用户名: 密码: 验证码:
基于密切锥方法的高超声速乘波机一体化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文借鉴了国外先进的乘波机设计思想,独立编制了一套完整的高超声速密切锥乘波机的机身/推进一体化设计程序,为高超声速空天飞机的一体化设计提供了快捷有效的预设计方法。
     随着马赫数的升高,波阻和摩阻增加,形成升阻比“屏障”,而乘波构形飞行器是克服这一屏障的有效途径。本文在Ma∞=5.0~10.0,激波角β=9°~13°的条件下,利用密切锥方法,构造了由基于楔形流和锥形流的综合流场,生成乘波机外形。这种方法设计的乘波机前体既具有“楔导”乘波体可以为进气道提供均匀流场的优点,又具有“锥导”乘波体的高升阻比、容积效率和气动性能较好的优点。
     前机身和推进系统一体化设计的目的是充分利用前体对高超音速来流进行预压缩,尽可能捕获空气流量以满足发动机需要,并要求在进气道进口截面流场均匀。进气坡面转折形成的激波打在超音速冲压喷气发动机整流罩的唇口上。坡面转折的形状由乘波前体形状和发动机形状共同决定。激波前体“楔导”部分的流场通过三道进气坡面转折激波后,流入超音速冲压喷气发动机。然后经过隔离段和燃烧室,由喷口流出。飞行器的后体通过几何构造的方法完成。
     经过N-S方程数值计算验证,采用上述方法一体化设计的飞行器的流场符合设计要求,并取得良好的升阻比特性。
An airframe/propulsion integrative hypersonic waverider design method based on osculating cones is developed in this dissertation. The design method is proved to be convenient and effective for integrative design of hypersonic vehicle.
     Both the wave drag and the friction drag increase as the Mach number becomes higher for hypersonic flow ; moreover , a technique difficult will appear which is called L/D barrier. The waverider aerodynamic configuration may be a way to overcome this barrier. A osculating cones hypersonic waverider is generated based on the wedge-derived and cone-derived flow field at the conditions of Ma∞=5.0~10.0 , and shock angle differed from 9°to 13°. The osculating cones method can be seen as a generic waverider design method which has the advantage both of wedge-derived waverider and cone-derived waverider, such as symmetrical flow, large L/D, good volumetric efficiency and other aerodynamics performance.
     The purpose of airframe/propulsion integrative design is to compress the hypersonic flow with vehicle forebody, to capture enough air flow to satisfy the combustor, and to provide symmetrical flow to the inlet. The shockwaves from the inlet ramps is cancelled at the cowl lip of the scramjet engine. The shape of the inlet ramps is determined by both the shape of vehicle forebody and scramjet engine. The air coming from the wedge-derived forebody flows though three inlet ramp shockwaves to the scramjet engine, and then flow out though divergence section and combustor. The aftbody is defined purely geometrically.
     The configuration has been numerically verified by solving the N-S equations. It shows that the aim of integrative design is attained and high lift-to-drag ratio is achieved.
引文
[1] 刘英资,国外高超音速飞行器研制动态,飞航导弹, 1998.7
    [2] 朱荣昌,未来战争中的高超音速飞行器,国际航空, 1999.2
    [3] 袁越,高超音速飞行器技术研究的进展,中国航天, 1998.7
    [4] Engelund WC. Hyper-X aerodynamics: The X-43A airframe 一 integrated scramjet propulsion flight-test experiments.Journal of Spacecraft and Rockets.38 (6):801-802. NOV-DEC. 2001.
    [5] Holland SD, Woods WC, Engelund WC.Hyper-X research vehicle experimental aerodynamics test program overview.Journal of Spacecraft and Rockets.38 (6):828-835. NOV-DEC. 2001.
    [6] Cox,C;Neidhoefer,J;Saeks, R;Lendaris, G. Neural control of LoFLYTE. Proceedings of the American adaptive Control Conference, v 4, Jun,25-27, 2001.2001.Sponsored by:American Automatic Control Council: IFAC p 2913-2917, 0743-1619.
    [7] Tulis, Robert W;Hopper, Darrel G;Morton, David C;Shashidhar,Ranganthan N.Review of defense display research programs. Proceedings of SPIE, The International Society for Optical Engineering,v 4362,Apr,17-19, 2001.2001.1, SPIE, The International Society for Optical Engineering p 1-25 0277-786.
    [8] T, A, Heppenheimer.美国国家空天飞机计划 .航空工业出版社 .1989.
    [9] Strohmeyer, D; Eggers, T;Haupt, M.Waverider aerodynamics and preliminary design for two-stage-to-orbit missions, Part 1. Journal of Spacecraft and Rockets .v 35 n 4 Jul-Aug 1998;AIAA p 450-458 0022-4650.
    [10] Heinze, W;Bardenhagen, A.Waverider aerodynamics and preliminary design for two-stage-to-orbit missions, Part 2. Journal of Spacecraft and Rockets. v 35 n 4 Jul-Aug 1998 AIAA p 459-466 0022-4650.
    [11] Nonweiler T R F. Aerodynamic problems of Manned Space vehicles .Journal of the Royal Aeronautical Society,1959,63(9):521-528.
    [12] Newberry, Conrad F. Conceptual design of deck-launched waverider-configured aircraft. Aircraft Design 1 3 1998 Elsevier Sci Ltd p 159-191 1369-8869.
    [13] 鲁隽 .美国 2030 轰炸机设计方案研究 .国际航空 .1999.12
    [14] 王卓,钱翼稷 .乘波机外形设计 .北京航空航天大学学报 .1999.2.
    [15] 张堃元,余少志,骆长天 .乘波体与压缩性能试验研究 .空气动力学学报.1999.1.
    [16] Maikapqr, G, I.Bodies Formed by the Stream Surfaces of Conical F1ow. MekhanikaZhidkostii Gaza, Vol.1, No.1 1966, pp.126, 127.
    [17] Sobieczky H.Hypersonic waverider design from given shock waves. Anderson J D, ed.Proceedings of the first International Hypersonic Waverider Symposium.Maryland.University of Maryland, 1990.
    [18] S obieczky H, Zores B, Wang Z, et al.High speed flow design using osculating axisymmetric flows.He J J, ed.Proceedings of the third Pacific International Conference on Aerospace Science and Xi'an: Shanxi Science and Technology Publishing House, 1997,182-187.
    [19] Rasmussen M. L. Waverider Configurations Derived from Inclined Circular and Elliptic Cones. Journal of Spacecraft and Rockets, Vol.17,No.6, 1980, pp.537-545.
    [20] Yu.P.Goonko, I.I.Mazhul and G.N. Markelov. Convergent-Flow-Derived Waveriders, Journal of Aircraft, Vol.37, No.4, July August 2000.
    [21] Cole,J,D;Zien,T.F.A Class of Three-Dimensional Optimimum Hypersonic Wings .AIAA Journal, 1969, 7(2):264-261.
    [22] B.S. Kim; M .L. Rasmussen; M.C. Jischke. Optimization of Waverider Configurations Generated from Axisymmetric Conical Flows. AIAA-82-1299.1982.
    [23] Bowcutt,K,G;erson,J,D,Jr.Viscous Optimized Hypersonic Waveriders. AIAA-87-0272. 1987.
    [24] Corda, S;Anderson, J, D, Jr.Viscous Optimized Hypersonic Waveriders Designed form Axisymmetric Flowfields.AIAA-88-0369 1988.
    [25] Naruhsia Takashima and Mark J.Lewis.Navier 一 Stokes Computation of a Viscous Optimized Waverider.Journal of Spacecraft and Rockets.Vol.31,No.3, May-June 1994
    [26] Mary Kae L.0’Nei 11 and Mark J.Lewis. Optimized Scramjet Integration on a Waverider.Journal of Aircraft.Vol.29, No.6. Nov-Dec .1992.
    [27] X.He and M.L. Rasmussen. Computational Analysis of Off-design Waveriders. Journal of Aircraft.Vol.31, No.2.March-April 1994
    [28] Yijian Shi, Bor-jang Tsai and John B. Miles. Cone-derived Waverider Flowfiled Simulation Including Turbulence and Off Design Conditions. Journal of Spacecraft and Rockets.Vol.33, No. 2, March-April 1996
    [29] Naruhisa Takashima and Mark J.Lewis. Optimization of Waverider-Based Hypersonic Cruise Vehicles with Off-Design Considerrations. Journal of Aircraft.Vol.36, No.1, January-February 1999.
    [30] O’ Brien TF, Lewis MJ. Rapid transonic aerodynamic prediction for hypersonic lifting bodies. JOURNAL OF AIRURAFI .39(6): 1003-1013 NOV-DEC 2002.
    [31] Starkey RP, Lewis MJ. Analytical off-design lift-to-drag-ratio analysis for hypersonic waveriders,Journal of Spacecraft and Rockets. 37(5): 684-691 SEP-OCT 2000.
    [32] Miyagawa,T. Ohta,T. and Matsuzaki,R. Experimental studieson several waverider configurations. Transactions of the Japan Society for Aeronautical and Space Sciences v 39 n 126 Feb 1997 Japan Soc for Aeronautical & Space Sciences p416-427 0549-3811.
    [33] Gillum, Michael Joseph and Lewis, Mark J. Experimental results on a Mach 14 waverider with blunt leading edges journal Aircraft v 34 n 3 May-Jun 1997 AIAA p 296-303 0021-8669.
    [34] 钱翼稷 . 超音速轴对称有旋流特征线法的计算程序 . 北京航空航天大学学报. 1996. 04.
    [35] H.索别芷基著,钱翼稷译 . 高超音速运输机设计的新概念,国防工业出版社.2001.
    [36] Nonweiler T R F. Delta wing shapes amenable to exact shock-wave theory. J of the Royal Aeronautical Society 1963, 67:39-40
    [37] Venn J Flower J W. Shock patterns for simple caret wings.J of the Royal Aeronautical Society, 1970, 74: 339-348
    [38] Nardo C T. Aerodynamic characteristics of two-dimensional waverider configurations. AIAA J, 1972, 10: 1258-1261
    [39] Rasmussen ML, Jischke M C, Daniel D C. Experimental forces and moments on Cone-derived waveriders for M∞=3 to 5. J of Spacecraft and Rockets, 1982, 19(6): 592-598
    [40] 黄志澄 .高超声速飞行器空气动力学 .国防工业出版社 .1995.
    [41] O'Neill, M. K. and Lewis, M. J., "Design Tradeoffs on Scramjet Engine Integrated Hypersonic waverider Vehicle," Journal of Aircraft, Vol.30, No.6, June 1993, pp. 943-952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700