用户名: 密码: 验证码:
几种农药生物富集和消解行为的动力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先建立了斜生栅藻和培养液中四种氯乙酰胺类除草剂(甲草胺、乙草胺、丙草胺和丁草胺)的含量测定方法。使用纤维素滤膜真空抽滤的方式基本可以分离栅藻细胞和培养液。然后对提取溶剂种类、用量和提取藻细胞样品时是否加水进行了优化,方法采用20mL乙酸乙酯直接提取,然后蒸干乙腈定容,最后使用气相色谱-质谱分析,内标法定量。测定藻细胞和培养液中目标物的方法回收率在86.4%-102.9%,相对标准偏差均低于15.1%,栅藻细胞样品中四种化合物检出限均不高于0.005μg,培养液样品中检出限均不高于0.0002mg/L。本方法具有良好的准确度、精密度和灵敏度。本方法可以用于测定栅藻细胞和培养液中甲草胺、乙草胺、丙草胺和丁草胺的含量并用于研究藻类对这四种氯乙酰胺类除草剂的生物富集。
     进而对斜生栅藻中甲草胺和乙草胺的生物富集进行了测定。从36h至96h,培养液中甲草胺和乙草胺浓度均基本保持恒定。栅藻细胞中甲草胺和乙草胺的质量随时间持续增长。生长稀释效应对栅藻细胞中甲草胺和乙草胺的浓度产生了很大的影响,甲草胺和乙草胺的浓度在前期基本稳定或下降,后期上升。栅藻细胞对甲草胺和乙草胺的生物富集因子分别在572-915和376-1068之间。结果表明,斜生栅藻对氯乙酰胺类除草剂有较强的生物富集作用,该类药剂的大量使用可能会对水生生态带来风险。
     为了将栅藻细胞的生长考虑在内,对生物配体模型重新进行了推导,得到了3组分别以指数生长、线性生长和对数生长推导得到的模型公式,每组中包含生长曲线方程和一个藻细胞内农药质量对时间的方程。对生长曲线的拟合中,对数生长的方程的拟合效果最优,决定系数R2均达到0.9920。而且藻细胞内农药质量对时间方程的拟合效果同样是基于对数生长的最优,决定系数R2均达到0.9568。结果表明,基于对数生长的生物配体模型可以吻合斜生栅藻对甲草胺和乙草胺的富集动力学。这是生物配体模型首次被应用在有机污染物的富集动力学上。结果说明有机污染物进入生物体的机理可能与生物配体模型相符。
     本文还对斜生栅藻对甲草胺和乙草胺生物富集的复合效应进行了测定。部分数据呈现了一定的富集复合效应。例如,在另一化合物存在下,藻细胞富集的甲草胺或乙草胺的质量受到一定的抑制。但总的来说,缺乏一致性的规律,因此需要采用模型对数据进一步评价。复合效应的现象揭示了生物体对有机污染物富集的复杂性,有助于更准确地评估有机污染物的环境风险。
     使用推导得到生物配体模型公式对复合富集数据进行了拟合。栅藻细胞生长曲线选择对数生长模型拟合,决定系数R2均不低于0.9911,与实验中实际藻细胞生长状况最吻合。使用基于对数生长的生物配体模型的藻细胞内农药质量对时间方程拟合实验结果很好,决定系数R2均高于0.95。复合条件下,甲草胺和乙草胺的富集均受到了抑制,甲草胺和乙草胺的摄入速率分别降低了约46%和约68%。复合作用对乙草胺富集的影响程度要高于甲草胺。模型公式经过进一步推导得到了两个化合物竞争情况下的模型方程,能够解释甲草胺和乙草胺共同存在下斜生栅藻对甲草胺和乙草胺富集的相互拮抗作用的可能机理。经过模型推理,乙草胺的富集米氏常数较高,甲草胺的富集米氏常数较低,所以栅藻细胞对乙草胺的摄入速率受甲草胺影响较大,而藻细胞对甲草胺的摄入速率受乙草胺影响较小。这是生物配体模型首次被应用于解释有机污染物生物富集的复合效应。生物配体模型克服了传统毒物代谢动力学模型无法解释可能存在的富集复合效应的缺陷,为定量评价有机污染物生物富集的复合效应提供了工具。
     此外,本文还对氟硅唑在柑橘和土壤中的消解动态及其消解动力学模型进行了研究。分析方法样品用乙腈提取,PSA净化,气相色谱-质谱分析。方法在柑橘和土壤中的平均回收率在93.1%-107.7%,相对标准偏差均不超过5.1%,检出限分别达到0.003mg/kg和0.001mg/kg。方法具有良好的准确度、精密度和灵敏度。消解实验在湖南、广西和浙江三地进行,结果发现一级动力学模型拟合氟硅唑在柑橘和土壤中的消解动力学比二级动力学模型更合适。根据一级动力学拟合得到的氟硅唑在柑橘中的半衰期为6.3-8.4天,在土壤中的半衰期为5.5-13.4天;氟硅唑在浙江消解最快,其次是广西,在湖南地区消解最慢。
In this work, quantitation methods for analyzing four chloroacetamide herbicides (alachlor, acetochlor, pretilachlor, butachlor) in algae (Scendesmus obliquus) and culture medium were developed. Vacuum filtration with mixed cellulose filter was applied for the purpose of separating algal cells with culture medium. Then extraction solvent, solvent volume and water content for extracting analyte from algal cells samples were optimized. The sample was extracted with20mL ethyl acetate, and then concentrated by rotary evaporator followed by addition certain amount of acetonitrile. All analytes were detected by GC-MS with internal standard calibration method. Average fortified recoveries ranged from86.4%-102.9%with relative standard deviations below15.1%in algal cells and culture medium. The LODs of four compounds in algal cells samples were not below0.005μg, while those in cluture medium were not below0.0002mg/L. The method is of good accuracy, precision, sensitivity and linear relationship. It can be used for analyzing alachlor, acetochlor, pretilachlor, butachlor and also for investigating their bioconcentration in algae.
     And then, the bioconcentration of alachlor, acetochlor in Scenedesmus obliquus were investigated. The results showed that the concentration of alachlor and acetochlor in culture medium remained constant from36h to96h. However the mass of the two herbicides in S. obliquus continuously increased with the time. The concentrations of alachlor and acetochlor, which were greatly influenced by growth dilution effect, were stable or decreased at initial growth stage but increased at the end of growth stage. High bioconcentration factors were obtained, ranging572-915for alachlor and376-1068for acetochlor respectively. The results suggested that S. obliquus has a great bioconcentration capability for chloroacetamide herbicides, which may cause the risk for aquatic ecosystem if the herbicides were used largely.
     Taking the growth of algae into account, three groups of biotic ligand models were derived based on exponential growth, linear growth, and logarithmic growth of S. obliquus, respectively. Each model was consisted of a growth curve equation and an equation about pesticide mass versus time. Logarithmic growth model acquired the best fitting results (coefficient of determination above0.9920) compared with other growth curve models. Furthermore, fitting the relationship between pesticide mass in algal cells versus time, model based on logarithmic growth acquired the best fitting results (coefficient of determination were more than0.9568). The results suggested that biotic ligand model based on logarithmic growth fits the bioconcentration kinetic of alachlor and acetochlor in S. obliquus. It was the first time for biotic ligand model applied in bioconcentration study of organic pollutants. The results suggested that mechanism of organic pollutants uptake by biont may be the same as biotic ligand model.
     The combined effect of alachlor and acetochlor on S. obliquus bioconcentration was also studied. Some of the data suggested combined effects of alachlor and acetochlor on the bioconcentration. For example, in the presence of alachlor or acetochlor, the bioconcentration mass of the other compound in algal cells was inhibited. However there was no consistent pattern for all results, therefore the kinetic models needed further evaluation. The combined effects reveal the complexity of organic pollutants bioconcentration, which will contribute to preciser environmental risk evaluation of organic pollutants.
     The combined effect results were further fitted by biotic ligand model mentioned previously. Logarithmic growth model acquired the best fitting results of growth curve of algae (coefficient of determination above0.9911) compared with others, which was consistent with the actual growth situation of algae. Considering the relationship between pesticide mass versus time, model based on logarithmic growth also acquired the best fitting results (coefficient of determination were more than0.95). The bioconcentration of alachlor and acetochlor was inhibited due to the combined effect. The uptake rate of alachlor and acetochlor decreased approximately by46%and68%, respectively. The results indicated that the combined effect on the bioconcentration of acetochlor was more than that on alachlor. Model Equation for competing study was derived, which could explain the possible mechanism of mutual antagonistic effect on bioconcentration of alachlor and acetochlor in S. obliquus in the presence of both alachlor and acetochlor. It was ratiocinated that acetochlor has a higher Michaelis constant than alachlor, which result in that the uptake rate of acetochlor by algal cells was significantly affected by alchlor, and the uptake rate of alachlor by algal cells was less significantly affected by acetochlor. This was the first study of combined effect on bioconcentration of two organic pollutants, and also the first time that biotic ligand model was applied in explaining combined effect of bioconcentration of two organic pollutants. Biotic ligand model overcame the defect of traditional toxicokinetics model which was incapable for explaining potential combined effect of bioconcentration, and provided a quantitative evaluation tool for combined effect of organic pollutants bioconcentration.
     Besides, the dissipation dynamics of flusilazole in mandarin and soil was investigated using different kinetic models. The samples were extracted by acetonitrile, cleaned up with PSA, and then analyzed by gas chromatography-mass spectrometry. The average recoveries were93.1%-107.7%in mandarin and soil with relative standard deviations not above5.1%. The LOD (limit of detection) was0.003μg/kg and0.001μg/kg for mandarin and soil, respectively. The method was of good accuracy, precision and sensitivity. Field trials were conducted in Hunan, Guangxi and Zhejiang province. The results showed that the dissipation of flusilazole in mandarin and soil followed first-order kinetics model more than that of second-order kinetics model. Based on first-order kinetics model, the half-lives of flusilazole were6.3-8.4days in mandarin and5.5-13.4days in soil; and flusilazole dissipated the fastest in Zhejiang, intermediate in Guangxi, and the slowest in Hunan.
引文
[1]Mackay D, Fraser A. Kenneth Mellanby Review Award. Bioaccumulation of persistent organic chemicals:mechanisms and models. Environ. Pollut.,2000,110 (3):375-391.
    [2]OECD. Test No.305:Bioaccumulation in Fish:Aqueous and Dietary Exposure. OECD Guidelines for the Testing of Chemicals, Section 3, Degradation and Accumulation. Paris:OECD Publishing, 2012.
    [3]环境保护部化学品登记中心.GB/T 21858-2008.化学品 生物富集 半静态式鱼类试验.2008
    [4]环境保护部化学品登记中心.GB/T 21800-2008.化学品 生物富集 流水式鱼类试验.2008
    [5]Vinodhini R, Narayanan M. Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp). Int. J. Environ. Sci. Te.,2008,5 (2):179-182.
    [6]Bremle G, Okla L, Larsson P. Uptake of PCBs in fish in a contaminated river system: Bioconcentration factors measured in the field. Environ. Sci. Technol.,1995,29 (8):2010-2015.
    [7]Muir D C, Marshall W K, Webster G. Bioconcentration of PCDDs by fish:effects of molecular structure and water chemistry. Chemosphere,1985,14 (6):829-833.
    [8]Opperhuizen A, Sijm D T. Bioaccumulation and biotransformation of polychlorinated dibenzo-p-dioxins and dibenzofurans in fish. Environ. Toxicol. Chem.,1990,9 (2):175-186.
    [9]Baumard P, Budzinski H, Garrigues P, et al. Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level. Mar. Pollut. Bull.,1998,36 (12):951-960.
    [10]de Bruijn J, Hermens J. Uptake and elimination kinetics of organophosphorous pesticides in the guppy (Poecilia reticulata):Correlations with the octanol/water partition coefficient. Environ. Toxicol. Chem.,1991,10 (6):791-804.
    [11]Kanazawa J. Measurement of the bioconcentration factors of pesticides by freshwater fish and their correlation with physicochemical properties or acute toxicities. Pestic. Sci.,1981,12(4): 417-424.
    [12]Fisk A T, Norstrom R J, Cymbalisty C D, et al. Dietary accumulation and depuration of hydrophobic organochlorines:bioaccumulation parameters and their relationship with the octanol/water partition coefficient. Environ. Toxicol. Chem.,1998,17(5):951-961.
    [13]Memmert U, Peither A, Burri R, et al. Diclofenac:new data on chronic toxicity and bioconcentration in fish. Environ. Toxicol. Chem.,2013,32 (2):442-452.
    [14]Ramirez A J, Brain R A, Usenko S, et al. Occurrence of pharmaceuticals and personal care products in fish:results of a national pilot study in the United States. Environ. Toxicol. Chem., 2009,28 (12):2587-2597.
    [15]Swackhamer D L, Skoglund R S. Bioaccumulation of PCBs by algae:kinetics versus equilibrium. Environ. Toxicol. Chem.,1993,12 (5):831-838.
    [16]Haritonidis S, Malea P. Bioaccumulation of metals by the green alga Ulva rigida from Thermaikos Gulf, Greece. Environ. Pollut.,1999,104 (3):365-372.
    [17]Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere,2010,78 (3):209-215.
    [18]Akkanen J, Kukkonen J V. Biotransformation and bioconcentration of pyrene in Daphnia magna. Aquat. Toxicol.,2003,64 (1):53-61.
    [19]Gustafsson K, Bjork M, Burreau S, et al. Bioaccumulation kinetics of brominated flame retardants (polybrominated diphenyl ethers) in blue mussels (Mytilus edulis). Environ. Toxicol. Chem.,1999, 18 (6):1218-1224.
    [20]Calabrese A, Macinnes J R, Nelson D A, et al. Effects of long-term exposure to silver or copper on growth, bioaccumulation and histopathology in the blue mussel Mytilus edulis. Mar. Environ. Res.,1984,11(4):253-274.
    [21]Neuhauser E F, Cukic Z V, Malecki M R, et al. Bioconcentration and biokinetics of heavy metals in the earthworm. Environ. Pollut.,1995,89 (3):293-301.
    [22]Jager T, van der Wal L, Fleuren R H, et al. Bioaccumulation of organic chemicals in contaminated soils:evaluation of bioassays with earthworms. Environ. Sci. Technol.,2005,39 (1):293-298.
    [23]Newman M C, Unger M A生态毒理学原理.赵园,王太平,译.北京:化学工业出版社,2007.
    [24]Geyer H J, Scheunert I, Bruggemann R, et al. QSAR for organic chemical bioconcentration in Daphnia, algae, and mussels. Sci. Total Environ.,1991,109:387-394.
    [25]Arnot J A, Gobas F A P C. A generic QSAR for assessing the bioaccumulation potential of organic chemicals in aquatic food webs. QSAR Comb. Sci.,2003,22(3):337-345.
    [26]Mackay D, Fraser A. Bioaccumulation of persistent organic chemicals:mechanisms and models. Environ. Pollut.,2000,110 (3):375-391.
    [27]Nichols J W, Bonnell M, Dimitrov S D, et al. Bioaccumulation assessment using predictive approaches. Integr. Environ. Assess. Manage.,2009,5 (4):577-597.
    [28]Stadnicka J, Schirmer K, Ashauer R. Predicting concentrations of organic chemicals in fish by using toxicokinetic models. Environ. Sci. Technol.,2012,46 (6):3273-3280.
    [29]王文雄.微量金属生态毒理学和生物地球化学.北京:科学出版社,2011.
    [30]Wright D A, WelbournP,环境毒理学.朱琳,译.北京:高等教育出版社,2007.
    [31]Mottes C, Lesueur-Jannoyer M, Bail M, et al. Pesticide transfer models in crop and watershed systems:a review. Agron. Sustain. Dev.,2014,34 (1):229-250.
    [32]Tomlin C D S. The Pesticide Manual:A World Compendium. Alton, Hampshire, UK:British Crop Protection Council,2006.
    [33]农业部农药检定所.中国农药信息网.[2014-04-18]. http://www.chinapesticide.gov.cn/.
    [34]Bliss C I. The toxicity of poisons applied jointly 1. Ann. Appl.Biol.,1939,26 (3):585-615.
    [35]周启星.复合污染生态学.北京:中国环境科学出版社,1995.
    [36]周启星,罗义.污染生态化学.北京:科学出版社,2011.
    [37]李建政.环境毒理学.北京:化学工业出版社,2005.
    [38]花日茂.环境毒理学.北京:中国农业出版社,2006.
    [39]Chen Z, Zhu L, Wilkinson K J. Validation of the biotic ligand model in metal mixtures: bioaccumulation of lead and copper. Environ. Sci. Technol.,2010,44 (9):3580-3586.
    [40]Flouty R, Estephane G. Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems:A comparative study. J. Environ. Manage.,2012,111:106-114.
    [41]Worms I A M, Wilkinson K J. Ni uptake by a green alga.2. Validation of equilibrium models for competition effects. Environ. Sci. Technol.,2007,41 (12):4264-4270.
    [42]Sacan M T, Balcioglu I A, Ercan C. Laboratory bioaccumulation of copper, lead and selenium in the marine alga Dunaliella tertiolecta:metal pair situation. Toxicol. Environ. Chem.,2000,76 (1-2):17-27.
    [43]Zhang H, Feng X, Zhu J, et al. Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environ. Sci. Technol.,2012,46(18):10040-10046.
    [44]Ling X, Lu Y, Huang H. Differential protein profile in zebrafish(Danio rerio) brain under the joint exposure of methyl parathion and cadmium. Environ. Sci. Pollut. R.,2012,19 (9): 3925-3941.
    [45]Brown V M. The calculation of the acute toxicity of mixtures of poisons to rainbow trout. Water Res.,1968,2 (10):723-733.
    [46]Zitko P, Carson W V, Carson W G. Prediction of incipient lethal levels of copper to juvenile Atlantic Salmon in the presence of humic acid by cupric electrode. B. Environ. Contam. Tox., 1973,10 (5):265-271.
    [47]Pagenkopf G K, Russo R C, Thurston R V. Effect of complexation on toxicity of copper to fishes. J. Fish. Res. Board Can.,1974,31 (4):462-465.
    [48]Chakoumakos C, Russo R C, Thurston R V. Toxicity of copper to cutthroat trout (Salmo clarkf) under different conditions of alkalinity, pH, and hardness. Environ. Sci. Technol.,1979,13(2): 213-219.
    [49]Alabaster J S, Lloyd R. Water quality criteria for freshwater fish [in Europe]. London-Boston: Butterworths,1980.
    [50]U. S. Environmental Protection Agency. EPA 440/5-86-001. Quality Criteria for Water 1986 [The Gold Book]. Washington, DC:EPA,1986.
    [51]U. S. Environmental Protection Agency. EPA/823/B-94/001. Interim Guidance on Determination and Use of Water-Effect Ratios for Metals. Washington, DC:EPA,1994.
    [52]Niyogi S, Wood C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ. Sci. Technol.,2004,38 (23):6177-6192.
    [53]Paquin P R, Gorsuch J W, Apte S, et al. The biotic ligand model:a historical overview. Comp. Biochem. Physiol., Part C:Toxicol. Pharmacol.,2002,133C (1-2):3-35.
    [54]Morel F. Principles of aquatic chemistry. New York:John Wiley & Sons Inc,1983.
    [55]Pagenkopf G K. Gill surface interaction model for trace-metal toxicity to fishes:role of complexation, pH, and water hardness. Environ. Sci. Technol.,1983,17 (6):342-347.
    [56]陈中智.生物配体模型(BLM)对于评价金属联合毒性的适用性研究:[博士学位论文].天津:南开大学,2010.
    [57]Di Toro D M, Allen H E, Bergman H L, et al. Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol. Chem.,2001,20 (10):2383-2396.
    [58]Westall J C, Zachary J L, Morel F M. MINEQL:A computer program for the calculation of chemical equilibrium composition of aqueous systems. Boston:Water Quality Laboratory, Ralph M. Parsons Laboratory for Water Resources and Environmental Engineering [sic], Department of Civil Engineering, Massachusetts Institute of Technology,1976.
    [59]Brown D S, Allison J D. MINTEQA1, An equilibrium metal speciation model:User's Manual. Washington DC:Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency,1987.
    [60]Allison J D, Brown D S, Novo-Gradac K J. MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems:User's manual. Version 3.0. Athens, Georgia:Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency,1991.
    [61]Santore R C, Driscoll C T. The CHESS model for calculating chemical equilibria in soils and solutions. SSSA Special Publication, Chemical Equilibrium and Reaction Models,1995,42: 357-375.
    [62]Tipping E. Modeling the competition between alkaline earth cations and trace metal species for binding by humic substances. Environ. Sci. Technol.,1993,27 (3):520-529.
    [63]Tipping E, Hurley M A. A unifying model of cation binding by humic substances. Geochim. Cosmochim.Ac.,1992,56 (10):3627-3641.
    [64]Veltman K, Huijbregts M A J, Hendriks A J. Integration of biotic ligand models (BLM) and bioaccumulation kinetics into a mechanistic framework for metal uptake in aquatic oOrganisms. Environ. Sci. Technol.,2010,44 (13):5022-5028.
    [65]Santore R C, Di Toro D M, Paquin P R, et al. Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ. Toxicol. Chem., 2001,20 (10):2397-2402.
    [66]De Schamphelaere K A C, Janssen C R. A biotic ligand model predicting acute copper toxicity for Daphnia magna:The effects of calcium, magnesium, sodium, potassium, and pH. Environ. Sci. Technol.,2002,36 (1):48-54.
    [67]De Schamphelaere K A C, Heijerick D G, Janssen C R. Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna. Comp. Biochem. Physiol., Part C:Toxicol. Pharmacol.,2002,133C (1-2):243-258.
    [68]De Schamphelaere K A C. Janssen C R. Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna. Environ. Toxicol. Chem.,2004,23 (6): 1365-1375.
    [69]Paquin P R, Di Toro D M, Santore R C, et al. A biotic ligand model of the acute toxicity of metals. III. Application to fish and Daphnia exposure to silver. Integrated Approach to Assessing the Bioavailability and Toxicity of Metals in Surface Waters and Sediments, EPA-822-E-99-001, US EPA, Washington, DC,1999,:3-59.
    [70]Mcgeer J C, Playle R C, Wood C M, et al. A physiologically based biotic ligand model for predicting the acute toxicity of waterborne silver to rainbow trout in freshwaters. Environ. Sci. Technol.,2000,34 (19):4199-4207.
    [71]Bury N R, Shaw J, Glover C, et al. Derivation of a toxicity-based model to predict how water chemistry influences silver toxicity to invertebrates. Comp. Biochem. Physiol., Part C:Toxicol. Pharmacol.,2002,133C (1-2):259-270.
    [72]Santore R C, Mathew R, Paquin P R, et al. Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna. Comp. Biochem. Physiol., Part C:Toxicol. Pharmacol.,2002,133C (1-2):271-285.
    [73]Heijerick D G, De Schamphelaere K A C, Janssen C R. Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics:development and validation of a biotic ligand model. Environ. Toxicol. Chem.,2002,21 (6):1309-1315.
    [74]De Schamphelaere K A C, Janssen C R. Bioavailability and chronic toxicity of zinc to juvenile rainbow trout (Oncorhynchus mykiss):Comparison with other fish species and development of a biotic ligand model. Environ. Sci. Technol.,2004,38 (23):6201-6209.
    [75]Schroeder J E, Borgmann U, Dixon D G. Evaluation of the biotic ligand model to predict long-term toxicity of nickel to Hyalella azteca. Environ. Toxicol. Chem.,2010,29 (11): 2498-2504.
    [76]Hoang T C, Tomasso J R, Klaine S J. Influence of water quality and age on nickel toxicity to fathead minnows (Pimephales promelas). Environ. Toxicol. Chem.,2004,23 (1):86-92.
    [77]Hollis L, Mcgeer J C, Mcdonald D G, et al. Effects of long term sublethal Cd exposure in rainbow trout during soft water exposure:implications for biotic ligand modeling. Aquat. Toxicol.,2000, 51 (1):93-105.
    [78]Clifford M, Mcgeer J C. Development of a biotic ligand model to predict the acute toxicity of cadmium to Daphniapulex. Aquat. Toxicol.,2010,98 (1):1-7.
    [79]Slaveykova V I. Predicting Pb bioavailability to freshwater microalgae in the presence of fulvic acid:Algal cell density as a variable. Chemosphere,2007,69 (9):1438-1445.
    [80]Chen W, Liao C. Dynamic features of ecophysiological response of freshwater clam to arsenic revealed by BLM-based toxicological model. Ecotoxicology,2010,19 (6):1074-1083.
    [81]Chen B, Chen W, Liao C. A biotic ligand model-based toxicodynamic approach to predict arsenic toxicity to tilapia gills in cultural ponds. Ecotoxicology,2009,18 (3):377-383.
    [82]Meyer J S, Santore R C, Bobbitt J P, et al. Binding of nickel and copper to fish gills predicts toxicity when water hardness varies, but free-ion activity does not. Environ. Sci. Technol.,1999, 33 (6):913-916.
    [83]Sciera K L, Isely J J, Tomasso J R J, et al. Influence of multiple water-quality characteristics on copper toxicity to fathead minnows(Pimephales promelas). Environ. Toxicol. Chem.,2004,23 (12):2900-2905.
    [84]Alsop D H, Wood C M. Kinetic analysis of zinc accumulation in the gills of juvenile rainbow trout: effects of zinc acclimation and implications for biotic ligand modeling. Environ. Toxicol. Chem., 2000,19 (7):1911-1918.
    [85]Al-Reasi H A, Scott Smith D, Wood C M. Evaluating the ameliorative effect of natural dissolved organic matter (DOM) quality on copper toxicity to Daphnia magna:improving the BLM. Ecotoxicology,2012,21 (2):524-537.
    [86]Mager E M, Brix K V, Gerdes R M, et al. Effects of water chemistry on the chronic toxicity of lead to the cladoceran, Ceriodaphnia dubia. Ecotoxicol. Environ. Saf.,2011,74 (3):238-243.
    [87]Lavoie M, Campbell P G C, Fortin C. Predicting cadmium accumulation and toxicity in a green alga in the presence of varying essential element concentrations using a biotic ligand model. Environ. Sci. Technol.,2014,48 (2):1222-1229.
    [88]Thakali S, Allen H E, Di Toro D M, et al. A terrestrial biotic ligand model.1. development and application to Cu and Ni toxicities to barley root elongation in soils. Environ. Sci. Technol.,2006, 40 (22):7085-7093.
    [89]Steenbergen N T T M, Iaccino F, de Winkel M, et al. Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa. Environ. Sci. Technol.,2005,39 (15):5694-5702.
    [90]Liu Y, Vijver M G, Peijnenburg W J G M. Impacts of major cations (K+, Na+, Ca2+, Mg2+) and protons on toxicity predictions of nickel and cadmium to lettuce(Lactuca sativa L.) using exposure models. Ecotoxicology,2014,23 (3):385-395.
    [91]Nys C, Janssen C R, Mager E M, et al. Development and validation of a biotic ligand model for predicting chronic toxicity of lead to Ceriodaphnia dubia. Environ. Toxicol. Chem.,2014,33(2): 394-403.
    [92]He E, Qiu H, Van Gestel C A M. Modelling uptake and toxicity of nickel in solution to Enchytraeus crypticus with biotic ligand model theory. Environ. Pollut.,2014,188:17-26.
    [93]Lavoie M, Campbell P G C, Fortin C. Extending the biotic ligand model to account for positive and negative feedback interactions between cadmium and zinc in a freshwater alga. Environ. Sci. Technol.,2012,46 (21):12129-12136.
    [94]Smiejan A, Wilkinson K J, Rossier C. Cd bioaccumulation by a freshwater bacterium, Rhodospirillum rubrum. Environ. Sci. Technol.,2003,37 (4):701-706.
    [95]Hassler C S, Slaveykova V I, Wilkinson K J. Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligand models. Environ. Toxicol. Chem., 2004,23 (2):283-291.
    [96]冯慧敏,何红波,俞洁,等.乙草胺的生态环境风险及其主要土壤行为综述.土壤通报,2009,40(1):203-208.
    [97]IUPAC. IUPAC FOOTPRINT Pesticides Properties Database. [2014-05-03]. http://sitem.herts.ac.uk/aeru/iupac/index.htm.
    [98]Yen P Y, Koskinen W C, Schweizer E E. Dissipation of alachlor in four soils as influenced by degradation and sorption processes. Weed Sci.,1994,:233-240.
    [99]Pothuluri J V, Moorman T B, Obenhuber D C, et al. Aerobic and anaerobic degradation of alachlor in samples from a surface-to-groundwater profile. J. Environ. Qual.,1990,19(3):525-530.
    [100]Accinelli C, Dinelli G, Vicari A, et al. Atrazine and metolachlor degradation in subsoils. Biol. Fert. Soils,2001,33 (6):495-500.
    [101]Wany Y S, Jaw C G, Tang H C, et al. Accumulation and release of herbicides butachlor, thiobencarb, and chlomethoxyfen by fish, clam, and shrimp. Bull. Environ. Contam. Toxicol., 1992,48 (3):474-480.
    [102]王沫.农药管理学.北京:化学工业出版社,2003.
    [103]叶钟音.现代农药应用技术全书.北京:中国农业出版社,2002.
    [104]Lynch V P, Hudson H R, Pianka M. Identification and determination of mecarbam and its major degradation products in water and crops. Pestic. Sci.,1981,12 (1):65-73.
    [105]Quistad G B, Staiger L E, Schooley D A. Environmental degradation of the insect growth regulator methoprene (isopropyl(2E,4E)-11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate). I. Metabolism by alfalfa and rice. J.Agr. Food Chem.,1974,22 (4):582-589.
    [106]Cabanne F, Huby D, Gaillardon P, et al. Effect of the cytochrome p-450 inactivator 1-aminobenzotriazole on the metabolism of chlortoluron andisoproturon in wheat. Pestic. Biochem.Phys.,1987,28 (3):371-380.
    [107]马瑛,张甲耀,管筱武,等.原毛平革菌堆肥处理有害废弃物的可行性.环境科学,1999,(6):67-70.
    [108]虞云龙,樊德方,陈鹤鑫.农药微生物降解的研究现状与发展策略.环境科学进展,1996,4(3):28-36.
    [109]Hoagland R E, Zablotowicz R M, Hall J C. Pesticide Metabolism in Plants and Microorganisms: An Overview//J C Hall, R E Hoagland, R M Zablotowicz. Pesticide Biotransformation in Plants and Microorganisms. Washington, DC:American Chemical Society,2000.
    [110]Chaw D, Stoklas W. Cocomposting of cattle manure and hydrocarbon contaminated flare pit soils. Compost Sci. Util.,2001,9 (4):322-335.
    [111]李国学,孙英.高温堆肥对六六六(HCH)和滴滴涕(DDT)的降解作用研究.农业环境保护, 2000,19(3):141-144.
    [112]孔繁翔,尹大强,严国安.环境生物学.北京:高等教育出版社,2000.
    [113]莫测辉,蔡全英,吴启堂,等.城市污泥与玉米秸秆堆肥中多环芳烃(PAHs)的研究.农业工程学报,2001,17(5):73-77.
    [114]Qian M R, WuLQ, Zhang H, et al. Stereoselective determination of famoxadone enantiomers with HPLC-MS/MS and evaluation of their dissipation process in spinach. J. Sep. Sci.,2011,34 (11):1236-1243.
    [115]Barooah A K, Borthakur M. Dissipation of pesticides in tea shoots and the effect of washing. Pesticide Research Journal,2008,20 (1):121-124.
    [116]Chen Z M, Wan HB. Factors affecting residues of pesticides in tea. Pestic. Sci.,1988,23(2): 109-118.
    [117]Brown H M, Brattsten L B, Lilly D E, et al. Metabolic pathways and residue levels of thifensulfuron methyl in soybeans. J. Agr. Food Chem.,1993,41 (10):1724-1730.
    [118]Cabras P, Angioni A, Garau V L, et al. Pesticide residues in artichokes:Effect of different head shape. J. Environ. Sci. Heal. B,1996,31 (6):1189-1199.
    [119]Guth J A, Reischmann F J, Allen R, et al. Volatilisation of crop protection chemicals from crop and soil surfaces under controlled conditions-prediction of volatile losses from physico-chemical properties. Chemosphere,2004,57 (8):871-887.
    [120]Rosendahl I, Laabs V, Atcha-Ahowe C, et al. Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa. J. Environ. Monitor.,2009,11 (6): 1157-1164.
    [121]Zongmao C, Haibin W. Degradation of pesticides on plant surfaces and its prediction-A case study on tea plant. Environ. Monit. Assess.,1997,44 (1-3):303-313.
    [122]Ntow W J, Ameyibor J, Kelderman P, et al. Dissipation of endosulfan in field-grown tomato (Lycopersicon esculentum) and cropped soil at Akumadan, Ghana. J. Agr. Food Chem.,2007,55 (26):10864-10871.
    [123]Magri A, Haith D A. Pesticide decay in turf:a review of processes and experimental data. J. Environ. Qual.,2009,38 (1):4-12.
    [124]Kyriakidis N B, Athanasopoulos P E, Thanos A, et al. Decay of methidathion on Greek soultanina grapes during storage and on the vines. J. Agr. Food Chem.,2000,48 (8):3095-3097.
    [125]Athanasopoulos P E, Pappas C. Effects of fruit acidity and storage conditions on the rate of degradation of azinphos methyl on apples and lemons. Food Chem.,2000,69 (1):69-72.
    [126]Stenersen J. Chemical pesticides mode of action and toxicology. Boca Raton, Florida:CRC press, 2004.
    [127]Willis G H, Mcdowell L L. Pesticide persistence on foliage. Rev. Environ. Contam. T.,1987,100: 23-73.
    [128]Sundaram K. Persistence and fate of tebufenozide (RH-5992) insecticide in terrestrial microcosms of a forest environment following spray application of two mimic(?) formulations. J. Environ. Sci. Heal. B,1995,30 (3):321-358.
    [129]Katagi T. Photodegradation of pesticides on plant and soil surfaces. Rev. Environ. Contam. T., 2004,182:1-78.
    [130]Burrows H D, Canle L M, Santaballa J A, et al. Reaction pathways and mechanisms of photodegradation of pesticides. J. Photoch. Photobio. B.,2002,67(2):71-108.
    [131]Sundaram K, Curry J. Initial deposits and persistence of azadirachtin in fir and oak foliage after spray application of 'Margosan-O'(?) formulation. Pestic. Sci.,1994,41 (2):129-138.
    [132]Santis E L, Hernandez L A, Martinez A M, et al. Long-term foliar persistence and efficacy of spinosad against beet armyworm under greenhouse conditions. Pest Manag. Sci.,2012,68 (6): 914-921.
    [133]Rodriguez E, de Balugera Z G, Sampedro M C, et al. Persistence of diflubenzuron on conifer forest foliage in a Mediterranean-climate ecosystem following aerial application. Int. J. Environ. An. Ch.,2003,83 (5):433-442.
    [134]Cabras P, Caboni P, Cabras M, et al. Rotenone residues on olives and in olive oil. J. Agr. Food Chem.,2002,50 (9):2576-2580.
    [135]Cabizza M, Angioni A, Melis M, et al. Rotenone and rotenoids in cube resins, formulations, and residues on olives. J. Agr. Food Chem.,2004,52 (2):288-293.
    [136]Awasthi M D, Sharma D. Uptake of fungicides from post-harvest treatment and their persistence in ripening mango fruits. Pesticide Research Journal,1997,9 (1):41-45.
    [137]Fenoll J, Ruiz E, Hellin P, et al. Dissipation rates of insecticides and fungicides in peppers grown in greenhouse and under cold storage conditions. Food Chem.,2009,113 (2):727-732.
    [138]Cabras P, Angioni A, Garau V L, et al. The effect of simulated rain on folpet and mancozeb residues on grapes and on vine leaves. J. Environ. Sci. Heal. B,2001,36 (5):609-618.
    [139]张韩杰,闫艳春.农药残留及微生物在农药降解中的应用与展望.湖北植保,2004,(1):31-35.
    [140]Amer M M, Shehata M A, Lotfy H M, et al. Determination of tetraconazole and diniconazole fungicide residues in tomatoes and green beans by capillary gas chromatography. Yakugaku Zasshi,2007,127 (6):993.
    [141]Chen L, Shangguan L, Wu Y, et al. Study on the residue and degradation of fluorine-containing pesticides in Oolong tea by using gas chromatography-mass spectrometry. Food Control,2012, 25 (2):433-440.
    [142]Utture S C, Banerjee K, Kolekar S S, et al. Food safety evaluation of buprofezin, dimethoate and imidacloprid residues in pomegranate. Food Chem.,2012,131 (3):787-795.
    [143]Ambrus A A, D, Lantos J. Evaluation of the studies on decline of pesticide residues. J. Agr. Food Chem.,2002,50 (17):4846-4851.
    [144]Likas D T, Tsiropoulos N G. Behaviour of fenitrothion residues in leaves and soil of vineyard after treatment with microencapsulate and emulsified formulations. Int. J. Environ. An. Ch.,2007,87 (13-14):927-935.
    [145]L6pez Lopez T, Martinez Vidal J L, Gil Garcia M D, et al. Benzoylphenylurea residues in peppers and zucchinis grown in greenhouses:determination of decline times and pre-harvest intervals by modelling. Pest Manag. Sci.,2004,60 (2):183-190.
    [146]Martinez Galera M, Gil Garcia M D, Rodriguez Lallena J A, et al. Dissipation of pyrethroid residues in peppers, zucchinis, and green beans exposed to field treatments in greenhouses: evaluation by decline curves. J. Agr. Food Chem.,2003,51 (19):5745-5751.
    [147]Omirou M, Vryzas Z, Papadopoulou-Mourkidou E, et al. Dissipation rates of iprodione and thiacloprid during tomato production in greenhouse. Food Chem.,2009,116 (2):499-504.
    [148]Aguilera-Del Real A, Valverde-Garcia A, Camacho-Ferre F. Behavior of methamidophos residues in peppers, cucumbers, and cherry tomatoes grown in a greenhouse:Evaluation by decline curves. J. Agr. Food Chem.,1999,47 (8):3355-3358.
    [149]Utture S C, Banerjee K, Dasgupta S, et al. Dissipation and distribution behavior of azoxystrobin, carbendazim, and difenoconazole in pomegranate fruits. J. Agr. Food Chem.,2011,59(14): 7866-7873.
    [150]Aktar M W, Sengupta D, Alam S, et al. Risk assessment and chemical decontamination of an oxime carbamate insecticide (methomyl) from eggplant, Solamum melongena L.. Environ. Monit. Assess.,2010,168 (1-4):657-668.
    [151]Banerjee K, Oulkar D P, Patil S H, et al. Degradation kinetics and safety evaluation of tetraconazole and difenoconazole residues in grape. Pest Manag. Sci.,2008,64(3):283-289.
    [152]Wilson A G, Desmarchelier J M, Malafant K. Persistence on cotton foliage of insecticide residues toxic to Heliothis larvae. Pestic. Sci.,1983,14 (6):623-633.
    [153]环境保护部化学品登记中心.GB/T 21805-2008.化学品 藻类生长抑制试验.2008
    [154]Worms I A M, Wilkinson K J. Ni uptake by a green alga.2. Validation of equilibrium models for competition effects. Environ. Sci. Technol.,2007,41 (12):4264-4270.
    [155]Gupta S K, Shyam K R. Post-infection activity of ergosterol biosynthesis inhibiting fungicides against pea rust. J. Mycol. Plant Pathol.,2000,30 (3):414-415.
    [156]Gupta S K, Sharma S K, Shyam K R. Antisporulant activity of ergosterol biosynthesis inhibitor fungicides against powdery mildew(Sphaerotheca fuliginea) of cucumber (Cucumis sativus). Indian J. Agric. Sci.,1998,68 (7):382-383.
    [157]Meunier L, Mercer R. Treatment of banana cercosporiosis.:France, FR2732191,1996-10-04.
    [158]Cagnieul P, Labit B. DPX H6573:a new broad-spectrum systemic fungicide. Monogr.-Br. Crop Prot. Counc.,1985,31 (Fungicidal Crop Protection, Vol.2):237-240.
    [159]Fort T M, Moberg W K. DPX H6573, a new broad-spectrum fungicide candidate. Proc.-Br. Crop Prot.Conf.--Pests Dis.,1984, (2):413-419.
    [160]Li L, Jiang G, Liu C, et al. Clothianidin dissipation in tomato and soil, and distribution in tomato peel and flesh. Food Control,2012,25 (1):265-269.
    [161]Yu S, Qin D, Wu Q, et al. Residue and dissipation dynamics of flusilazole in apple and soil. Bull. Environ. Contain. Toxicol.,2011,86 (3):319-322.
    [162]陈莉,戴荣彩,夏福利,等.氟硅唑乳油在葡萄和土壤中的残留动态.农药,2008,47(1):52-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700