用户名: 密码: 验证码:
富硒大豆蛋白的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以黄豆为富硒载体,采用喷淋和浸泡相结合的方式添加不同浓度的硒溶液,通过黄豆的发芽过程实现对硒元素的生物富集,制备出富硒黄豆芽并采用等电沉淀法从富硒黄豆芽中分离得到富硒大豆蛋白。并采用荧光分光光度法和静置浸出离心法分别对样品中的总硒和有机硒含量进行分析,从而研究不同硒溶液浓度和富硒时间对黄豆发芽过程中生物富硒能力的影响。结果表明:硒培养液的浓度及培养时间对黄豆芽富硒量起决定因素,当硒培养液浓度为10μg·mL~(-1)、培养时间为120h时富硒效果最佳,制备出的富硒黄豆芽粉富硒量为42.46μg·g~(-1),分离出的富硒大豆蛋白富硒量为21.24μg·g~(-1)。
     利用稀土元素对生物体具有特殊生物效应的功能将稀土元素作为一种富硒促进剂,提高黄豆芽富硒量。本课题选取三种不同的稀土元素(La、Nd、Ce),按不同浓度添加到硒培养液中制备出稀土富硒黄豆芽,并进一步分离出稀土富硒大豆蛋白。测定结果表明:稀土元素能够提高黄豆芽的富硒能力,从而提高黄豆芽中的总硒和有机硒含量,以及富硒蛋白的硒含量,但其影响作用因添加的稀土元素的种类和浓度的不同而存在一定的差异。对其能力影响最强的稀土元素是La,其次是Nd,影响最弱的是Ce。当La的浓度小于6μg·mL~(-1)时,稀土对黄豆芽富硒能力有明显的促进作用,且随浓度增加促进能力增强;当La浓度大于7μg·mL~(-1)时,稀土对黄豆芽富硒量呈明显的抑制作用。La浓度在6μg·mL~(-1)时,对黄豆芽富硒的促进作用最明显,制备出的稀土富硒黄豆芽粉总硒含量为65.83μg·g~(-1),比未添加稀土的富硒豆芽中总硒含量提高了55.06%,分离出的稀土富硒大豆蛋白中硒含量也比未添加前提高了23.02%,为26.13μg·g~(-1)。
     通过对制备出的富硒大豆蛋白进行红外光谱扫描及氨基酸组分分析,结果表明:分离出的富硒蛋白中的硒元素并不是被简单的包裹在蛋白结构中,而是与蛋白分子相结合形成了稳定的化合物,并且富硒蛋白中氨基酸总量有明显提高,比普通大豆蛋白提高了18.86%,其中谷氨酸的含量提高最为显著,大约提高了35.54%。同时稀土对提高蛋白质中氨基酸总量也具有促进作用。对富硒大豆蛋白进行抗氧化活性分析结果表明,富硒大豆蛋白清除羟自由基和超氧自由基的能力都有所提高,尤其对超氧自由基(·O_2~-)的清除率更为显著。
     对稀土富硒豆芽和富硒蛋白中的稀土含量进行了分析,结果表明,稀土富硒黄豆芽中的稀土含量与所添加的稀土浓度成正比关系,当添加的稀土La浓度为7μg·mL~(-1)时,富硒黄豆芽中以及提出的富硒蛋白中的稀土含量都最高,豆芽中为30.35μg·g~(-1),蛋白中为45.37μg·g~(-1);远低于人体对稀土的最高耐受量12mg·d~(-1)~120mg·d~(-1)。由此可知,稀土可以作为生产富硒大豆蛋白的一种安全而且有效的富硒促进剂,在食品领域中具有广阔的应用前景。
This study took the soybean as raw carrier. Enrich selenium in it by treating soybean with selenium solution of different concentrations and by way of soaking and spraying. Biological accumulation of selenium was realize during the process of soybean sprouting, The protein of selenium-enriched soybean sprouts is isolated from the selenium-enriched soybean sprouts by the method of alkali-solution and acid-isolation. And content of total selenium were determined by using a fluormetric method; the content of organic selenium is analyzed by the method of still-placed and oozing-out the inorganic selenium. The effect of selenium applied at different levels including different concentration and cultivation time on the ability to accumulate selenium during the soybean germinated was studied. The result indicates that Se concentration and cultivation time have determinant effect on the content of selenium enriched in soybean sprouts. The optimum content of total selenium in soybean sprouts is 42.46μg/g. Se content of soybean proteins extracted is 21.24μg/g. When treated with 10μg/ml selenium solution in soybean sprouts and cultivation time is 120h.
     REE as selenium-enriched accelerant was utilized for improving Se accumulation in the soybean sprouts because of outstanding biology function. In this paper, The REE selenium-enriched soybean sprouts were prepared by adding different concentrations of rare earth La3+、Ce3+、Nd3+ into different concentrations of selenium cultivation solution and The REE selenium-enriched soybean proteins was isolated, determine result show that REE can promote ability of soybean sprouts to absorb Se and increase the content of total selenium and organic selenium, but the impact of different rare earth element has discrepancy upon the kind and concentration of REE. The most effective rare earth element is La. Next is Nd, last is Ce. The result indicates that La3+ promotes the uptake of selenium in the soybean sprouts and Se organic degree at low concentrations. Content of total selenium and organic selenium in selenium-enriched soybean sprouts were both raised gradually when the concentrations of La3+ is below 6μg/ml, but decreased when the concentrations of La3+are above 7μg/ml. The same trend occur to Se content of the protein components extracted from Selenium-enriched Soybean sprouts treated with La3+. The highest Se content 65.83μg·g~(-1) and Se content of protein 26.13μg·g~(-1) were all observed at concentrations 6μg·mL~(-1) La3+, which was respectively increased by 55.06% and 23.02% as apposed to that from soybean sprouts treated without La3+.
     Data from Infrared spectrum scanning and Analysis of Amino Acids constituents show that Se of Selenium-enriched protein was found to be incorporated chemically into the protein structure rather than being bound physically to cell wall. And total content of amino acids in proteins extracts was increased by 18.86% as opposed to that from common soybean sprouts; especially content of glutamic acid was remarkably increased by 35.54 %. Furthermore, REE can further increase the total content of amino acids in the soybean sprouts. Antioxidant analysis shows that ability of selenium-enriched proteins to scavenge hydroxyl and superoxide radicals was increased effectively, especially for the superoxide radicals.
     The content of rare earth is analyzed. And the data indicates that the contents of rare earth in the samples increase with the increase of the concentration of rare earth added in the cultivation solution. When the concentrations of rare earth added in the soybean sprouts is 7μg·mL~(-1), the highest content of rare earth in the soybean sprouts and protein is 30.35μg·g~(-1) and 45.37μg·g~(-1) respectively, Which are both below the tolerable upper intake level of rare earth for adults12mg·d~(-1)~120mg·d~(-1). In general, rare earth is an effective and safe selenium-enriched accelerant for soybean protein and of expansive application foreground in food field.
引文
白岚. 2006.香菇蛋白质氨基酸的分析. Journal of Fungal Research. (2):21~24
    陈海霞,谢笔钧. 2001.富硒茶叶中茶多糖的某些化学性质及对轻自由基的清除作用.卫生研究. 30(1): 58~59
    陈汉杰,欧阳政,蔡端仁. 1992.硒蛋白及其分离.色谱分析. 75~78
    陈春英,高秋华,涂欢等. 1994.箬叶硒多糖提取液生物活性的初步研究.微量元素与健康研究(硒专刊). 33~34
    邓汝昌,曾正志,马娴贤. 1993.第一次中国稀土生物无机会议文集. (7):18~21.
    杜琪珍,方兴汉,沈星荣. 1999.茶树累积硒的动态分布和主要形态.中国茶叶. 3: 8~9
    郭冬梅,蔺新英,邵丽华. 2005.硒的生物功能及测定方法研究.微量元素与健康研究. 22(1): 55~56
    郜红建,常江,张自立等. 2004.镧对水稻根分泌物中氨基酸和有机酸含量的影响安徽农业大学学报. 31(1): 58~61
    郝素娥,韦永德,金婵,丛华. 2002.稀土元素对铬酵母中铬含量影响的研究.中国稀土学报. 20(5): 454~457.
    何明渊,张建文. 1998.饲喂稀土复合添加剂的育肥猪肉仔鸡体内稀土残留分析.甘肃畜牧兽医. 2: 13~15
    胡文军,傅庭治,曹幼琴. 1997.硒在金针菇菌体内的生物转化.中国食用菌. 16 (3): 30~33
    胡国元,李伟伟,王耀军. 2000.富硒金针菇菌丝多糖的初步研究.食用菌学报. 7 (2):46~49
    黄峙,郑文杰,郭宝江. 2001.含硒生物大分子化合物研究进展.海南大学学报自然科学版. 19(2): 169~175
    黄峙,郑文杰,向军俭等. 2001.钝顶螺旋藻中蛋白质结合硒的研究.暨南大学学报(自然科学版). 22(3): 86~90
    黄峙. 2001.食品硒源的生物学研究进展.食品科学. 22 (5): 90~94
    贾文竹,邸贵田.稀土与农业.北京:中国农业出版. 1998, 13~19
    贾洪锋,贺稚非,刘丽娜. 2005.富硒酵母的研究进展.四川食品与发酵. 23(8): 75~79
    江天肃,王巍,胡伟华. 2002.稀土光度分析的某些进展.中国稀土学报. (20):52~57
    李北罡. 2002.偶氮胂Ⅲ稀土显色反应的双波长分光光度法研究.中国稀土学报. 20(3): 34~37
    李以暖,薛立文. 2000.富硒保健食品硒含量标准的探讨.广东微量元素科学. 7 (5): 18~21
    刘建成,朱琴玉,李惠珍. 1998.富硒蒜苗清除自由基作用的探讨.苏州丝绸工学院学报. 18(S): 55~57
    刘曼西,于秀芝,孙宪洁等. 1995硒酵母成分的研究.华中工学院学报. 13 (3) II: 115~119
    刘学诗. 2001.硒蛋白分子生物学及其生理功能研究进展.信阳师范学院学报(自然科学报). 14 (3): 361 ~364
    马安德,董卫军,沈梅等. 2005.生物样品中Se的荧光测定方法.广东微量元素科学. 12 (11): 43~47
    梅光泉,应惠芳. 2003.微量元素硒与植物有机硒化合物.微量元素与健康研究. 20(6): 59~61
    牟维鹏. 2001.硒蛋氨酸的营养、代谢和毒性.国外医学卫生学分册. 28 (4): 206~210
    倪嘉瓒. 1999.稀土生物无机化学.北京:科学出版社. 290~294
    秦俊法,陈祥友,李增禧. 2002.稀土的生物学效应广东微量元素科学. 9(3):23~25
    邱关明,李幼荣,陈石燕. 2003.稀土对生物机体剂量效应机理的研究进展.稀土. 24(1): 50~58
    祁俊生,付川,王裕玲. 2004.稀土在农作物中吸收分布.重庆大学学报. 27 (2): 67~69
    史丽英,罗世炜. 2005.微量元素硒的研究进展.襄樊职业技术学院学报. 4 (1): 12~16
    宋智娟,赵国先,张晓云等. 2005.稀土的作用机理及饲用安全性.中国饲料.10:76~79
    唐巧玉,吴永绕,周大寨. 2005.硒对大豆苗期生长的影响.湖北民族学院学报. 23: 124~127
    王夔. 2001.金属离子与生命.上海科技教育出版社. 44~48
    王春娜. 2000.荧光法快速测定虾皮中微量硒.北京农学院学报. 15(3):56~59
    王秀红.2006.微量元素硒与人体健康.微量元素与健康研究. 23(1):66~67.
    王伟坤.食品化学分析.上海:上海人民科学技术出版社. 1978, (3): 46~49
    王伟坤.食品中硒的测定方法.上海食品. 2003, (1): 93~95
    王关林,尚德静,杨文新. 2001.富硒灵芝的营养成分及其抗氧化能力研究.营养学报. 23(1): 73~75
    吴正奇,刘建林. 2005.硒的生理保健功能和富硒食品的相关标准. Food and Nutrition in China. 5(5): 23~25
    吴永尧,彭振坤,罗泽民. 1997.硒的多重生物学功能与动物的健康.湖南农业大学学报. 23(3): 294~298.
    魏正贵,张惠娟,李辉信. 2006.稀土元素超积累植物研究进展.中国稀土学报. 24 (1): 62~66
    徐向荣,王文华,李华斌. 1999.比色法测定Fenton反应产生的羟自由基及其应用. 生物化学与生物物理进展. 26(1): 67~69
    杨永霞,邵鑫. 1999.生物微量元素硒与人体健康.食品科学.(6): 24~25.
    余日安,陈学敏,鲁文清. 2000硒对大鼠肝细胞DNA损伤的体内体外研究.同济医科大学学报. 29(3):212~214
    张树年,赵树进,李超. 2006.蛋白分离的技术和进展.中国药业. 15 (2): 86~89
    张瑞华. 2005.富硒食品生产工艺及其效益分析.环境信息.4: 34~38
    张驰,刘信平,周大寨. 2005.绿豆芽对硒的富集及耐受能力研究.北方园艺. (2): 46~47
    张在香,杨小光,牟为鹏等. 1999.慢性硒中毒大鼠硒蛋白的变化.卫生研究. 28 (3):155~157
    周勋波. 2002.硒在农作物上应用研究进展概况.辽宁农业科学. 6(1): 36~38
    曾静,罗海吉. 2003.微量元素硒的研究进展.微量元素与健康研究. 20(2): 52~56
    郑大中. 2001.稀土的应用现状与发展前景.四川化工与腐蚀控制. 4(5): 72~75
    B.M. David, H. Honglin, N.G. Vadim. 2000. Multiple levels of regulation of selenoprotein biosynthesis revealed from the analysis of human glioma cell lines. Biochemical Pharmacology. 60(4): 489~497
    Eo S K, Kim Y S, Lee C K, et al. 2000. Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma Lucidum on herpes simplex viruses. Journal of Ethnopharmacology. 72:475~481.
    G.B. Wybourne. 2004. The fascination of the rare earths then, now and in the future. Journal of Alloys and Compounds. 96(100): 23~25
    Garhard N. Schrauzer. 2001. Selenomethionine:a review of its nutritional significance. metabolism and toxicity. Nutr. (231): 301~304
    Ip C., Lisk D. J. 1993. Bioavailability of selenium from selenium-enriched garlic. Nutr. Cancer. 20:129~137
    Lintschinger J, Fuchs N. 2000. Selenium-enriched sprouts. A raw material for fortified cereal-based diets. Agric Food Chem. 48(11): 62~68
    L. Moysset, L.A. Gomez, E. Simon. 1994. Effects of lanthanum on rhythmic and nyctinastic leaflet movements in Albizzia lophantha, J. Exp. Bot. 45 (270): 85~93
    Q. H. Hu, Z. J. Ye. 1996. Physiological effects of rare earth elements on plant. Chin. Plant Physiol. Commun. 32 (4): 296~300
    R. T. Leonard, G. Nagahashi, W.W. Thomson. 1995. Effect of lanthanum on ion absorption in corn roots. Plant Physiol. (55): 542~546
    Satoru Sugihara,Mariko Kondo. 2004. Preparation of selenium-enriched sprouts and identification of their selenium species by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. Biosci. Biotechnol. Biochem. 68(1): 193~199
    Shimazu F, Tappel A L. 1994. Selenoamino acids as radiation protectors in vitro. Radiation Research. 23: 210~217
    Sahar E, Meselhy R M, Norio N, et al. 1998. Anti-HIV-1-protease substances from Ganoderma Lucidum. Phytochemistry. 49: 1651~1657.
    T.A. Peterson, E.S. Swanson, R.J. Hull. 1986. Use of lanthanum to trace apoplastic solute transport in intact plants, J. Exp. Bot. (37): 807~822.
    Toth J O, Luu B, Ourisson G. 1983. Ganoderic acid T and Z: cytotoxic triterpenes from Ganoderma Lucidum (Polyporaceae). Tetrahedon Let. 24: 1081~1084.
    Tapiero H, Townsend D M, Tew K D. 2003. The antioxidant role of selenium and seleno-compounds.Biomedicine&Pharmacotherapy. 7:134~144.
    W. J, Y. H. Gu, G. W. Zhao. 2000. Effects of rare earth ions on activity of RuBPcase in tobacco. Plant Science. (152): 145~151
    Wang Hui, Guo Li, Xie Wenlei. 2006. Methods for Determining Antioxitive Activity of Antioxidants. Food and Fermentation Industries. 32(4): 73~76
    Xiaoquan Shan, Haiou Wang, Shuzhen Zhang. 2003. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Science. (165): 1343~1353
    X. Chen, Y. X. Zhou, Y. M. Xu. 1996. The effects of light rare earth ions(Ln3+) on the activity of phosphodiesterase stimulated by calmodulin, Chin. Acta Biophys. Inica. 12 (3): 389~393
    Y. Q. Wang, P. Jiang, F.Q. Guo, Z.Y. Zhang, J.X. Sun. 1999. REE bound DNA in natural plant, Sci. China Ser. (42): 357~362
    Z. M. Wu, X. K. Tang, Z. W. Jia, B. K. Wang. 2002. Studies on the effect of rare earth elements on the increment of yield in agriculture. J. Chin. Rare Earth Soc. 2 (2): 76~80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700