits:A review of recent advances in the use of geochemical tools, and their application to some south African ores[J]. South African Geol,1998,101(3):237-253
    245. Maier WD, Barnes S-J, Li CS. A re-evaluation of the role of crustal contamination in the formation of magmatic sulfides in the Bushveld Complex. In:The 9th international PGE symposium. Montana, USA,2002 (July 21-25)
    246. Maier WD, Barnes S-J, Gartz V, et al. Pt-Pd reefs in magnetitites of the Stella layered instrusion, South Africa:A world of new exploration opportunities for platinum-froup elements[J]. Geology,2003,31:885-888
    247. Maier WD and Barnes S-J. Application of lithogeochemistry to exploration for PGE deposits[A]. In:Mungall JE(ed), Exploration for platinum-group elements deposits[C]. Mine Assoc Can Short Course Notes,2005,35:309-341
    248. Maier WD. Paltinum-group element (PGE) deposits and occurrences:Mineralization styles, genetic concepts, and exploration criteria[J]. J African Earth Sciences,2005,41:165-191
    249. Makovicky E, Karup-Moller S, Makovicky M, et al. Experimental studies on the phase systems Fe-Ni-Pd-S and Fe-Pt-Pd-As-S applied toPGE deposits[J]. Contrib Mineral Petrol,1990,42:307-309
    250. Makovicky E. Ternary and quaternary phase systems with PGE[A]. In:Cabri LJ(ed), The geology, geochemistry, mineralogy and mineral beneficiation of platinum group elements[C]. Ottawa:Can Ins Mining, Metall and Petroleum,2002,54:131-176
    251. Mavrogenes and O'Nei. The relative effects of pressure temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta,1999,63:1173-1180
    252. McDonough WW, Sun S-S. The composition of the Earth[J].Chem Geol,1995,120:223-253
    253. Mecdonald R, Rogers NW, Fitton JG et al. Plume-Lithosphere interactions in the generation of the basalts of the Kenya Rift, East Africa[J]. J Petrol,2001,42:877-900
    254. Monteiro LVS, Xavier RP, Hitzman MW, et al. Mineral chemistry of ore and hydrothermal alteration an the sossego oirn oxide-copper-gold deposit, Carajas Mineral Province, Brazil[J]. Ore Geology Reviews,2008,34:317-336
    255. Mungall JE. A model for co-precipitation of platinum-group minerals wiyh chromite from silicate melts[A]. In:Boudreau A(ed). Proceedings of 9th international Platinum Symposim, Billings, Montana,321-324
    256. Mungall JE, Andrews DR, Caer LJ, et al. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities[J]. Geochim Cosmochim Acta,2005,69(17):4349-4360
    257. Mungall JE and Naldrett AJ. Ore deposits of the platinum-group elements[J]. Elements,2008, 4:253-258
    258. Naldrett AJ, Hoffman EL, Green AH, et al. The composition of Ni-sulfide ores, with particular reference to their content of PGE and Au[J].Can Miniral,1979,17:403-415
    259. Naldrett AJ.IGCP project No.161 and a proposed classification of Ni-Cu-PGE sulfide deposits[J].Can Miniral,1979,17:143-145
    260. Naldrett AJ and Lehmann J. Spinel non-stoichiometry as the explanation for Ni-Cu-and PGE-enriched sulphides in chromitites[A]. In:Prichard H, Potts P and Bowles J, et al(eds).Geoplatinum 8th[C], London:Elsevier,1988,93-110
    261. Naldrett AJ. Magmatic sulfide deposits[M]. New York:Oxford Univ Press,1989
    262. Naldrett AJ. Fedornko VA, Asif M, et al.Controls on the compositions of Ni-Cu sulfide deposits as illustrated by those at Noril'sk, Siberia[J]. Econ Geol,1996,91:751-773
    263. Naldrett AJ. World-class Ni-Cu-PGE deposits:key factors in their genesis[J]. Mineral Deposita,1999,34:227-240
    264. Naldrett AJ, Asif M, Krstic S, et al. The composition of mineralization at the Voisey's Bay Ni-Cu sulfide deposit, with special reference to platinum-group elements[J]. Econ Geol, 2000a,95,845-865
    265. Naldrett AJ, Singh J, Krstic S, et al. The mineralogy of the Voisey's Bay Ni-Cu-Co deposit, Northern Labrador, Canada:Influence of oxidation state on textures and mineral compositions[J]. Econ Geol,2000b,95:889-900
    266. Naldrett AJ. Magmatic sulfide deposit:geology,geochemistry and exploration[M]. New York: Springer-Berlin Heidelberg,2004:1-724
    267. Naldrett AJ, Kinnaird J, Stanley C, et al. Platinum-group elements in the cheomitites of the Bushveld complex:New evidence on how the PGE got there[J]. Northwestern Geology(Sup), 2009,42:138-139
    268. Naldrett AJ. Fundamentals of Magmatic Sulfide deposit[A]. In:Li CS and Ripley(eds), New developments in magmatic Ni-Cu and PGE deposits[M]. Beijing:Geochemical Publishing House,2009,1-26
    269. Niu Y. Mantle melting and melt extraction processes beneath ocean ridges:Evidence from abyssal peridotites[J]. J Petrol,1997,38(8):1047-1074
    270. Nixon GT. Ni-Cu sulfide mineralization in the Turnagain Alaskan-type complex:A unique magmatic environment[R].BC Ministry Employ Investment, Geol Fieldwork Report 1998-1:18.1-18.11
    271. O'Neill, Dingwell DB and Borisov A. Experimental petrochemistry of some highly siderophile elements at high temperatures, and some implication for ore formation and the mantle's early history[J].Chem Geol,1995,20:255-273
    272. Page P, Barnes S-J, Zientek ML, et al. IPGE(Os, Ir, Ru) are not in chromite. [J].Northwestern Geology(Sup),2009,42:20-23
    273. Palme H. Platinum-group elements in cosmochemistry[J]. Elements,2008,4:233-238
    274. Pearce JA, Thirlwall MF, Ingram G, et al. Isotopic evidence for the origin of Boninites and related rocks drilled in the Izu-Bomin (Ogasa Wara) forearc, Leg 125[A]. In:Fryer P, Pearce JA, Stokking L(Eds).Proceedings of the Ocean Drilling Program. Scientific Results[C],1992, 125,237-261
    275. Pina R, Gervilla F, Ortega L, et al. Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cudeposit (SW Spain)[J]. Mineral Petrol,2008,92:259-282
    276. Pirajno F, Mao JW, Zhang ZC,et al. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China:Implications for geodynamic evolution and potential for the discovery of new ore deposits[J]. J of Asian Earth Sciences,2008,32(2-4):165-183
    277. Prichard HM and Brough C. Potential of Ophiolite complexes to host PGE deposits[A].In:Li CS and Ripley EM(eds), New developments in magmatic Ni-Cu and PGE deposits[M]. Beijing:Geological Publishing House,2009,1-290
    278. Qin KZ, Sun H, San JZ, et al. Tectonic Setting, Geological Features and Evaluation of Ore-Bearing Property for Magmatic Cu-Ni Deposits in Eastern Tianshan, NW China[J]. Northwestern Geology(Sup),2009,42:95-99
    279. Rajamani V, Naldrett AJ. Parttioning of Fe,Co,Ni and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposit[J].Econ Geol,1978,73:82-93
    280. Rauch S and Morrison CM. Environmental relevance of the platinum-group elements[J]. Elements,2008,4:259-263
    281. Ryna B. The Nain-Churchill boundary and the Nain Plutonic Suite:A regional perspective on the geologic setting of the Voisey's Bay Ni-Cu-Co deposit[J]. Econ Geol,2000,95:703-724
    282. Rehkamper M, H alliday AN, Barfod D, et al. Platinum-group element abundance patterns in different mantle environments[J]. Science,1997,278:1595-1598
    283. Reisberg L, Alard O, Lorand J-P. Highly Siderophile Element Behavior in High Temperature Processes[J]. Chem Geol,2004,208:1-4
    284. Ripley EM. Sulfur isotopic abundances of the Dunka Road Cu-Ni deposit Duluth Complex Minnesota[J]. Econ Geol,1981,76:619-620
    285. Ripley EM and Alawi JA. Petrogenesis of politic xenoliths at the Babbitt Cu-Ni deposit, Duluth Complex, Minnesota, USA[J]. Lithos,1988,21:143-159
    286. Ripley EM, Park YR, Li CS, et al. Sulfur and oxygen isotopic evidence of country rock contamination in the Voisey's Bay Ni-Cu-Co deposit, Labrador, Canada[J]. Lithos,1999,47, 53-68
    287. Ripley EM, Park YR, Lambert DD, et al.2001. Re-Os isotopic variations in carbonaceous pelites hosting the Duluth Complex:Implications for metamorphic and metasomatic processes associated with mafic magma chambers[J]. Geochim Cosmochim Acta,2001,65, 2965-2978
    288. Ripley EM, Lightfoot PC, Li CS, et al. Sulfur isotopic studies of continental flood basalts in the Noril'sk region:Implications for the association between lavas and ore-bearing intrusions[J]. Geochim Cosmochm Acta,2003,67(15):2805-2817
    289. Ripley EM and Li CS. Applications of stable and radiogenic isotopes to magmatic Cu-Ni-PGE deposits:examples and cautions[J]. Earth Science Frontiers,2007,14(5):124-132
    290. Ripley EM. Magmatic sulfide mineralization in Alaskan-type complexs[A]. In:Li CS and Ripley EM(eds), New development in magmatic Ni-Cu and PGE deposits[M]. Beijing: Geochemical Publishing House,2009,219-228
    291. Romeo I, Lunar R, Capote R,et al. Edades decristalizaciOn U-Pb en circones del complejo igneo de Santa Olalla de Cala:implicaciones en la edad del yacimiento de Ni-Cu-PGE de Aguablanca (Badajoz)[J]. Revista de la Sociedad Espanola de Mineralogia,2004,2:29-30
    292. Roeder PL and Emslie RF. Olivine-liquid equilibrium [J]. Contrib Mineral Petrol,1970, 29:275-289
    293. Ross JR, Travis GA. The nickel sulfide deposits in western Australia in global perspective[J]. Econ Geol,1981,76:1291-1329
    294. SengOr AMC, Natal'in BA, Burtman VS. Evolution of the earth[J]. Chem Geol,1993, 120:223-253
    295. Shirey SB, Walker RJ.The Re-Os isotope system in cosmochemistry and high-temperature geochemistry[J]. Ann Rev Earth Planet Sci,1998,26,423-500
    296. Song XY, Zhou MF, Keays RR, et al. Geochemistry of the Emeishan flood basalts at Yangliuping, Sichuan, SW China:implications for sulfide segregation [J]. Contrib Mineral Petrol,2006,152:53-74
    297. Song XY and Li XR. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China:implications for the formation of magmatic sulfide mineralization in a postcollisional environment[J]. Mniner Deposita,2008,44:1432-1466
    298. Song XY, Zhou MF, Tao Y, et al. Controls on the metal compositions of magmatic sulfide Deposits in the Emeishan Large Igneous Province, SW China[J]. Chem Geol,2008a,253:38-49
    299. Song XY, Keays RR, Zhou MF, et al. Siderophile and Chalcophile Elemental Constraints on the Origin of the Jinchuan Ni-Cu-(PGE) Sulfide Deposit, NW China[J]. Geochim Cosmochim Acta,2008b,73:404-424
    300. Spath A, Roex AP, Akech NO, et al. Plume-lithosphere interaction and the origin of continental rift-related alkaline volcanism-the Chyulu Hills Volcanic Province, Southern Kenya[J]. J Petrol,2001,42:765-778
    301. Sproule RA, Lambert DD, Hoatson DM. Re-Os isotopic constraints on the genesis of the Sally Malay Ni-Cu-Co deposit, East Kimberley, Western Australia[J]. Lithos,1999,47, 89-106
    302. Sproule RA, Lambert DD, Hoatson DM. Decouping of the Sm-Nd and Re-Os Isotopic Systems in Sulphide-Saturated Magmas in the Halls Creek Orogen,Western Australia[J]. J Petrol,2002,43(2):375-402
    303. Stanley CR, Russell JK. Petrologic hypothesis testing with pearce element ration diagrams derivation of diagram axes[J]. Contrib Mineral Petrol,1989,101:78-89
    304. Staudigel H, Hart SR. Alteration of basaltic glass:mechanicsms and significance for the oceanic crust-seawater budget[J]. Geochim Cosmochim Acta,1983,47:337-350
    305. Stein HJ, Sundblack K, Markey RJ, et al. Re-Os ages for Archean molybdenite and pyrite, Kuttila, Finland and Proterozoic molybdenite, Kabeliai, Lithuania:testing the chronometer in a metamorphic and metasomatic selting[J]. Miner Deposita,1998,33:329-343
    306. Streckeisen A. To each plutonic rock its proper name[J]. Earth Science Reviews,1976,12: 1-33
    307. Sun S-S and McDonough WF. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[A]. in Saunders AD and Norry MJ(ed), Magmatism in the ocean basins[M]:Geological Society(London), Special Publication,1989, 42:313-345
    308. Sun T, Qian ZZ, Liu MW, et al.Characters of main metallic minerals in Kalatongke Cu-Ni deposit of China and its geological significance [J].Northwestern Geology(Sup),2009, 42:107-111
    309. Sun YL, Guan XY and Du AD.Determination of platinum group elements by inductively coupled plasma-mass spectrometry combined with nickel sulfide fire assay and tellurium coprecipitation[J]. Spectrochimica Acta part b-atomic spectroscopy,1998,53:1463-1467
    310. Sun YL and Sun M. Nickel sulfide fire assay improved for pre-concentration of platinum groupelements in geological samples:a practical means of ultra-trace analysis combined with inductively coupled plasma-mass spectrometry [J]. The Analyst,2005,130:664-669
    311. Taylor SR and McLenan SM.The geochemical evolution of the continental crust[J]. Rev Geophys,1995,33:241-265
    312. Thompson JFH.Acadian synorogenic mafic intrusions in the Maine Appalachians[J]. American Jounral of Science,1984,284:462-483
    313. Thompson RN, Gibson SA. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature,2000,407:502-506
    314. Todt W, Cliff RA, Hanser A, et al. Re-calibration of NBS lead standards using a 202Pb1205Pb double spike (abstract) [J]. Terra Nova (Sup),1993,5:396
    315. Tornos F, Iriondo C, Casquet C, et al. Geocronologia Ar-Ar de flogopitas del stock de Aguablanca (Badajoz). Implicaciones sobre la edad del plutOn y de la mineralizaciOn de Ni-(Cu) asociada[J]. Geotemas,2004,6:189-192
    316. Ueda A and Sakai H. Sulfur isotope study of quaternary volcanic rocks from the Japanese islands arc[J]. Geochim Cosmochim Acta,1984,48:1837-1848
    317. Ueda H, Usuki T and Kuramoto Y. Intraoceanic unroofing of eclogue facies rocks in the Omachi Seamount, Izu-Bonin frontal arc[J]. Geology,2004,32:849-852
    318. Wang Q, Zhao ZH, Bai ZH et al.2003. Carboniferous adakites and Nb-enriched arc basaltic rocks association in the Alataw Mountains, north Xinjiang:interactions between slab melt and mantle peridotite and implications for crustal growth[J]. Chinese Science Letters,228: 525-546
    319. Wang CY and Zhou MF. Genesis of the Permian Baimazhai magmatic Ni-Cu-(PGE) sulfide deposit,Yunnan, SW China [J].Miner Deposita,2006,41:771-783.
    320. Watkinson DH, Melling DR.1992.Hydrothermal origin of platinum group mineralization in low-temperature copper sulfide-rich assemblages, Salt Chuk intrusion,Alaska[J]. Econ Geol, 87:175-184
    321. Wendlandt RF.Sulphide saturation of basalt and andesite melts at high pressures and temperature[J]. Ame mineral,1982,67:877-885
    322. Westland AD. Inorganic chemistry of the platinum-group elements[J]. Can Inst Metall Spec Iss,1981,23:5-18
    323. Wyllie PJ. Plate tectonics and magma genesis[J].Geol Rundsch1981,70:128-153
    324. Xiao WJ, Zhang LC, Qin KZ, et al.2004. Paleozoic aecretionary and collisional tectonics of the eastern Tianshan (China):Implication for the continental growth of central Asia[J]. American Journal of Science,304:370-395
    325. Zhang ZC, Mao JW, Chai FM, et al.Geochemistry of the Permian Kalatongke Mafic Intrusions, Northern Xinjiang, Northwest China:Implications for the Genesis of Magmatic Ni-Cu Sulfide Deposits[J]. Econ Geol,2009,104(2):185-203
    326. Zhou MF, Yang ZX, Song XY, et al. Magmatic Ni-Cu-(PGE) Sulphide Deposits in China[A]. In:Cabri LJ(ed). The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum Group Elements[C]. Ottawa:Springer-Verlag Berlin Heidlberg,2002:619-636
    327. Zhou MF, Malpas J, Song XY, et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction[J].Earth and Planetary Science Letters,2002,196, (3-4):113-122
    328. Zhou MF, Lesher CM, Yang ZX, et al. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China:implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chem Geol,2004,209:233-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700