用户名: 密码: 验证码:
哀牢山造山带菲莫铜钼多金属矿矿床地球化学与成因探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哀牢山造山带是西南“三江”成矿带的重要单元,也是全球特提斯构造成矿域的一部分,是极具潜力的铜、金、银、钼、钨、锡多金属成矿带。
     笔者在校企合作项目的支持下,以“哀牢山造山带菲莫铜钼多金属矿矿床地球化学与成因探讨”为题,开展了博士论文工作。本文瞄准我国矿业和地质勘探行业发展的前沿,以区域成矿学和造山带成矿理论为指导,在对前人于哀牢山带勘查和研究成果充分借鉴和吸收的前提下,对菲莫铜钼多金属矿区及外围开展了广泛的野外地质调查和室内综合研究,取得了以下主要成果及认识:
     (1)菲莫铜钼多金属矿床位于哀牢山中深变质岩带内。区域性构造的演化,印支板块向扬子板块的俯冲,造就了一系列北西向地块及深大断裂。其中,红河断裂与哀牢山断裂共同决定了哀牢山中深变质岩带的发展、演化、空间展布及一系列与主构造线大致平行的断裂和褶皱的分布,同时控制着该区岩浆活动,从而也造成了哀牢山铜金为主的多金属成矿带与变基性岩及深部岩浆活动有关的铜金多金属矿床的成带分布。
     (2)哀牢山中深变质岩系是菲莫铜钼多金属矿床的含矿岩系,同时也是矿床成矿物质来源之一。矿床产在哀牢山中深变质岩中,含矿围岩主要为哀牢山群阿龙组菲莫段透辉石大理岩。哀牢山群由古元古代至新元古代1800-800Ma的构造岩片组成,其中主体岩石应形成于1600-1300Ma的构造变形与区域动力热流变质作用,在1000~800Ma经受了晋宁构造运动。哀牢山变质岩原岩恢复表明,其原岩主要为古元古代基性火山岩及沉积的灰岩、泥岩、白云质砂岩等。岩石地球化学特征表明,片岩类、麻粒岩等深色变质岩类富集大离子亲石元素K、Rb,明显亏损Nb、Ta、P和Ti等高场强元素,Th和Sr显示明显的负异常;同时表现出LREE富集右倾型配分模式,轻重稀土分异明显,轻稀土富集,铕异常不明显,铈负异常亦不明显,微量元素和稀土元素均表现出与基性岩及基性火山凝灰岩相似的特征。大理岩类富集Rb、U,明显亏损Nb、Ta、P和Ti, Ba和Sr显示明显的负异常,LREE为富集右倾型配分模式,轻稀土分异明显且富集,铕异常明显,表现出与白云岩、灰岩等碳酸盐岩相似的特征。
     (3)首次对研究区大皮甲小岩体进行了岩石地球化学研究,其岩性主要为二云二长花岗岩。w (SiOz)平均为72.42%,A/CNK(分子比)>1.1(平均1.17),K20/Na2O平均为2.18,里特曼指数(σ)为1.76-4.19(平均3.02),分异指数(DI)为90~92,Σ REE在103.34×10-6-247.39×10-6之间,ΣLREE/ΣHREE在1.16-7.45之间,具弱Eu正异常,在原始地幔标准化蛛网图上显示出Nb、P、Ti负异常和K、Rb、Ba、Th、U正异常,具明显的分异结晶作用特征。岩体的地球化学特征属于高硅、过铝、钙碱性(略偏碱钙性)花岗岩,具有壳幔混源型花岗岩的特征。经多种相关图解判别,大皮甲岩体为碰撞造山花岗岩类,形成于同碰撞及后造山的构造环境。岩体形成年龄大约为57.72Ma,其时正好发生喜山期大规模陆内变形过程中的大规模成岩、成矿作用。岩体提供了部分成矿物质,尤其是钼。
     (4)首次对菲莫铜钼多金属矿床辉钼矿进行了Re-Os同位素精确测年,获得辉钼矿Re-Os同位素模式年龄为47.81±0.71Ma,与哀牢山铜金多金属成矿带镇沅、墨江、大坪大型金矿大约在同时期形成(均为50Ma±)。彼时喜玛拉雅运动的隆升挤压、花岗岩侵入导致哀牢山造山带大规模的构造-岩浆-热事件,在热动力的驱动下,成矿流体、挥发组分的共同作用下,使成矿元素大量聚集,造成该时期成矿作用大爆发,形成诸多大、中型铜、金多金属矿床。菲莫铜钼多金属矿床形成的年代格架大致为:在古元古代(1800~1600Ma)形成基性火山岩为主的含铜原生矿化层,后经中-新元古代(1600~900Ma)变质作用及晋宁运动(900~800Ma)对原生矿进行了初步改造富集,又经历了印支运动(260Ma)走滑-推覆作用引起的糜棱岩化对铜多金属矿的剪切改造及燕山运动(160~80Ma)花岗岩侵入对矿床的进一步热改造,而后喜玛拉雅运动(65~10Ma)的隆升挤压、花岗岩侵入形成的大规模的构造-岩浆-热事件对矿床进行了颠覆性的叠加改造,同时也带来了新的成矿物质,成为主成矿期。
     (5)首次对菲莫铜钼多金属矿床进行了成矿物质来源、成矿流体来源、成矿温度、压力及矿床成因研究。矿床地球化学研究显示,矿区H、O、S、Pb同位素和稀土元素、微量元素等地球化学特征表明成矿物质主要来源于深部地幔或下地壳古老基底,后混入部分上地壳物质;含矿流体以原生岩浆水为主,又加入部分大气降水和变质水。流体包裹体测温显示矿床成矿流体为一种低盐度、低密度、高温、高压的深源流体。结合矿床产出构造环境、围岩蚀变类型、控矿要素和同位素特征等分析,认为菲莫铜钼多金属矿床赋矿地层中深色中深变质岩系提供了部分成矿物质,另外部分成矿物质来自于深部岩浆及岩浆途经的围岩。矿床成因研究结果显示,断裂破碎带、岩浆上涌通道有利于深部成矿物质的上侵;喜山期花岗岩侵入导致了矿床的最终定位,岩浆侵入所带来的岩浆热液汇合加热的地下水溶液形成成矿热液。矿床成因类型为沉积-变质-岩浆热液叠加改造型铜钼多金属矿床。
     (6)通过研究和总结菲莫铜钼多金属矿床的地质地球化学特征和成矿规律,阐述了铜钼多金属矿体与哀牢山变质岩系及大皮甲花岗岩体的时空关系和成因联系。基于矿床Cu、Mo、Au、Ag的成因、时空分布规律,建立了菲莫铜钼多金属矿床的成矿模式,同时总结出了构造、岩性、岩浆岩、矿化蚀变、航磁、地球物理和地球化学异常等7项关键找矿标志。根据含矿花岗岩脉,花岗岩体矿化露头,推测矿区深部很有可能存在规模较大的斑岩型和接触交代型铜钼多金属矿床。
Ailaoshan orogenic belt is the important composition unit of the southwest "Sanjiang" metallogenic belt, part of the Tethyan metallogenic domain. It is also the great potential polymetallic metallogenic belt of copper, gold, molybdenum, tungsten and tin.
     Supported by the cooperation of school and enterprise, the author has made the documentary on the subject of "discussion on the geochemistry and genesis characteristics of Feimo Cu-Mo polymetalic deposit in Ailaoshan orogenic belt". Guided by regional metallogeny and the metallogenic theory of orogen belts, subject to the absorption and drawing upon the former achievements on the Ailaoshan exploration and research, doing widely field geological investigation and indoor synthetic analysis at the mining districts and its surrounding area, this article was at the forefront of the geostatistics and geological exploration in our country. Achievements obtained are as follows:
     (1)Feimo Cu-Mo polymetalic deposits are located in the medium-deep dark colored metamorphic rock of Ailaoshan belt. The evolution progress of tectonic and the Yangtze plate triggered toward by the Indian Ocean plate make a series of northwest blocks and discordogenic fault; Honghe fault and Ailaoshan fault which determined the development, evolution and spatial distribution of the medium-deep Ailaoshan metamorphic rock belt, the distribution pattern of the series of fracture and fold structure that paralleled to the main structure line, and the magmatic action of this area; all of those are finally formed the Ailaoshan polymetallic metallogenic belt and the Cu-polymetalic metallogenic belt in connection with metabasite and deep igneous activity.
     (2) The medium-deep metamorphic rock in Ailaoshan belt is the ore-bearing rock series of Feimo Cu-Mo polymetalic deposit, and it is also the ore-forming material source of the deposit. The deposit is hosted in the medium-deep dark colored metamorphic rock of Ailaoshan belt. The ore-bearing wellrock are diopside marble in Feimo section Along Fm Ailaoshan group. Ailaoshan group composed chiefly of1800-800Ma Paleoproterozoic to Neoproterozoic tectonic microlithon, and its host rock should be formed in1600~1300Ma by the structural deformation and dynamothermal metamorphism,1000~800Ma by Jinning movement. The reconstruction of metamorphic rocks protoliths in Ailaoshan showing that its protoliths was basic volcanic rock and sediment limestone, mudstone, dolomitic sandstone in early proterozoic. Geochemical characteristics showing that the dark colored metamorphite schists, granulites are characterized by obvious macroion lithophile K, Rb enrichment, significantly, depletion of HFSE Nb, Ta, P and Ti. Th and Sr distinctly negative anomaly; chondrite-normalized patterns are showing minor fractionation with flat to strongly HREE-depleted patterns, characterized by obvious fractionation of REE, with not obvious Eu and Ce anomalies; trace elements and rare earth elements suggest that they are having the similar characteristics with basic rock and basic volcanic tuff. Marble are characterized by obvious Rb, U enrichment, significantly depletion of Nb, Ta, P and Ti, strong negative Ba and Sr anomalies; chondrite-normalized patterns showing minor fractionation with flat to strongly HREE-depleted patterns, characterized by obvious fractionation of REE, with obvious Eu anomalies; trace elements and rare earth elements suggest that they are having the similar characteristics with carbonatite like dolostone and limestone.
     (3)Dapijia small intrusions was first researched its rock geochemical characteristics, its lithology are dimicaceous monzonitic granite. The average w (SiO2) is72.42%, A/CNK (molecular ratio)>1.1(1.17on average), the average K2O/Na2O is2.18, the rittman index (σ) is1.76~4.19(3.02on average), the differentiation index (DI) is90~92, ΣREE is between103.34×10-6and247.39×10-6, ΣLREE/ΣHREE is between1.16and7.45, obvious Eu positive anomalies; in the curves of the trace element distribution patterns normalized by the primitive mantle, they are K, Rb, Ba, U-rich and Nb, P, Ti-depletion, have the characterics of crystallization differentiation. Geochemical characteristics of rock-body have similarity with crust-mantle mixed type of magma, high silica, excess aluminum, and calc-alkaline granite. Various diagrams for discrimination of protolith reveal that Dapijia rock-body was collisional orogeny granite, which were formed in collide and post_orogenic extensional structural environment. The ore-forming age of the rock-body is57.72Ma; which is slmilar to the age of large-scale Diagenesis-mineralization in Himalayan Epoch with large-scale inner deforming. Part of the metallogenic materials are supplied by the rock-body, especially Mo.
     (4)Feimo Cu-Mo polymetalic deposit was first researched its Re-Os isotopic data of molybdenite, attained the age of47.81+0.71Ma, which is slmilar to the age of Zhenyuan, Mojiang, Daping gold deposits in Alaoshan Cu-polymetalic(50Ma±on average). Bulge-extrusion in Himalayan movement, large scale tectono-magmatic thermal event by granite intrusion in Ailaoshan, actived by the magmatic explosion, ore-forming fluid and the volatile component, The act of gathering in large numbers of metallogenic element, and their cosmical mineralization interaction in mineralization period, forming the large-middle Cu-Au polymetalic deposit. The time framework of Feimo Cu-Mo polymetalic deposit is that:the original mineralized layers are the basic volcanic rock (the original mineralized layers that contains copper) which were formed approximately in Proterozoic era (1800-1600Ma), and the concentration, reformation by the action of the metamorphism in Mesoproterozoic-Neoproterozoic (1600-900Ma) then the Jinning movement (900-800Ma), and the reforming in Cu-polymetalic deposit by the strike slipping and overthrusting mylonitization in the Indosinian movement (260Ma), the modification of thermal fluid by the granite intrusive in Yanshan movement (160-80Ma), the bulging-extrusion in Himlayan movement (65-1OMa), and the subversive acts of the large scale tectono-magmatic thermal event by granite intrusion bring the new metallogenic material and become the main mineralizing stages of the deposit.
     (5) Research on the geochemical characteristic of the deposit showing that, the isotopic data of elements H, O, S, Pb and rare-earth element, trace element are all reach an agreement that the mineralizing matter of the deposit are mainly from deep, the aquatic medium of the metallogenic fluids is magmatic water meteoric on the supplying. Combine with the tectonic setting of the deposit, the types of the wall rock alteration, the ore-controlling factors and the characteristics of isotope, they are showing that the dark-colored metamorphic series in the host strata of the Feimo Cu-Mo polymetalic deposit provided with part of the metallogenic material, the hypomagma, the continental basements of the convectional circulation and the wallrock by igneous intrusion provided with another part of the metallogenic material. Research on the genetic type of the deposit is showing that the discordogenic fault and the path of magma are conducive to the deep material upwelling; the granite intrusive in Himalayan Epoch is the fixation phase of the deposit, the mineralizing fluid are magmatic hydrothermal by granite intrusive which mixed with heated the ground water; the metallogenic material are composed of the deep material and the materials of the process of layer extracting by the hot water. The genetic type of the deposit belongs to sedimentary-metamorphic-superposition of magmatic hydrothermalism reworked Cu-Mo polymetalic deposit.
     (6) The article summarized the geological and geochemical characteristic of the Feimo Cu-Mo polymetalic deposit and the regularity of ore formation; illustrated the time-space relationship and the genetic relation of the Cu-Mo polymetalic orebody, Ailaoshan metamorphic series and Dapijia granite body; constructed the metallogenic model of Feimo Cu-Mo polymetalic deposit on the genetic type and the time-space distribution pattern of the deposit Cu、Mo、Au、Ag; and summarized the seven critical indicators for deposit, structure, lithology, magmatite, alteration, aeromagnetic survey, physical geography and geochemical anomaly. By the mineral-bearing granite vein, exposed mineralization in granite body, we conclude that the deep level of ore deposit has a good prospect for large scale of porphyry type and contact metasomatic Cu-Mo polymetalic deposit.
引文
[1]涂光炽等.中国层控矿床地球化学(第一卷),科学出版社,1984
    [2]涂光炽等.中国层控矿床地球化学(第三卷),科学出版社,1988
    [3]李朝阳,徐贵忠、胡瑞忠,等.中国铜矿主要类型特征及其成矿远景.北京:地质出版社,2000,1-251
    [4]任治机,刘继顺,罗荣生,等.“三江”南段试验区Cu、Au等矿产区域成矿条件及区域综合找矿模型研究(96-914-01-03-5),国家“九五”科技攻关项目研究报告,2000
    [5]莫宣学,路风香,沈上越等.三江特提斯火山作用与成矿,北京:地质出版社,1993
    [6]陈炳蔚,李永森,曲景川等.三江地区主要大地构造问题及其与成矿的关系,地质出版社,1991
    [7]刘增乾等.三江地区构造岩浆岩带的划分与矿产分布规律,北京:地质出版社,1993
    [8]张玉泉,谢应雯,涂光炽.哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究,地质学报,1987(1):17-25
    [9]黎功举.云南省主要铜矿床类型及其找矿问题,云南地质,1982(1)
    [10]涂光炽等.中国超大型矿床,科学出版社,2000
    [11]罗君烈,杨友华,赵准等.滇西特提斯的演化及主要金属矿床成矿作用,地质出版社,1994
    [12]吴延之,刘继顺等.滇中地区层状铜多金属矿床成矿预测及靶区优选,中南工业大学等,1995
    [13]罗君烈.云南矿床的成矿系列,云南地质,1995,14(4)
    [14]孙克祥,沈远仁,刘国庆,等.滇中元古宙铁铜矿床,北京:中国地质大学出版社,1991.1-169
    [15]任治机,朱智华,赵重顺.云南地体构造与成矿作用,冶金工业出版社,1996
    [16]罗君烈.云南矿床的区域成矿模式,云南地质,1995,14(4)
    [17]秦德先,燕永峰,田毓龙等.云南易门铜矿的地球化学,地质学报,2000,74(1):72-83
    [18]冉崇英等,康滇地轴铜矿床地球化学与矿床层楼结构机理,北京:科学出版社,1993
    [19]沈远仁.大红山铁矿含矿岩系的特征与成因归属,地质与勘探,1975,35(8):37-41
    [20]杨荆舟,罗君烈,赵准.云南矿床区域成矿模式,云南地质(增刊),1998:14-18
    [21]罗君烈.对云南区域成矿的几点认识,云南地质,1984(2)
    [22]朱炳泉,常向阳,邱华宁,孙大中.扬子地块西南缘滇中元古宇特征及赋存超大型矿床的可能性.涂光炽主编.中国超大型矿床.北京:科学出版社,2000,95-117
    [23]Tapponnier P, Peltzer G and Armijo P. On the mechanics of the collision between India and Asia, in:Coward M P and Ries A C. eds. Collision Tectonics. Oxford: Blackwel.L,1986,112-157
    [24]钟大赉,Tapponnier P,吴海威,等.大型走滑断裂-碰撞后陆内变形的重要方式.科学通报,1989,34(7):525-529.
    [25]Leloup P H, Arnaud N, Lacassin R, Kienast J R, Harrison T M, Trinh P T, Replumaz A and Tapponnier P. New constraints on the structure, thermochronology and timing of the Ailao Shan-Red River shear zone, SE Asia.Jour Geophys. Res.,2001,106:6683-6732
    [26]Harrison T M, Leloup P H, Ryerson F J, Tapponnier P, Lacassin R and Chen W. Diachronous initiation of transtension along the Ailao Shan-Red River shear zone, Yunnan and Vietnam, in:Yin A and Harrison T M. eds. The Tectonic Evolution of Asia. New York:Cambridge University Press.1996,208-226
    [27]Ratschbacher L, Frisch W, Chen C and Pan G Cenozoic deformation, rotation, and stress patterns in eastern Tibet and western Sichuan, China, in:Yin A and Harrison T M. eds. The Tectonic Evolution of Asia. New York:Cambridge University Press.1996,227-249
    [28]Gilley L D, Harrison T M, Leloup P H, Ryerson F J, Lovera O M and Wang J H. Directdating of left-lateral deformation along the Red River shear zone, China and Vietnam.Jour. Geophys. Res.,2003,108(B2):Art. No.2127
    [29]Tapponnier P, Lacassin R, Leloup P H, Schrer U, Zhong D, Wu H, Liu X, Ji S, Zhang L S and Zhong J. The Ailao Shan-Red River metamorphic belt:Tertiary left-lateral shear between Indochina and South China.Nature,1990,343:431-437
    [30]Sehrer U, Zhang L S and Tapponnier P. Duration of strike-slip movement in large shear zones:the Red River belt,China.Earth Planet. Sci. Lett.,1994,126:379-397
    [31]Leloup P H, Lacassin R, Tapponnier P, Schrer U, Zhong D, Liu X, Zhang L S, Ji S and Trinh P T. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina.Tectonophysics,1995,251:1-84
    [32]张连生,钟大赉.从红河剪切带走滑运动看东亚大陆新生代构造.地质科学, 1996,31(4):327-341
    [33]Wang P L, Lo C H, Lee T Y, Chung S L, Lan C Y and Nguyen Trong Yem. Thermochronological evidence for themovement of the Ailao Shan-Red River shear zone:A perspective from Vietnam.Geology,1998,26:887-890.
    [34]Zhang L S and Schrer U. Age and origin of magmatism along the Cenozoic RedRiver shear belt. China.Contrib. Mineral. Petrol.,1999,134:67-85.
    [35]Briais A, Patriat P and Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea:Implications for the Tertiary tectonics of Southeast Asia. Jour. Geophys. Res.,1993,98:6299-6328
    [36]Allen C R, Gillepsie A R, Han Y, Sieh K E, ZhangB and Zhu C. Red River and associated faults, Yunnan Province,China:Quaternary geology, slip rate, and seismic hazard.Geol. Soc. Amer. Bull.,1984,95:686-700
    [37]张进江,钟大赉,桑海清,周勇.哀牢山-红河构造带古新世以来多期活动的构造和年代学证据.地质科学,2006,41(2):291-310
    [38]Leloup P H and Kienast J R. High-temperature metamorphism in a major strike-slip shear zone:the Ailao Shan-RedRiver, Peopleps Republic of China.Earth Planet. Sci. Lett.,1993,118:213-234
    [39]Replumaz A, Lacassin R, Tapponnier P and Leloup P H. Large river oddsets and Pliocene-Quaternary dextral slip rate on the Red River fault (Yunnan, China).Jour. Geophys. Res.,2001,106(B1):819-836
    [40]Zhang L S. Age, Duree et Magmatisme Tertiaire du Fleuve Rouge, Yunnan, China [Doctoral Degree Thesis]. Paris:Univ.1995, Paris 7,138
    [41]Sehrer U, Zhang L S and Tapponnier P. Oligocene-Miocene magmatism in the large-scale strike-slip Red River shear zone to the east of the Tibetan Plateau. Abstracts of 30th International Geological Congress,1996,191
    [42]Chung S L, Lee T Y, Lo C H, Wang P L, Chen C Y, Yem N T, Hoa T T and Wu G Y. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone.Geology,1997,25:311-314
    [43]Chung S L, Lo C H, Lee T Y, Zhang Y, Xie Y, Li X, Wang K L and Wang P L. Diachronous up lift of the Tibetan plateau starting 40Myr ago.Nature,1998,394: 769-773
    [44]Wang J H, Yin A, Harrison T M, Grove M, Zhang G H and Xie Y Q. A tectonicmodel for Cenozoic igneous activities in the eastern Indo/Asian collision zone.Earth Planet. Sci. Lett.,2001,188:123-133
    [45]Tapponnier P, Peltzer G and Armijo P. On themechanics of the collision between India and Asia, in:Coward M P and Ries A C. eds. Collision Tectonics. Oxford: Blackwel.l 1986,112-157
    [46]Lee T Y and Lawver L A. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics,1995,251:85-138
    [47]Zhou D, Ru K and Chen H. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region.Tectonophysics,1995,251:161-178.
    [48]陈雪,林进峰.南海中央海盆岩石圈厚度和地壳年代的初步分析.海洋学报,1997,19:71-84
    [49]龚再升.1997.南海北部大陆边缘盆地分析与油气聚集.北京:科学出版社,540
    [50]Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:computer-based reconstructions, model and animations. Journal of Asian Earth Sciences,2002,20:353-431
    [51]Lin A T, Wattsw A B and Hesselbow S P. Cenozoic stratigraphy and subsidence history of the South China Seamargin in the Taiwan region.Basin Research, 2003,15:453-478
    [52]Wang E and Burchfiel B C. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and eastern Himalayan syntaxis.Inter. Geol. Rev.,1997,39:191-219
    [53]季建清,钟大赉,桑海清,张连生.青藏高原东南部新生代挤出块体西边界.科学通报,2000,45:128-134
    [54]季建清.滇西腾冲-盈江-那邦地区岩石学与新生代岩石圈构造演化[博士学位论文].北京:中国科学院地质研究所,1998,120
    [55]刘家军,李志明,张乾,刘玉平,李朝阳,何明勤,桑海清.滇西金满脉状铜矿床的40Ar-39Ar快中子活化年龄.地质科学,2003,38(4):529-531
    [56]黄震,徐晓春,谢巧勤,陈天虎,岳书仓.兰坪盆地水泄铜(钴)矿床石英的40Ar-39Ar快中子活化年龄.地质科学,2005,40(1):125-128
    [57]应汉龙,蔡新平.云南北衙矿区富碱斑岩正长石和白云母的40Ar-39Ar年龄.地质科学,2004,39(1):107-110
    [58]胥颐,刘建华,刘福田,宋海斌,郝天珧,江为为.哀牢山-红河断裂带及其邻区的地壳上地慢结构.中国科学(D辑),2003,33(12):1201-1209
    [59]Peltzer QTapponnier P.Formation and evolution of strik-slip faults,rifts and basins during the India-Asia collision:An experimental approach. J Geophys Res,1988,93(B12):1508-1517
    [60]Tapponnier P, Laeassin R, Leloup P H et al. The Ailao Shan-Red River metamorphic belt:Tertiary left-lateral shear between Indochina and south China. Nature,1990,343 (6257):431-437
    [61]Scharer U, Tapponnier P, Laeassin R, et al. Intraplate teetonies in Asia:A Precise age of Tertiary large scale movement along the Ailao Shan-Red River shear belt, China.Earth Planet SeiLett,1990,97(1-2):65-77
    [62]Harrison T M, Chen W, Leloup P H, et al. An early Miocene transition in deformation regime on the Red River faultzone, Yunnan, and its implication to Indo-Asia tectonics. J Geophys Res,1992,97(B5):7159-7182
    [63]Briais A,Patriat P, Tapponnier P.Updated interpretation of magnetic anomalies and seafloors Preading stages in the South China Sea:Implication for the Tertiary tectonics of SE Asia.J Geophys Res,1993,98(B4):6299-6328
    [64]Leloup P H, Harrison T M, Ryerson F J, et al. Struetural, Petrologieal and thermal evolution of a Tertiary ductile srrike-sliP shear zone, Dian cang Shan, Yunnan. J Geophys Res,1993,98 (B4):6175-6743
    [65]Letoup P H, Laeassin R, Tapponnier P, etal. The A ailao Shan-Red River shear zone (Yunnan,China), Tertiary transform boundary of Indochina. Tectonophysics, 1995,251(1-4):3-84
    [66]云南省地质矿产局.云南省区域地质志.北京:地质出版社,1990,1-728
    [67]李春昱,王荃,刘雪亚,等.亚洲大地构造图及说明书.北京:地图出版社,1982
    [68]黄汲清,陈炳蔚.中国及邻区特提斯海的演化.北京:地质出版社,1987
    [69]陈国达.地洼区——后地台阶段的一种新型活动区.北京:科学出版社,1965
    [70]刘本培,冯庆来,C. CHONGLAKIVIANI,等.滇西古特提斯多岛洋的结构及其南北延伸.地学前缘,2002,9(3):161-171
    [71]李峰,段嘉瑞.滇西地区板块-地体构造.昆明理工大学学报,1999,24(1):29-35
    [72]罗君烈.对云南铜矿区域富集古构造环境德新认识.云南地质,1998,17(1):27-30
    [73]沈上越,魏启荣,程惠兰,莫宣学.云南哀牢山金矿带成因类型探讨.特提斯地质,1997,21:73-84
    [74]魏启荣,沈上越,莫宣学.哀牢山硅质岩特征及其意义.地质科技情报,1998,17(2):29-34
    [75]Irvine T N. A global convection framework:concepts of symmetry, stratification and system in the Earth's dynamic structure. Econ. Geol,1989, (84):2059-2114
    [76]翟裕生,邓军,李晓波.区域成矿学.北京:地质出版社,1999
    [77]高珍权.东天山铜金多金属成矿学及找矿系统工程学:[博士学位论文].长沙:中南大学,2003
    [78]李定谋,曹志敏,何叔欣,等.哀牢山蛇绿混杂岩带金矿床.北京:地质出版社,1999
    [79]王晓鹏,吴根耀,钟大赉.受红河断裂控制的晚第三纪走滑松弛盆地——以漠沙盆地为例.地质科学,2001,36(3):370-379
    [80]裴荣富等.难识别及隐伏大矿、富矿资源潜力的地质评价,地质出版社,2001,140-158
    [81]王义昭,丁俊.云南哀牢山中深变质岩系构造变形特征及演变.特提斯地质,1996,20(20):52-64
    [82]段建中,薛顺荣,钱祥贵.滇西“三江”地区新生代地质构造格局及其演化.云南地质,2001,20(3):243-252
    [83]任纪舜等.中国大地构造及其演化.科学出版社,1985
    [84]艾伦,C.R.,韩源.红河断裂的第四纪研究.地震研究,1989,7(2):38-45
    [85]王义昭,李兴林,段丽兰,黄志勋,崔春龙.三江地区南段大地构造与成矿.北京:地质出版社,2000,1-123
    [86]丁俊.哀牢山北段构造及控岩控矿特征研究.云南省地质科学研究所(内刊),1988,12
    [87]沈上越,魏启荣,程惠兰,莫宣学.“三江”哀牢山-李仙江带火山岩构造岩浆类型.矿物岩石,1998,18(2):18-24
    [88]骆耀南,俞如龙.西南三江地区造山演化过程及成矿时空分布.地球学报,2002,23(5):417-422
    [89]侯增谦,吕庆田,王安建,李晓波,王宗起,王二七.初论陆-陆碰撞与成矿作用—以青藏高原造山带为例.矿床地质,2003,22(4):319-333
    [90]李兴振,刘文均,王义昭,等.西南三江地区特提斯构造演化与成矿(总论)北京:地质出版社,1999,1-276
    [91]潘桂棠,陈智梁,李兴振,等.东特提斯地质构造形成演化.北京:地质出版社,1997,1-218
    [92]张志斌,曹德斌.滇中楚雄中生代盆地的形成、演化及其与哀牢山造山带的 关系.地球学报,2002,23(2):129-134
    [93]段新华,赵鸿.论哀牢山-藤条河断裂——古板块俯冲带.地质学报,1981,52(4):258-266
    [94]吴海威,张连生,嵇少丞.红河-哀牢山断裂带——喜山期陆内大型左行走滑剪切带.地质科学,1989,1(3):161-168
    [95]张旗,张魁武,李达周.云南新平双沟蛇绿岩的初步研究.岩石学报,1988,14(2):37-48
    [96]周德进,周云生,张旗,等.滇西墨江西部石炭、二叠纪火山岩.地质科学,1992,3:249-289
    [97]张进江,钟大赉,周勇.东南亚及哀牢山红河构造带构造演化的讨论.地质科学,1999,45(4):337-344
    [98]周文戈,谢鸿森,赵志丹,等.1998,哀牢山变质带元江-墨江剖面岩石德纵波速度特征及其地质意义.地球物理学报,4(增刊):48-54
    [99]李德威.青藏高原及邻区三阶段构造演化与成矿演化.地球科学,2008,33(6):723-742
    [100]李兴振,江新胜,孙志明,沈敢富,杜德勋.西南三江地区碰撞造山过程.北京:地质出版社,2002,148-207
    [101]张志斌,刘发刚,包佳凤.哀牢山造山带构造演化.云南地质,2005,24(2):137-141
    [102]魏启荣,沈上越,禹华珍.哀牢山蛇绿岩带两种玄武岩的成因探讨.特提斯地质,1999,23(23):39-45
    [103]刘俊来,宋志杰,曹淑云,等.印度欧亚侧向碰撞带构造-岩浆演化的动力学背景与过程——以藏东三江地区构造演化为例.岩石学报,2006,22(4):775-786.
    [104]廖宗廷,陈跃昆,魏志红,李明辉.滇西晚古生代以来的构造演化.同济大学学报,2003,31(9):1029-1033
    [105]王安建,曹殿华,管烨,刘俊来,李文昌.西南三江成矿带中南段金属矿床成矿规律与若干问题探讨.地质学报,2009,83(10):1365-1375
    [106]Zhou M F, Malpas J, Song X Y, Robinson P T, Sun M, Kennedy A K, Lesher, C M, Keays R R. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters,2002,196:113-122
    [107]Luo Z Y, Xu Y G, He B, Huang X L, Shi Y R. A-type granite and syenite intrusions in Emeishan large igneous provinces:product of the Emeishan plume. International Conference on Continental Volcanism IAVCEI 2006 Abstracts& Program,2006,63
    [108]Shellnutt J G, Zhou M F. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China:their relationship to the Emeishan mantle plume.Chemical Geology,2007,243:286-316
    [109]He B, Xu Y G, Huang X L, Luo Z Y, Shi Y R, Yang Q J, Yu S Y. Age and duration of the Emeishan flood volcanism, SWChina:geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section.Earth and Planetary Science Letters,2007,255:306-323.
    [110]石贵勇,孙晓明,王生伟,熊德信,屈文俊,杜安道.云南白马寨铜镍硫化物矿床Re-Os同位素定年及其地质意义.岩石学报,2006,22(10):2451-2456
    [111]Jian P, Liu D Y, Kroner A, Zhang Q, Wang Y Z, Sun X M, Zhang W. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II):Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province.Lithos, in press,2009
    [112]毛景文,胡瑞忠,陈毓川,王义天,等.大规模成矿作用与大型矿集区.北京:地质出版社,2006
    [113]郭利果,刘玉平,徐伟,张兴春,秦克章,李铁胜,石玉若.SHRIMP锆石年代学对西藏玉龙斑岩铜矿成矿年龄的制约.岩石学报,2006,22(4):1009-1016
    [114]Hou Z Q, Ma H W, Khin Z, Zhang Y Q, Wang M J. The Himalayan Yulong porphyry copper belt:produced by large-scale strike-slip faulting at Eastern Tibet.Economic Geology,2003, (98):125-145
    [115]曾普胜,侯增谦,高永峰,杜安道.印度-亚洲碰撞带东段喜马拉雅期铜-钼-金矿床Re-Os年龄及成矿作用.地质论评,2006,52(1):72-84
    [116]梁华英,谢应雯,张玉泉,Ian Campbell.富钾碱性岩体形成演化对铜矿成矿制约——以马厂箐铜矿为例.自然科学进展,2004,14(1):116-120
    [117]王登红,屈文俊,李志伟,应汉龙,陈毓川.金沙江—红河成矿带斑岩铜钼矿的成矿集中期:Re-Os同位素定年.中国科学(D辑),2004,34(4):345-349
    [118]刘增乾,李兴振,叶庆同,等.三江地区构造岩浆带的划分与矿产分布规律.北京:地质出版社,1993
    [119]邹日,朱炳泉,孙大中,常向阳.红河成矿带壳幔演化与成矿作用的年代学 研究.地球化学,1997,26(2):46-56
    [120]翟明国,从柏林,乔广生,等.中国滇西南造山带变质岩的Sm-Nd和Rb-Sr同位素年代学.岩石学报,1 990,6(4):1-11
    [121]常向阳,朱炳泉,邹日,孙大中.金平龙脖河铜矿区变钠质火山岩系地球化学研究:Ⅱ.同位素特征与年代学.地球化学,1998,27(4):361-366
    [122]朱炳泉,常向阳,邱华宁,王江海,邓尚贤.云南前寒武纪基底形成与变质时代及其成矿作用年代学研究.前寒武纪研究进展,2001,24(2):75-82
    [123]方维宣,胡瑞忠,谢桂清,苏文超.云南哀牢山地区构造岩石地层单元及其构造演化.大地构造与成矿学,2002,26(1):28-36.
    [124]Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders A D and Norry M J. Magmatism in the ocean basins. London:Geol Soc Spec Publ, 1989,42:313-345
    [125]Taylor S R., and McLennan S M. The continental crust:Its composition and evolution. Blackwell, Oxford Press,1985,312
    [126]王义昭,李兴林,段丽兰,黄志勋,崔春龙.三江地区南段大地构造与成矿.北京:地质出版社,2000
    [127]莫宣学,路凤香,沈上越,朱勤文,侯增谦,杨开辉.三江特提斯火山作用与成矿.北京:地质出版社,1993
    [128]肖庆辉,邓晋福,马大铨,洪大卫,莫宣学,卢欣祥,汪雄武.花岗岩研究思维与方法.北京:地质出版社,2002
    [129]黎彤,倪守斌.中国大陆岩石圈的化学元素丰度.地质与勘探,1997,6(1):13-27
    [130]李昌年.火成岩微量元素地球化学.武汉:中国地质大学出版社,1992,12-95
    [131]Boynton W V. Cosmochemistry of the rare earth elements:meteoraie studies. Hederson P. Rare Earth Element Geochemistry. Amster-adam:Elsevier Science, 1984,63-109
    [132]Wilson M.Igneous Petrogenesis:A Globe Tectonic Approach. London:Unwin Hyman,1989
    [133]Anderson P L.Chemical composition of the mantle. Geophys.Res.,1983,88: 41-52
    [134]Chappell B W, White A J R.Two constrasting granite type. Pacific Geologe, 1974,8:173-175
    [135]Chappell B W, White A J R, Wyborn D.The importance of residual source material (retite) in granite petrogenesis.Journal of Petrology,1987,28:1112-1136
    [136]孟良义.花岗岩与成矿.北京:科学出版社,1993:9-23
    [137]White A J R, Chappell B W. Granitoid types and their distribution in the Lacklan foldbelt, southeast Australia. Mem Geol Soc Am,1983,159:21-34
    [138]Maniar P D, Piccoli P M. Tectonic discrimination of granitoids. Geol Soc Am Bull,1989,101:635-643
    [139]Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granite rock. J Petrol,1984,25:956-983
    [140]Batchelor R A, Bowden P. Petrogenitic interpretation of granitiod rock series using multication parameters.Chem Geol,1985,48:43-55
    [141]Sylvester P J. Post-collisional strongly peraluminous granites. Lithos,1998, 45:29-44
    [142]涂绍雄,汪雄武.20世纪90年代国外花岗岩类研究的某些重大进展.岩石矿物学杂志,2002,21(2):107-118
    [143]Pitcher W S.Granite type and tectonic environment. Hsuk. Mountain Building Processes. London:Academic Press,1983:19-40
    [144]Barbarin B. Granitoids:main petrogenetic classifications in relation to origin and tectonic setting[J]. Geol J,1990,25:227-238
    [145]张彩华,刘继顺,刘德利,杨松.滇西南澜沧江带老毛村小岩体的地质地球化学特征、形成时代与构造环境.矿物学报,2006,26(3)317-324
    [146]罗君烈,杨友华,赵准,陈吉琛,杨荆舟.滇西特提斯的演化及主要金属矿床成矿作用.北京:地质出版社,1994
    [147]刘继顺,吴自成,董新,刘文恒.哀牢山带大皮甲岩体地质地球化学特征及形成构造环境.中国有色金属学报,2012,22(3)660-668
    [148]张进江,钟大赉,季健清,丁林,桑海清.东喜马拉雅构造结大陆碰撞以来构造年代学框架及其与哀牢山-红河构造带的对比.矿物岩石地球化学通报,2001,20(4):243-244
    [149]Zhang B, Zhang J J, Zhong D L, et al. Strain and kinematic vorticity analysis:An indicator for sinistral transpressional strain-partitioning along the Lancangjiang shear zone, western Yunnan, China. Science in China Series D:Earth Sciences,2009,52(5):602-618
    [150]祝向平.云南哈播斑岩型铜(-铝-金)矿床地质特征与成矿作用研究:[博士学位论文].北京:中国地质大学,2010
    [151]王义文.金矿床定年方法新进展及铅同位素的定年意义.黄金科学技术,1994,2(4):15-23
    [152]刘秉光,胡瑞忠,毕献武,丁奎首,汪道京.川滇西三江地区Cu、Au、Ag、Ge及多金属成矿远景区.涂光炽主编.中国超大型矿床.北京:科学出版社,2000,348-371
    [153]ZHU Bingquan. Three-component mixingand foursystem recycling models for explaining Nd-Sr-Pb isotopic correlations of suboceanic and subcontinental mantles. Science in china,1990,33:757-768
    [154]杜安道,何红蓼,殷宁万.辉钼矿的铼-锇同位素地质年龄测定方法研究.地质学报,1994,68(4):339-347
    [155]杜安道,赵敦敏,王淑贤.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J].岩矿测试,2001,20(4):247-252
    [156]Du Andao, He Hongliao, Yin Ningwan, et al. A study of the rheniumosmium geochronometry of molybdenites. Acta geologica sinica,1995,8:171-181
    [157]Shirey S.B., Walker R. J. Carius tube digestion for low-blank rhenium-osmium analysis, Anal. Chem.,1995,67:2136-2141
    [158]屈文俊,杜安道.电感耦合等离子体质谱测定辉钼矿中Re> Os含量时的质量分馏效应的校正.质谱学报,2004,25(5):181-182
    [159]屈文俊,杜安道.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄.岩矿测试,2003,22(4):254-257
    [160]M. E. Wieser.Atomic weights of the elements 2005 (iupac technical report), (2006),Pure Appl. Chem.,Vol.78,No.11,2051-2066
    [161]J. K. Bohlkea, J. R. de Laeter, P. De Bievre, P. De Bievre, H. S. Peiserb, K. J. R. Rosman, P. D. P. Taylor.Isotopic Compositions of the Elements,2001, J. Phys. Chem. Ref. Data, Vol.34, No.1,2005,57-67
    [162]张志兰,张树发,袁海华等.云南墨江金厂金矿的同位素地质特征及成因探讨[J].成都地质学院学报,1987,14(4):29-40
    [163]唐尚鹑,李经典,何叔欣.哀牢山北段金矿带成矿规律初探.云南地质,1991,(1):44-69
    [164]李元.墨江金矿床的成矿物质来源探讨.云南地质,1992,(2):130-143
    [165]韩润生,金世昌,雷丽.云南元阳大坪改造型金矿床的成矿热液系统地球化学.矿物学报,1997,17(3):337-344
    [166]沈远仁.大红山铁矿含矿岩系的特征与成因归属.地质与勘探,1975,35(8),37-41
    [167]杨金富,刘继顺.云南老新街铜矿床地质特征及找矿标志.湖南矿物岩石地球化学论丛,1999,85-89
    [168]崔银亮,秦德先,陈耀光.云南省龙脖河铜矿区火山岩地质及岩石化学特征研究.矿产与地质,2004,18(6),532-536
    [169]何明友.云南老王寨金矿含矿流体来源及其特征研究.矿物岩石地球化学通报,1996,(1),36-39
    [170]邹日,朱炳泉,孙大中,常向阳.红河成矿带壳慢演化与成矿作用的年代学研究.地球化学,1997,26(2):46-56
    [171]毛景文,Holly Stein,杜安道,周涛发,梅燕雄,李永峰,臧文栓,李进文.长江中下游地区铜金(钼)矿Re-Os年龄精测及其对成矿作用的指示.地质学报,2004,78(1):121-131
    [172]李永峰,王春秋,白凤军,宋艳.东秦岭钼矿Re-Os同位素年龄及其成矿动力学背景.矿产与地质,2004,18(6):571-578
    [173]吴自成,刘继顺,舒国文,王伟,马慧英.南岭燕山期构造-岩浆热事件与锡田锡、钨成矿.地质找矿论丛,2010,25(3)201-205
    [174]费光春,温春齐,周雄,吴鹏宇,温泉.西藏洞中拉铅锌矿床石英激光探针40Ar-39Ar定年及地质意义.矿物岩石,2010,30(3)38-43
    [175]赵振华.微量元素地球化学原理.北京:科学出版社,1997
    [176]沈渭洲.稳定同位素地质.北京:原子能出版社,1987,1-425
    [177]Ohmoto H and Rye R O. Isotopes of surfer and carbon. In:Geochemistry of hydrothermal ore deposits. John Wiley and sons, New York,1979.509-567
    [178]李嘉林.地球化学导论.兰州:兰州大学出版社,1988,123-134
    [179]Taylor H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposit. Econ. Geol,1974,69:843-883
    [180]Doe B R. The application of the lead isotopes to the problems of ore genesis and prospect evolution:A review. Econ. Geol.,1974,69:757-776
    [181]朱炳泉.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化.北京:科学出版社,1998
    [182]鄢明才,迟清华,顾铁新,等.中国火成岩化学元素的丰度与分布.地球化学,1996,25(5):409-424
    [183]Deines P. Sulfids inclusion chemistry and carbon isotopes of Africa diamonds. Geochimica et Cosmochimica Acta,1995,59:3173-3188
    [184]Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol.,1972,67:551-578
    [185]Ohmoto H. Stable isitope geochemistry of ore deposits. Rev.Mner.,1986,16: 491-559
    [186]Pineau F and Methez E A. Carbon isotopes in xenoliths from Hualalai volcano, Hawaii, and the generation of isotopic variability. Geochimica et Cosmochimica Acta,1990,54:2117-2127
    [187]Klemm L, Pettke T, Heinrich C A, Campos E. Hydrothermal evolution of the El Teniente deposit (Chile):porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Economic Geology,2007,102:1021-1045
    [188]Redmond P B, Einaudi M T, Inan E E, et al. Copper deposition by fluid cooling in intrusion-centered systems:new insights from the Bingham porphyry ore deposit, Utah. Geology,2004,32:217-220
    [189]Landtwing M R, Pettke T, Halter W E, et al. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids:The Bingham porphyry: Earth and Planetary Science Letters,2005,235:229-243
    [190]Ulrich T, Giinther D, Heinrich C A.2001. The Evolution of a Porphyry Cu-Au Deposit, Based on LA-ICP-MS Analysis of Fluid Inclusions:Bajo de la Alumbrera, Argentina. Economic Geology,97:1889-1920.
    [191]Leloup P H, Arnaud N, Lacassin R, et al.2001. New constraints on the structure, thermochronology and timing of the Ailao Shan-Red River shear zone. Journal of Geophysical Research,106:6683-6732.
    [192]Heinrich A C.2007. Fluid-fluid interactions in magmatic-hydrothermal ore formation. Reviews in Mineralogy and Geochemistry,65:363-387
    [193]Bodnar R J. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits:Mineralogical Association of Canada, Short Course 1995,23:139-152
    [194]Halter W E and Heinrich C A. Magma evolution and the formation of porphyry Cu-Au ore fluids:evidence from silicate and sulfide melt inclusions. Mineralium Deposita,2005,39:845-863
    [195]Cline J S and Bodnar R J. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt. Journal of Geophysical Research-Solid Earth and Planets,1991,96 (B5):8113-8126
    [196]Burnham C W. Magmas and hydrothermal fluids. In:Barnes H L ed. Geochemistry of hydrothermal ore deposits,2nd edition. Wiley-Interscience, New York,1979,71-137
    [197]Zhang L S and Sch rer U. Age and origin of magmatism along the Cenozoic Red River shear belt, China. Contributions to Mineralogy and Petrology, 1999,134:67-83
    [198]张彩华.澜沧江火山弧云县段铜矿床地质特征、成矿模式与找矿预测:[博士学位论文].长沙:中南大学,2007
    [199]Crerar D A, Wood S A, Brantley S, et al. Chemical controls on solubility of ore-forming minerals in hydrothemical solution. CAN. Miner,1985, (23):333-352
    [200]Kudrin A V, Varyash L N, Pashkov Y N, et al. The geochemical behaviour of copper and molebde-num in ore-forming processes. Geology and Metallogeny of Copper Deposit. Heidelberg:Spring-Verlag,1996,209-215
    [201]Hofstra A. H., Ixventhal J. S., Northrop H. R., et al. Genesis of sediment-hosted disseminated-gold deposits by fluid mixing and sulfidizatio: Chemical-reaction-path modeling of ore-depositional processes documented in the Jerritt Canyon district. Nevada. Geology,1991,19:36-40
    [202]Haynes D. W., Cross K. C., Bills R. T., et al. Olympic Dam ore genesis:A fluid-mixing modal. Econ Geol.1995,90:281-307
    [203]张德会.关于成矿流体地球化学研究的几个问题.地质地球化学,1997,29(3):49-57
    [204]甫为民,颜文,李峰.天然黝铜矿的溶解实验初步研究矿物学报,1994,14(3):279-284
    [205]Candela P A and Holland H D. A mass tranfer model for Copper and molybdenum in magmatic hydrothermal system:the origin of porhyry type ore deposit. Econ Geol,1986,81:1-19
    [206]Kepper H and Willie. Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the system haplogranite-HaO-HCl and hyplogranite-H2O-HF, Contrib Mineral Petrol,1991,109:139-150
    [207]刘德利.澜沧江火山岩带官房铜矿区矿床地球化学与成矿模式:[博士学位论文].长沙:中南大学,2009
    [208]Barnes H L. Geochemistry of hydrothermal ore deposit.2nd edition, John willy, New York,1979
    [209]孙大中,邹日,朱炳泉,等.滇东南金平县龙脖河铜矿区成矿远景评价.中国科学院广州地球化学研究所,1996
    [210]吴自成,刘继顺,张彩华,舒国文,王伟.菲莫铜钼多金属矿床Re-Os同位 素年龄及其成矿环境.矿物岩石,2011,31(4):77-81
    [211]陈毓川,翟裕生.中国矿床成矿模式.北京:地质出版社,1993,1-367
    [212]Foley S,Peccerillo A.Potassic and ultrapotassic magmas and their origin.Lithos, 1992,No.28
    [213]Pitcher W S.Granite type and tectonic environment. Mountain Building Processes,1983
    [214]Monteiro J H, Carcalho D. Submarine explosive volcanism and sulfide deposition in ancient active margins:the case of the Iberian Pyrite Belt,Mar Geol,1986,No.59
    [215]卢作祥,范永香,刘辅臣.成矿规律和成矿预测学.武汉:中国地质大学出版社,1988
    [216]Li Xianhua. Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze craton,SE China.Geochemical Journal,1997,31:323-337
    [217]Li Z X,Li X H Kinny P D,etal. The breakup of RodiniarDid it start with a mantle plume beneath South China?.Earth Planet Scilett,1999,173:171-181
    [218]Giordano T H. Metal transport in ore fluids by organic ligand complexation. In: Pittman, E D and Lewan M D eds., Organic acids in geological processes. Springer-Verlag Berlin Heidelberg.1994,319-354
    [219]Wang Cansheng, Xia Weihua. Granite-related mineralizing fluids and ore-forming metals:A Review.地学前缘,1994,1(3-4):35-44
    [220]陈繁荣.成矿过程流体地球化学模拟及其矿床学意义.地质论评,1995,41(1):42-47
    [221]於崇文,岑况,鲍征宇,等.成矿作用动力学.北京:地质出版社,1998
    [222]张德会,龚庆杰.初论元素富集成矿的地球化学机理-以岩浆热液矿床的形成为例.地质地球化学,2001,29(3):8-14
    [223]Oftedal T. Vesuvianite as a host mineral for boron. Contribution to the mineralogy of Norway.1964 No.29, Norsk Geol. Tidsskr., No.44:377-383
    [224]云南省地质局第二区测大队.1:20万元阳幅、大鹿马幅区域地质调查报告,1975
    [225]西南有色地质勘查局308队.云南省元阳县新街镇菲莫铜矿地质简测说明书,1994
    [226]陈国达,彭省临,戴塔根,刘继顺,等.云南铜-多金属壳体大地构造成矿学.中南大学出版社,2004
    [227]张鸿翔,刘从强,徐志方,黄智龙.扬子板块西缘古元古代俯冲体系的地 球化学证据——有关变基性岩的微量元素地球化学研究.矿物学报,2001,21(2):231-237
    [228]李文,李兆麟,石贵勇.云南哀牢山变质流体特征.岩石学报,2002,16(4):649-654
    [229]Garcia P F. Rio Tinto deposits. London:Institution of Mining and Metallurgy, 1990,17-35
    [230]张贻侠.矿床模型导论.北京:地震出版社,1993,1-228
    [231]葛良胜.成矿模式研究若干问题.黄金地质科技,1994,3:22-27
    [232]Thomas M D and Parkhill M. Gravity and magnetic prospecting for massive sulfided eposits. AtlanticGeology,1996,32(1):87-88
    [233]张均.矿床定位预测的研究现状与趋向.地球科学进展,1997,12(3):242-246
    [234]Cooke D R and Large R R. Practical uses of chemical modeling; defining new exploration in sedimentary basins. A GSO J.Australian Geology and Geophysics, 1998,17(4):259-275
    [235]Zaw K, Huston D L and Large R R. A chemical model of the Devonian remobilization process in the Cambrian volcanic_hosted massive sulfide Rosebery Deposit, western Tasmania. Economic Geology and the Bulletin of the Society of Economic Geologists,1999,94(4):529-546
    [236]翟裕生.走向21世纪的矿床学.矿床地质,2001,20(1):10-14
    [237]朱裕生,梅燕雄.成矿模式研究的几个问题.地球学报,1995,2:182-189
    [238]裴荣富.中国矿床模式.北京:地质出版社,1995,1-357
    [239]周宏春,王瑞江,陈仁义,等.中国矿产资源形势与对策研究.北京:科学出版社,2005,82-95
    [240]何金周.矿床勘探大矿体理论及其实践.北京:地质出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700