用户名: 密码: 验证码:
跨大气层飞行器的力热环境分析与飞行规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于乘波构型优化设计了跨大气层飞行器的基本气动外形,分析了其气动力和气动热特性,建立了跨大气层飞行的三自由度飞行动力学模型并进行了弹道仿真,采用提出的分段优化法、改进的极大值原理进行了最大射程弹道优化设计,开展了跨大气层飞行器的力热环境分析与飞行规划研究。主要研究内容和所得结论如下:
     从多个角度开展了跨大气层飞行器的气动布局选型研究,得出乘波体构型是其理想气动布局。建立了乘波体气动布局设计模型,改进了基于NSGA-II的多目标遗传算法,利用该改进遗传算法对乘波体进行了优化设计,得到升阻比和容积效率综合性能较为理想的飞行器基本外形。利用CFD手段,分析了该设计基本外形的流场特性,计算和拟合了该飞行器的气动参数。设计了一个基于该外形的气动力风洞实验,实验得到的气动数据与CFD计算结果相比,在小攻角范围二者的升阻比基本是一致的。
     建立了基于乘波构型的气动热计算模型,用数值模拟法与该气动热工程估算方法进行了对比研究,结果表明该方法是可行的。结合跨大气层飞行弹道,基于该气动热计算模型开展了跨大气层飞行全弹道的力热环境分析,所得结果对跨大气层飞行器的气动防热和弹道的综合优化设计具有重要的参考价值。
     建立了跨大气层飞行器三自由度的飞行动力学模型,以最大升阻比飞行弹道为基准弹道,进行了弹道仿真。分析了关机点参数和气动参数对弹道参数的影响规律,探索了不同控制方式下跨大气层飞行的弹道特性,与惯性弹道进行了对比研究,得知跨大气层飞行弹道在飞行性能和突防性能方面具有得天独厚的优势。从飞行力学原理、能量解析、工程实现等角度综合分析了无动力跨大气层飞行的可行性。所得结论对跳跃飞行能否成为又一重要机动突防手段提供了参考依据。
     通过对跃滑弹道的分段研究,提出了一种适于跃滑弹道最佳航迹优化的新方法——分段优化法。该方法不仅只要最佳程序攻角容差设置得足够小,优化时间取得足够短,迭代次数进行得足够多,就一定能够得到真正物理意义上的射程最大弹道,而且可以避免应用极大值原理优化时所碰到的初值敏感问题,也不会出现极大值原理优化经常出现的局部最优解现象。
     建立了极大值原理在三自由度高超声速跃滑弹道优化中应用的数学模型,推导了考虑地球旋转和扁率影响的三自由度状态方程右函数的偏导数。本文应用遗传算法和单纯形下山法的组合方法解决了极大值原理中的初值灵敏度大问题;同时去除终端自由的约束条件,转而直接对优化目标进行优化,成功解决了需同时满足六个终端条件的问题。优化方法的改进进一步提高了极大值原理的实用价值,拓宽了其应用范围。
     通过对各种跨大气层飞行控制方式的对比研究和射程最大弹道的优化,得出了射程最大的最佳控制方式是最大升阻比滑翔飞行的结论,并采用灵敏度分析方法对其进行了验证。提出了最大升阻比滑翔飞行的边界条件,使用弹道仿真、理论解析两种方法进行了证明,该结论对跳跃滑翔式跨大气层飞行或其他机动飞行的弹道设计具有重要的参考价值。
     基于跨大气层飞行器的受力、受热和射程进行了多目标弹道优化设计,在力热环境分析和多目标弹道优化设计的基础上,根据跨大气层飞行的特点,展开了飞行走廊边界约束条件的分析,并确定出飞行走廊。探讨了关机点参数对飞行走廊约束条件各参考量的影响,给出了飞行走廊内的关机点参数值域。最后开展了基于各约束边界条件下跨大气层飞行弹道的飞行规划研究。结果表明,文中所用飞行规划方法对跨大气层飞行弹道具有较好的优化设计效果,该方法对其它飞行器的弹道优化设计也具有一定借鉴意义。
     本文的研究成果对跨大气层飞行器的总体设计以及飞行规划具有重要的参考价值,所提出的方法及分析结论将为跨大气层飞行器气动防热和弹道综合优化设计提供分析与论证方法。
A basic aerodynamic shape for trans-atmospheric vehicle was optimized based on waverider configuration, the three-dimensional flight dynamics model was constructed for trajectory simulation, maximum-range trajectory was optimized with the new put forwarded subsection optimization method and the improved maximum principle in this dissertation, the force and heat environment of trans-atmospheric vehicle was analyzed, flight planning was researched. The main work and achievements are summarized as follows:
     Trans-atmospheric vehicle configuration was studied from many aspects and waverider was proved to be the idealist one. The design model of waverider configuration was founded, which was optimized with the improved multi-object optimum genetic algorithm based on NSGA-II, and relatively better basic shape for trans-atmospheric vehicle with high volumetric efficiency and lift to drag ratio was obtained. Flow Fields of the aircraft was analyzed with CFD method, the aerodynamic coefficient was calculated and curve fitted. A wind tunnel experiment was designed and the lift to drag ratio agreed well with CFD results in small region angle of attack.
     The aerodynamic heat model was established, which was verified by CFD result. Combined with the trajectory, the force and heat environment during the trans-atmospheric flight was studied and the conclusions had instructed significance for aerodynamic heat-resist and trajectory synthesized optimization.
     The three-dimensional flight dynamics model was set up and the simulation that based on the maximum lift to drag ratio was chosed as the basic trajectory. The change law of trajectory parameters with the parameters of the shut-down point and aerodynamic coefficient were analyzed; the characteristic of several types of skipping and gliding trans-atmospheric trajectory was investigated, which showed that the trans-atmospheric trajectory has the advantage in penetration and flight performance comparing with the inertia trajectory. The feasibility of trans-atmospheric flight was confirmed by the following three aspects: the theory of flight dynamic, energy analytic and engineering realization. It shows that the trans-atmospheric flight could be another maneuver penetration means and can be referenced in future new type of weapon equipment.
     The subsection optimization method was put forward for trans-atmospheric flight trajectory optimization. The method did not have the sensitivity problem of initial value, and its optimum result approaches to the real maximum range trajectory infinitely as long as the subsection step is small enough and the iterative number is big enough. It is an availability method for long-range trajectory optimization both in theory and in practicality effect.
     The maximum principle model applied to three-dimensional trans-atmospheric trajectory optimization was established, the partial derivative of the right function was deducted considering earth circumrotate and flat ratio. The key point applying the maximum principle is the solution of two-point boundary value problem. Because of the long integral time corresponding to the long distance hypersonic skipping-gliding flight, the maximum principle is sensitive to initial values of state variables. Moreover, the traditional maximum principle needs to satisfy six rigorous terminal constraints simultaneously to simulate three-dimensional trajectory. The way combining the genetic algorithm and the downhill simplex method can solve the above two questions. The improved method gives more practicality of the maximum principle in optimum control field.
     Comparing and researching many kinds of flight scheme of maximum range in skipping-gliding trajectory, it is found that gliding at maximum lift to drag ratio is the best one, and it is certified by sensitivity analysis methods. Then the boundary condition of gliding at maximum lift to drag ratio was proposed, proved with trajectory simulation and theory analytical methods. The conclusion has consequence in optimum design of skipping-gliding flight or other maneuver trajectory.
     The trajectory was optimized with multi-object including force, heat and range. Based on the trajectory environment analysis and multi-object optimization, the restriction boundary of flight corridor was studied and determined. The shut-down parameters’effect to the flight corridor was analyzed and its numerical region in flight corridor was obtained. Considering all the restriction of flight corridor boundary, the flight planning of trans-atmospheric vehicle was researched.
     The achievements obtained in this dissertation provide an important guidance to integrated design of trans-atmospheric vehicle and flight planning research. The methods and conclusions can provide analysis and demonstrating methods for aerodynamic heat-resist and trajectory synthesized optimization。
引文
[1]郭宣.俄罗斯的阴影——咄咄逼人的美国反导系统[J].现代舰船. 2007. (4)
    [2]许绪堂.深度解析美俄反导末段拦截技术[J].国际瞭望. 2006. (546)
    [3]石江月.海神之盾——美国海基弹道导弹防御系统[J].现代舰船. 2007. (4)
    [4]夏新仁.美国导弹防御系统的现状与发展[J].中国航天. 2007. (3)
    [5]钟华,林聪榕.美国“战区导弹防御系统”与中国国家安全[J].国防科技参考. 2003. (3)
    [6]张巍,王敏,徐世录.美国导弹防御系统的发展动向分析[J].现代防御技术. 2007. 35(3)
    [7]袁俊.弹道导弹预警系统及其发展趋势[J].国防科技. 2007. 33(3)
    [8]许征编译.末段高空区域防御( THAAD)系统研发情况[J].地面防空武器. 2006. (2)
    [9] Russian Nuclear Forces [J]. The Bulletin of the Atomic Scientist 2002. 07~08.
    [10]周义.日新月异的巡航导弹[J].现代军事. 2000. (5)
    [11] U. S. Nuclear Forces [J]. The Bulletin of the Atomic Scientist. 2002. 05~06.
    [12] D A. Multi2Sensor fusion algorithm approanch for BMD interceptor aoolications [J]. AOA357702. 1998.
    [13]冯云松,路远.弹道导弹在红外波段的突防措施研究[J].红外. 2007. 28(3)
    [14] Shinar J. Requirement s for a new guidance law against maneuvering taceical ballistic missiles [R]. N97231922 ,AD-A32894. 1997.
    [15]马骏声.博弈论——机动弹头攻防的核心[J].航天电子对抗. 2006. 22(1):4~6.
    [16] Johannesen J R, Vinh N X. Effect ofMaximum Lift to Drag Ratio on Optimal Aero-assisted Plane Change[C]. Atmospheric Flight Mechanics Conference, 12th,. Snowmass: 1985. 399~407
    [17] Vinh N X, D. M. Ma. Optimal multiple-pass aeroassisted plane change [J]. Acta Astron. 1990. 21(11):749~758.
    [18] X V N, Lu P. Chebyshev minimax problems for skip trajectories [J]. Astron. Sci. 1988. 31(1):179~197.
    [19] Chern J S, Yang C Y, Vinh N X. Deceleration and heating constrained footprint of shuttle vehicles [J]. Acta Astron. 1985. 12(10):819~829.
    [20]钱学森,宋健(序).工程控制论[M].北京:科学出版社. 1980.
    [21]钱学森(原序),钱学森.工程控制论[M].北京:科学出版社. 1958.
    [22] Hsue-sen T. Engineering Cybernetics [M]. New York:McGraw-Hill BookCompany. 1954.
    [23]钱学森.工程控制论(中文版) [M].北京:科学出版社. 1958.
    [24]钱学森.星际航行概论[M].北京:科学出版社. 1963.
    [25] D H. Next arrow test this Summer af ter scoting direct hit [R]. AW &ST. 1997.
    [26]王正青.动能杀伤器技术的发展及应用前景[J].地面防空武器. 2005. (4)
    [27]禾下.美国高超声速技术发展计划[J].现代军事. 2004. (12)
    [28]解发瑜,李刚,徐忠昌.高超声速飞行器概念及发展动态[J].推进技术. 2004. (5)
    [29] Preston H C, Darryll J P. Approximate Performance of Periodic Hypersonic Cruise Trajectories for Global Reach[C]. AIAA 98-1644. 1998.
    [30] Carter P H, D.J.Pines, L.v.Rudd. Advancement and Refinement of HyperSoar Modeling [R]. UCRL-ID-137756. Feb.2000.
    [31] Speyer J L. Periodic Optimal Flight [J]. Journal of Duidance. Control and Dynamics. 1996. Vol.19, No.4:745~753.
    [32] Chuang C H, Morimoto H. Periodic Optimal Cruise for a Hypersonic Vehicle with Constraints [J]. Journal of Spacecraft and Rockets. 1997. 34(2):165~171.
    [33]凌云.“美利坚”轰炸机项目(下)——H0XVIII飞翼轰炸机与“银鸟”空天轰炸机[J].国际瞭望. 2006. (538)
    [34]刘美霞.跳跃的死神——美国“猎鹰”空天轰炸机计划情报[J].国际瞭望. 2007. 558(4)
    [35] Walker S. Force Application and Launch from CONUS (FALCON) Program Contributions to Access to Space[C]. 2003 Core Technologies for Space Systems Conference. Colorado: 2003. 1~17
    [36] George R. The Common Aero Vehicle: Space Delivery System of the Future[C]. AIAA Space Technology Conference and Exposition, Albuquerque. Sept 1999. 1~11
    [37] Pournelle P T. Component Based Simulation of the Space Operations Vehicle and the Common Aero Vehicle [D]. Naval Postgraduate School , United States Navy, Monterey, CA:1999.
    [38]毕士冠.国外超声速巡航导弹发展战略与技术途径讨论[J].飞航导弹. 2007. (1):1~9.
    [39]韩鸿硕,朱华桥.美国国防转型所需航天武器系统的发展近况[J].中国航天. 2006. (5)
    [40]刘晓恩.美俄新一代战略导弹技术分析[J].中国航天. 2005. (5)
    [41] Nonweiler T R F. Aerodynamic problems of Manned Space Vehicles [J]. Journal of the Royal Aeronautical Society. 1959. 69(9):521~528.
    [42] Bowcutt K G. OPTIMIZATION OF HYPERSONIC WAVERIDERSDERIVED FROM CONE FLOWS - INCLUDING VISCOUS EFFECTS [D]. United States -- Maryland:University of Maryland College Park 1986.
    [43] Zhu X-C, Hou Z-Q, Li R-H. Spline-based waverider configuration optimization method [J]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica. 2007. 25 (3):396.
    [44] Cole J D, Zien T F. A Class of Three-Dimensional ptimimum Hypersonic Wings [J]. AIAA Journal. 1969. 7(2):264~271.
    [45] Rasmussen M L. Waverider Configurations Derived from Inclined Circular and Elliptic Cones [J]. Journal of Spacecraft and Rockets 1980. 17 (6):537~545.
    [46] Corda S, Anderson J D. Viscous Optimized Hypersonic Waverider [R]. AIAA 1987-0272. 1987.
    [47] Corda S. Viscous Optimized Hypersonic Waveriders Designed from Flows over Cones and Minimum Drag Bodies [D]. United States -- Maryland:University of Maryland College Park (Ph.D.). 1988.
    [48] Bowcutt K G, Anderson J D. Viscous Optimized Waverider Designed From Ax symmetric Flow Fields [R]. AIAA 88-20369. 1988.
    [49] Sobieczky H. Hypersonic waverider design from given shockwaves[C]. Proceedings of the first International Hypersonic Waverider Symposium. University of Maryland 1990.
    [50] Vanmol D O, Anderson J D J. Heat transfer characteristics of hypersonic waveriders with an emphasis on leading edge effects [R]. AIAA92-2920. 1992.
    [51] Yao X, Liu Y, Lin G. Evolutionary Programming Made Faster [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION. 1999. 3 (2)
    [52] Takashima N, Lewis M J. Powered hypersonic waverider vehicles for optimization with mission-oriented constraints [R]. AIAA95-0846. 1995.
    [53] Takashima N, Lewis M J. Optimized mission-oriented waverider vehicles with base closure [R]. AIAA96-0810. 1996.
    [54] Starkey R P, Lewis M J. Analytical off-design L/D analysis for hypersonic waveriders with planar shocks [R]. AIAA99-3205. 1999.
    [55] Jones K D. A new inverse method for generating high-speed aerodynamic flows with application to waverider design [D]. United States -- Colorado:University of Colorado at Boulder 1993.
    [56] Jones K D, Dougherty F C, Seebass A R, et al. Waverider design for generalized shock geometries [R]. AIAA93-0774. 1993.
    [57] Newberry C F. The conceptual design of deck-launched waverider configured aircraft [R]. AIAA95-6155. 1995.
    [58] Lobbia M, Suzuki K. Design and analysis of payload-optimized waveriders [R]. AIAA2001-1849. 2001.
    [59] Takashima N, Lewis M J. Navier-Stokes computations of a viscous optimized waverider [R]. AIAA92-0305. 1992.
    [60] Tsai B-J, Miles J B, Issac K M. Computation of turbulent flow about cone-derived waverider [R]. AIAA92-2726. 1992.
    [61] Stecklein G O, Hasen G A, Gaitonde D. Numerical solution of inviscid hypersonic flow around a conically-derived waverider [R]. AIAA93-0320. 1993.
    [62] He X, Rasmussen M L. Computational analysis of off-design waveriders [R]. AIAA93-3488. 1993.
    [63] Mundy J A, Hasen G A. A numerical study of conically derived waveriders [R]. AIAA94-0765. 1994.
    [64] Shi Y, Tsai B-J, Miles J B, et al. Cone-derived waverider flowfield simulation including turbulence and off-design conditions [R]. AIAA94-1822. 1994.
    [65] Graves R E, Argrow B M. Aerodynamic performance of an osculating-cones waverider at high altitudes [R]. AIAA2001-2960. 2001.
    [66] Takashima N, Lewis M J. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration [R]. AIAA94-0380. 1994.
    [67] Javaid K, Serghides V, London I C U K. Airframe-propulsion integration methodology for waverider-derived hypersonic cruise aircraft design concepts [R]. AIAA 2004-1201. 2004.
    [68] Lewis M J, Takashima N. Engine/airframe integration for waverider cruise vehicles [R]. AIAA93-0507. 1993.
    [69] Takashima N, Lewis M J. Engine-airframe integration on osculating cone waverider-based vehicle designs [R]. AIAA96-2551. 1996.
    [70] Haney J W, Beaulieu W D. Waverider inlet integration issues [R]. AIAA94-0383. 1994.
    [71] Tarpley C, Lewis M J. Optimization of an engine-integrated waverider with steady state flight constraints [R]. AIAA95-0848. 1995.
    [72] Tarpley C, Lewis M J. Sensitivity of engine-integrated waverider performance to static margin constraint [R]. AIAA95-6142. 1995.
    [73] Starkey R P, Lewis M J. Design of an engine-airframe integrated hypersonic missile within fixed box constraints [R]. AIAA99-0509. 1999.
    [74] Starkey R P, Lewis M J. Aerodynamics of a box constrained waverider missile using multiple scramjets [R]. AIAA99-2378. 1999.
    [75] O'Brien T F, Lewis M J. RBCC engine-airframe integration on an osculating cone waverider vehicle [R]. AIAA2000-3823. 2000.
    [76] O'Brien T F, Lewis M J. Rapid transonic aerodynamic prediction for an RBCC engine-airframe integrated vehicle [R]. AIAA2001-0561. 2001.
    [77] Rudd L v E, Pines D J. Integrated propulsion effects on dynamic stability andcontrol of hypersonic vehicles [R]. AIAA2000-3826. 2000.
    [78] Chauffour M-L, Lewis M. Corrected Waverider Design for Inlet Applications [R]. AIAA 2004-3405. 2004.
    [79] Chauffour M-L, Lewis M. Corrected shock based design for waverider geometries [R]. AIAA 2003-7060. 2003.
    [80] Berry C, Kammeyer M, Larach E, et al. Experiences in fabrication of a waverider model for wind tunnel testing [R]. AIAA93-0510. 1993.
    [81] Gillum M J, Kammeyer M E, Burnett D. Wind tunnel results for a Mach 14 waverider [R]. AIAA94-0384. 1994.
    [82] Gillum M J, Kammeyer M E, Burnett D. Details of a Mach 14 waverider wind tunnel test [R]. AIAA94-2476. 1994.
    [83] Gillum M J, Lewis M J. Analysis of experimental results on a Mach 14 waverider with blunt leading edges [R]. AIAA96-0812. 1996.
    [84] Liu T, Campbell B T, Sullivan J P. Remote surface temperature and heat transfer mapping for a waverider model at Mach 10 using fluorescent paint [R]. AIAA94-2484. 1994.
    [85] Pegg R J, Hahne D E, Cockrell C E, Jr. Low-speed wind tunnel tests of two waverider configuration models [R]. AIAA95-6093. 1995.
    [86] Miyagawa T, Ohta T, Matsuzaki R. Experimental study on cone-derived waveriders at Mach 5.5 [R]. AIAA96-2390. 1996.
    [87] Miller R W, Argrow B M. Subsonic aerodynamics of an osculating cones waverider [R]. AIAA97-0189. 1997.
    [88] Ohta T, Urano A, Miyagawa T, et al. Flow visualization on lower surfaces of waverider configurations at Mach 5.5 [R]. AIAA97-1884. 1997.
    [89] Miller R W, Argrow B M, Center K B, et al. Experimental verification of the osculating cones method for two waverider forebodies at Mach 4 and 6 [R]. AIAA98-0682. 1998.
    [90] Blankson I M, Lewis M, Pap R. Subsonic experiments using the LoFlyte hypersonic waverider vehicle [R]. AIAA98-1550. 1998.
    [91] Cockrell C E, Jr., Huebner L D, Finley D B. Aerodynamic performance and flow-field characteristics of two waverider-derived hypersonic cruise configurations [R]. AIAA95-0736. 1995.
    [92]王发民,沈月阳.高超声速升力体气动力气动热数值计算[J].空气动力学学报. 2001.
    [93]刘嘉,姚文秀,雷麦芳, et al.高超声速飞行器前体压缩性能研究[J].应用数学与力学. 2004. 25(1)
    [94]刘嘉,王发民.乘波前体构型设计与压缩性能研究[J].工程力学. 2003. 20(6)
    [95]耿永兵,刘宏,王发民.飞行高度及设计长度对锥形流乘波体优化的影响[J].宇航学报. 2006. (02)
    [96]耿永兵,刘宏,丁海河, et al.轴对称近似等熵压缩流场的乘波前体优化设计[J].推进技术. 2006. (05)
    [97]耿永兵,刘宏,雷麦芳, et al.高升阻比乘波构型优化设计[J].力学学报. 2006. (04)
    [98]耿永兵,刘宏,姚文秀, et al.锥形流乘波体优化设计研究[J].航空学报. 2006. (01)
    [99]郭迪龙,张杰,康宏琳, et al.火箭增程乘波外形导弹弹道特性研究[J].弹道学报. 2006. (04)
    [100]张杰,王发民.高超声速乘波飞行器气动特性研究(英文) [J].宇航学报. 2007. (01)
    [101]张杰,王发民.高超声速乘波飞行器气动特性研究(英文) [J].宇航学报. 2007(1).
    [102]姚文秀,雷麦芳,杨耀栋.高超升阻乘波飞行器气动实验研究[J].宇航学报. 2002. 23 (6)
    [103]崔凯,杨国伟. 6马赫锥体流场对乘波体性能的影响及规律[J].科学通报. 2006. (24)
    [104]商旭升蔡肖.锥导乘波机的构型设计与性能研究[J].宇航学报. 2005. (02)
    [105]肖洪,商旭升,王新月, et al.吻切锥乘波机的构型设计与性能研究[J].宇航学报. 2004. 25(2):128~130.
    [106]詹浩,孙得川,夏露.滑跃式高超音速巡航飞行器设计初步研究[J].固体火箭技术. 2007. (01)
    [107]车竞,唐硕,何开锋.类乘波体飞行器气动加热的工程计算方法[J].弹道学报. 2006. (04)
    [108]车竞.高超声速飞行器乘波布局优化设计研究[D].陕西西安:西北工业大学(Doctor). 2007.
    [109]彭钧,陆志良,李文正. Ma4.5巡航飞行器乘波体方法优化设计[J].宇航学报. 2004. 25(2)
    [110]彭钧,陆志良,李文正.乘波体气动性能综合优化[J].南京航空航天大学学报. 2007. (03)
    [111]李博,梁德旺.一种基于三维粘性流场的乘波体生成方法[J].空气动力学学报. 2005. (04)
    [112]吉康.基于密切锥方法的高超声速乘波机一体化设计[D].江苏南京:南京航空航天大学(Master). 2007.
    [113]李跃军,阎超.组合前缘乘波体预压缩性能计算研究[J].宇航学报. 2005. (S1)
    [114]张东俊王邓.基于乘波体的高超音速运载器气动布局设计[J].北京航空航天大学学报. 2005. (02)
    [115]张东俊,王延奎,邓学銮.高升阻比乘波体外形设计与气动特性计算研究[J].北京航空航天大学学报. 2004. 25(2):429~433.
    [116]王卓,钱翼稷.乘波机外形设计[J].北京航空航天大学学报. 1999. 25(2)
    [117]乐贵高,马大为,李自勇.椭圆锥乘波体高超声速流场数值计算[J].南京理工大学学报(自然科学版). 2006. (03)
    [118]张陈慧.乘波技术的研究与在弹箭气动外形中的应用[D].江苏南京:南京理工大学(Master). 2006.
    [119]张卫民,陈河梧,李新亚.乘波外形高超声速风洞测力试验研究[J].实验流体力学. 2005. (04)
    [120]许勇,贺旭照,乐嘉陵.幂次率乘波器设计方法及应用[C].第十二届全国激波与激波管学术会议论文集.四川,绵阳: 2004.
    [121]党雷宁.乘波飞行器外形设计与气动特性研究[D].四川绵阳:中国空气动力研究与发展中心(Master). 2007.
    [122]王洪玲,刘洪.乘波飞行器广义参数概念设计[J].上海航天. 2005. (06)
    [123]胡乐天,王洪玲,刘洪.基于参数化设计的乘波飞行器概念设计[J].力学季刊. 2006. (03)
    [124]朱旭程,侯志强,李日华.基于样条曲线的乘波体外形优化方法[J].空气动力学学报. 2007(3).
    [125] Sanger W S. The reference concept of the german hypersonic technology program [R]. AIAA 93-5161. 1993.
    [126]关世义.基于钱学森弹道的新概念飞航导弹[J].飞航导弹. 2003. (1)
    [127] Larry D D, Jason L S. An investigation of the fuel-optimal periodic trajectories of a hypersonic vehicle [J]. 1993. AIAA-93-3753-CP
    [128] Youssef H, Chowdhry R. Hypersonic Skipping Trajectory [J]. AIAA-2003-5498. 2003.
    [129]孙明玮,彭南楠,杨明.导弹最优滑翔弹道的设计及存在的问题[J].飞行力学. 2006. 24(1):26~29.
    [130]阮春荣[美]著,茅振东译.大气中飞行的最优轨迹[[M].北京:宇航出版社. 1987.
    [131] Rudd L v, Pines D J, II P H C. Improved Performance of Sub-Optimal PeriodicHypersonic Flight Trajectories for Long-Range[C]. A98-27979,AIAA 8th International Space Planes and Hypersonics and Technologies Conference. April 27-30, 1998.
    [132] Master G E, Martin J G. OSCILLATORY TRAJECTORIES APPLIED TO NASA’S DF-7 CONFIGURATION [J]. AIAA-99-4931. 1999.
    [133] Allen H J, Eggers A J. A Study of the motion and aerodynamic heating of missiles entering the earth’s atmosphere at high supersonic speeds [R]. TN-4047. 1957.
    [134] R.Chapman D. An approximate analytical method for studying entry into planetary atomospheres [R]. TRR-11. 1959.
    [135] Loh W H T. Dynamics and thermo dynamics of planetaryentry [M]. Englewood Cliffs N J:Prentice-Hall 1963.
    [136] Vinh N X. Hypersonic and planelary entry flight mechanics [M]. Ann Arbor :The University of Michigan Press. 1980.
    [137] Eggers A J, Allen H J, Neice S E. a comparative analysis of the performance of long-range hypervelocity vehicles [R]. TN-4046. 1957.
    [138]郭兴玲,张珩.基于分段常滑翔角的长航时纵向远程滑翔飞行方程近似解[J].宇航学报. 2005. 26(6)
    [139]郭兴玲,张珩.环球滑翔飞行及其地表投影的近似计算方法[J].飞行力学. 2007. 25(1)
    [140]和争春,何开锋,朱国林.过载限制条件下升力体再入大气层弹道优化设计[J].弹道学报. 2007. 19(2)
    [141] Robert W, Mark A, Dave K. Fixed-range optimal trajectories of supersonic aircraft by first-order expansions [J]. 1999. AIAA-99-4069
    [142] A.Marinescu, S.Ilin. Minimum heat input optimal skip entry into Venus atmosphere [J]. 1997. AIAA-97-3664:564~572.
    [143] Nguyen X V, Kuo Z-S. Improved matched asymptotic solutions for three-dimensional atmospheric skip trajectories [J]. 1996. AIAA-96-3596-CP
    [144] Sheu D, Chen Y-M, Chang Y-J. Optimal glide for maximum range [J]. 1998. AIAA-98-4462:771~781.
    [145] Sheu D, Chen Y M, Chern J S. Optimal three-dimensional glide for maximum problem reachable domain [J]. 1999. AIAA 99-4245
    [146]张永军,夏智勋,孙丕忠, et al.跳跃式导弹弹道设计与优化[J].固体火箭技术. 2006. 29(5)
    [147] Istratie V. Optimal skip entry with terminal maximum velocity and heat constraint [R]. AIAA-98-2457. 1998.
    [148] Istratie V. Optimal skip entry into atmosphere [R]. AMA-99-4170. 1999.
    [149] Istratie V. Three-dimensional optimal skip entry with terminal maximum velocity [R]. AIAA 97-3483. 1997.
    [150] Istratie V. Optimal skip entry into atmosphere with minimum heat and constraints [R]. AIAA 2000-3993. 2000.
    [151] Istratie V. Optimal skip entry into atmosphere with minimum heat [R]. AIAA 2003-5395. 2003.
    [152]周浩,陈万春,殷兴良.高超声速飞行器滑行航迹优化[J].北京航空航天大学学报. 2006. 32(5)
    [153]周浩,周韬,陈万眷, et al.高超声速滑翔飞行器引入段弹道优化[J].北京航空航天大学学报. 2006. 27(5)
    [154] Kuchemann D. The Aerodynamic Design of Aircraft [M]. London:Pergamon Press. 1978.
    [155] Wang Z, Qian Y. Waverider configuration design [J]. Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics. 1999. 25 (2):180.
    [156] Shi Y. Off-design waverider flowfield CFD simulation [D]. United States -- Missouri:University of Missouri - Columbia 1995.
    [157] Eggers T, Strohmeyer D, Nickel H, et al. Aerodynamic off-design behavior of integrated waveriders from take-off up to hypersonic flight [R]. AIAA95-6091. 1995.
    [158] Shi Y, Tsai B-J, Miles J B, et al. Cone-derived waverider flowfield simulation including turbulence and off-design conditions [J]. Journal of Spacecraft and Rockets. 1996. 33 (2):185.
    [159] Takashima N, Lewis M J. Optimization of waverider-based hypersonic cruise vehicles with off-design considerations [J]. Journal of Aircraft. 1999. 36 (1):235.
    [160] Starkey R P, Lewis M J. Analytical off-design lift-to-drag-ratio analysis for hypersonic waveriders [J]. Journal of Spacecraft and Rockets. 2000. 37 (5):684.
    [161] He X, Rasmussen M L. Computational analysis of off-design waveriders [J]. Journal of Aircraft. 1994. 31 (2):345.
    [162] Mazhul I I, Rakchimov R D. Hypersonic power-law shaped waveriders in off-design regimes [J]. Journal of Aircraft. 2004. 41 (4):839.
    [163] Long L N. Off-design performance of hypersonic waveriders [J]. Journal of Aircraft. 1990. 27 (7):639.
    [164] Gonzer U, Hoder H, Szodruch J. On the Aerodynamics of Hypersonic Cruise Vehicles at Off-design Conditions [J]. IEEE Technical Papers Presented at the Joint ASME/IEEE/AAR Railroad Conference (Association of American Railroads). 1978.152.
    [165] Rasmussen M L, Jischke M C, Daniel D C. EXPERIMENTAL FORCES ANDMOMENTS ON CONE-DERIVED WAVERIDERS FOR M// infinity equals 3 TO 5 [J]. Journal of Spacecraft and Rockets. 1982. 19 (6):592.
    [166]何烈堂,周伯昭,陈磊.基于乘波构形的跨大气层飞行器气动布局[J].国防科技大学学报. 2007. (4):17~21.
    [167] Rasmussen M L, Broadaway R T. VISCOUS EFFECTS ON THE PERFORMANCE OF CONE-DERIVED WAVERIDERS[C]. Gatlinburg, TN, USA: 1983. 7
    [168] Dicristina V. Three Dimensional Laminar Boundary Transition on a Sharp 8 Degree Cone at Mach 10 [J]. AIAA Journal. 1970. 8 (5):885.
    [169] Takashima N, Lewis M J. Navier-Stokes computation of a viscous optimized waverider [J]. Journal of Spacecraft and Rockets. 1994. 31 (3):383.
    [170]瞿章华,刘伟,曾明, et al.高超声速空气动力学[M].长沙:国防科学技术大学出版社. 2001.
    [171] Peng J, Lu Z, Li W. Upper/lower surface of waverider integrated optimization [J]. Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics. 2007. 39 (3):307.
    [172] Rasmussen M L, Stevens D R. On Waverider Shapes Applied to Aerospace plane Forbody Configurations [R]. AIAA-87-2550. 1987.
    [173] Tsai B-J. Navier-Stokes Simulation for Waverider Including Turbulence, Heat Transfer, and Wakes [D]. University of Missouri Columbia, (Doctor). 1992.
    [174]陈小庆,侯中喜,何烈堂, et al.锥导乘波构型气动性能分析与对比研究[C].第十三届计算流体力学会议.辽宁丹东: 2007.7.
    [175]罗世彬.高超声速飞行器机体/发动机一体化及总体多学科设计优化方法研究[D].长沙:国防科学技术大学研究生院(Doctor). 2004.
    [176]陈琪锋.飞行器分布式协同进化多学科设计优化方法研究[D].长沙:国防科学技术大学研究生院(博士学位论文). 2003.
    [177] Zitzler E. Evolutionary Algorithms for Multi-objective Optimization: Methods and Applications [D]. A dissertation submitted to the Swiss Federal Institute of Technology Zurich for the degree of Doctor of Technical Sciences (Doctor). 1999.
    [178] Deb K, Pratap A, T.Meyarivan. Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Functions [J]. Evolutionary Computation. 1999. 7(3):205~230.
    [179] N. SRINIVAS, DEB K. Multi-Objective Function Optimization Using Non-dominated Sorting Genetic Algorithm [J]. Evolutionary Computation. 1995. 2(3):221~248.
    [180] SCHAFFER J D. Multiple objective optimization with vector evaluated geneticalgorithms[C]. Proceedings of an International Conference on Genetic Algorithms and Their Applications. Pittsburgh, PA: 1995.
    [181] HAJELA P, LIN. C-Y. Genetic Search Strategies in Multi-criterion Optimal Design [J]. Optimization. 1992. 4:99~107.
    [182] C.M.Fonseca. Multiobjective Genetic Algorithme with Application on Control Engineering Problems [D]. University of Sheffield,UK (Doctor). 1995.
    [183] J. HORN, N. NAFPLIOTIS, GOLDBERG. D E. A Niched Pareto Genetic Algorithm for Multi-objective Optimization[C]. First IEEE Conference on Evolutionary Compu-tation. Piscataway, NJ: 1994.
    [184] DAVID A, VAN VELDHUIZEN, LAMONT G B. Multi-objective Evolutionary Algorithms: Analyzing the State-of-the-Art. [J].]Evolutionary Computation. 2000. 8(2):125~147.
    [185] K. Deb, A. Pratap, S. Agrawal, et al. A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II [R]. KanGAL Report No. 200001. 2000.
    [186] Zitzler E, Deb K, Thiele L. Comparison of Multi-objective Evolutionary Algorithms: Empirical Results [J]. Evolutionary Computation 2002. 8 (2):173~195.
    [187]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社. 1999.
    [188] Chen X-q, Hou Z-x, He L-t, et al. Multi-object Optimization of Waverider generated from Conical Flow and Osculating Cone[C]. 46th AIAA Aerospace Sciences Meeting and Exhibit 7-10 January. Reno, Nevada: 2008.
    [189] J.C. A, W.R M. Hypersonic Lifting Body Windward Surface Flow-Field Analysis for High Angles of Incidence [R]. AEDC-TR-73-2.
    [190] D.O V, J.D A. Heat Transfer Charateristics of Hypersonic Waveriders with an Emphasis on the Leading Edge Effects [R]. NASA CR 189586.
    [191] D.O V, J.D A. Heat Transfer Charateristics of Hypersonic Waveriders with an Emphasis on the Leading Edge Effects [J]. AIAA 92-2920
    [192]杨炳尉,徐居福.飞行器气动加热和防热计算手册[M].《科技简报》编辑组. 1978.
    [193] C.D E, S.C P. Miniver Upgrade for the Avid System [R]. Volume I: Lanmin User's Manual. NASA CP-172212.
    [194]卞荫贵,徐立功.气动热力学[M].中国科学技术大学出版社. 1997.
    [195] F.R D. Calculation of Inviscid Surface Streamlines and Heat Transfer on ShuttleType Configuralions [R]. NASA CR-111921.
    [196]何烈堂,翟华,侯中喜, et al.跳跃式跨大气层飞行弹道仿真分析[J].航天控制. 2008. (1):60~64.
    [197] Morimoto H, C.H.Chuang J. Minimum-fuel trajectory along entire flight profile for a hypersonic vehicle with constraint [R]. AIAA 98-4122. 1998.
    [198]何烈堂,侯中喜,柳军, et al.跨大气层飞行器的无动力跃滑弹道优化研究[J].航天控制. 2007. (5):17~21.
    [199]赵汉元.飞行器再入动力学和制导[M].国防科技大学出版社. 1997.
    [200]贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科学技术大学出版社. 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700