用户名: 密码: 验证码:
半无限规划和半无限互补问题的基本理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半无限规划和互补问题是数学规划的重要研究课题,在工程设计、最优控制、信息技术、经济均衡等领域有着广泛的应用.随着研究的深入,半无限规划和互补问题得到了进一步推广,如带非紧致集的半无限规划、广义半无限规划及半无限互补问题.它们既是原有问题的延续又呈现出新的特征,并且与变分分析、集值分析、扰动分析等理论有着紧密联系.本文运用变分分析的工具和方法对上述问题展开研究,包括一阶最优性条件、极大值函数的微分性质、全局鞍点存在性定理、误差界、解集的弱强极小性质等.
     第一章简要介绍半无限规划和互补问题的研究历史与现状,概述本文的研究内容及主要成果,回顾相关概念和基本结论.
     第二章研究带有非紧致集的凸半无限极大极小规划.首先通过变分分析的工具和方法刻画凸极大值函数的次方向导数和次微分的解析式,进而建立了凸半无限极大极小规划的一阶最优性条件.
     由于广义半无限规划的指标集为一集值映射,这极大增加了其在理论分析和算法设计中的难度.因此在第三章我们感兴趣的是如何将广义半无限规划转化为标准半无限规划,为进一步利用已有的标准半无限规划的算法进行求解提供理论依据.通过对下层规划进行扰动分析,我们分别利用推广的基本二次修正Lagrangian函数和一类精确罚函数实现这一转化.相应的,建立广义半无限规划新的一阶最优性条件.
     第四章对一类新的问题-半无限互补问题-的基本理论展开研究,包括解集性质、问题的等价转化、误差界等.不但许多标准互补问题的重要概念得以推广,而且提出了两类新的误差界;即ω-误差界及弱误差界.
     半无限规划解集的局部弱强极小性质已利用Lower-C~1函数特殊的微分性质给出了等价描述.在第五章,我们对上述结论进行推广.首先提出一类新的不可微函数一下可微函数.它既包含光滑函数、凸函数、Lower-C~1函数、积分函数等,又同样可以利用切锥和次方向导数或者法锥和次微分等变分分析的工具对解集的局部弱强极小性质进行等价刻画.此外,鉴于变分不等式与互补问题有着密切联系,我们进一步考虑变分不等式解集的弱强极小性质,并建立它与误差界、MPS性质及线性正则性之间的等价关系.最后在解集具有弱强极小性质的条件下,给出算法具有有限步终止的充要条件.
Semi-infinite Programming (SIP) and Complementarity Problems (CP), as important parts of mathematical programming, have wide applications in many fields such as engineering design, optimal control, information technology, and economic equilibrium. Recently, new extended forms of SIP and CP appear, including the semi-infinite programming with noncompact index sets, generalized semi-infinite programming (GSIP), and semi-infinite complementarity problems (SICP). Compared with the SIP and CP, they not only take on new features, but also have close relations to varia-tional analysis, set-valued analysis, and perturbation analysis. This thesis is mainly concerned with these new extended forms of SIP and CP. Topics cover first-order optimality conditions, differentiability properties of sup-type functions, global saddle points, error bounds, and weak sharp minima.
     The opening chapter sets forth a short historical review of SIP and CP, briefly summarizes the main results given in this thesis, and presents some of the fundamental concepts and conclusions which are the main tools for our theoretical analysis.
     In Chapter 2, based on some new characterizations of subderivative and subdiffer-ential of sup-type functions, we develop the first-order necessary and sufficient optimality conditions for convex semi-infinite min-max programming problems with noncompact index sets.
     The main difference between GSIP and SIP is that the index sets in the former depend additionally on the decision variables, instead of just a constant set as required in the latter. This makes the theoretical treatment of GSIP complicated significantly. Therefore, Chapter 3 mainly focuses on how to convert GSIP into SIP. Once this is effected, GSIP can be solved by using any available semi-infinite programming algorithms, which is very significant in both theory and practical applications. By addressing the perturbation analysis of the lower-level programming, we successfully complete this transformation via generalized essentially quadratic augmented Lagrangian functions or a class of exact penalty functions.
     Chapter 4 is devoted to the semi-infinite complementarity problems. In particular, we investigate the solvability, feasibility, equivalent reformulation, subdifferentiability properties of residual functions, and error bounds. Not only are the important concepts in standard complementarity problems extended in a natural way, but also two new variants of error bounds,ε-error bounds and weak error bounds, are introduced.
     The full characterizations of local weak sharp minima for SIP have been given by virtue of the special structure of the lower-C~1 function. These nice results are extended in Chapter 5. First, we identify a new class of nonsmooth functions, called inf-differentiable functions, which is broad enough to include many important functions, such as smooth functions, convex functions, lower-C1 functions, and integral functions. One of the most significant features of inf-differentiability functions is that the local weak sharp minima could be completely characterized in terms of normal cone and subdifferential, tangent cone and subderivative, or their mixture. In addition, due to the close relationship between CP and variational inequality problems (VIP), we study the weak sharp minima of VIP, and establish its equivalence to global error bound, minimum principle sufficiency (MPS) property, and linear regularity. Finally, under rather mild assumptions, we develop the necessary and sufficient conditions for the finite termination of a class of algorithms for solving convex programming problems and variational inequality problems.
引文
[1]F.Alizadeh,D.Goldfarb,Second-order cone programming,Math.Programming,Ser.B,95:3-51,2003.
    [2]E.J.Anderson,P.Nash,Linear Programming in Infinite Dimensional Spaces,Wiley,New York,1987.
    [3]J.P.Aubin,H.Frankowska,Set-Valued Analysis,Birkh(a|¨)user,Boston,1990.
    [4]G.Auchmuty,Variational principles for variational inequalities,Numer.Funct.Anal.Optim.,10:863-874,1989.
    [5]A.Auslender,Optimization,M(?)thodes Num(?)riques,Masson,Paris,1976.
    [6]A.Baken,F.Deutsch,W.Li,Strong CHIP,normality,and linear regularity of convex sets,Trans.Amer.Math.Soc.,357:3831-3863,2005.
    [7]H.H.Bauschke,J.M.Borwein,W Li,Strong conical hull intersection property,bounded linear regularity,Jameson's property(G),and error bounds in convex optimization,Math.Programming,86:135-160,1999.
    [8]H.H.Bauschke,J.M.Borwein,P.Tseng,Bounded linear regularity,strong CHIP,and CHIP are distinct properties,J.Convex Anal.,7:395-412,2000.
    [9]M.S.Bazaraa,H.D.Sherali,C.M.Shetty,Nonlinear Programming:Theory and Algorithms,John Wiley & Sons,Second edition,1993.
    [10]D.P.Bertsekas,Constrained Optimization and Lagrangian Multiplier Methods,Academic Press,New York,1982.
    [11]B.Betr(?),An accelerated central cutting plane algorithm for linear semi-infinite programming,Math.Programming,101:479-495,2004.
    [12]B.Bhattacharjee,P.Lemonidis,W.H.Green,P.I.Barton,Global solution of semi-infinite programs,Math.Programming,103:283-307,2005.
    [13]J.F.Bonnans,A.D.Ioffe,Quadratic" growth and stability in convex programming problems with multiple solutions,J.Convex Anal.,2:41-57,1995.
    [14]J.F.Bonnans,A.Shapiro,Perturbation Analysis of Optimization Problems,Springer-Verlag,New York,2000.
    [15]J.M.Borwein,Q.J.Zhu,Techniques of Variational Analysis,Springer,New York,2005.
    [16]A.Brondsted,On the subdifferential of the supremum of two convex functions,Math.Scand.,31:225-230,1972.
    [17]B.Brosowski,Parametric Semi-infinite Optimization,Peter Lang,Frankfurt,1982.
    [18]J.V.Burke,S.Deng,Weak sharp minima revisited,part Ⅰ:basic theory,Control Cybern.,31:439-469,2002.
    [19]J.V.Burke,S.Deng,Weak sharp minhna revisited,part Ⅱ:application to linear regularity and error bounds,Math.Programming,104:235-261,2005.
    [20]J.V.Burke,S.Deng,Weak sharp minima revisited,Part Ⅲ:error bounds for differentiable convex inclusions,Math.Programming Ser.B.,116:37-56,2009.
    [21]J.V.Burke,M.C.Ferris,Weak sharp minima in mathematicalprogramming,SIAM J.Control Optim.,31:1340-1359,1993.
    [22]J.V.Burke,M.C.Ferris,A Gauss-Newton method for convex composite optimization,Math.Programming,71:179-194,1995.
    [23]J.V.Burke,A.Lewis,M.Overton,Optimizing matrix stability,Proc.Amer.Math.Soc.,129:1635-1642,2000.
    [24]J.V.Burke,J.J.Mor(?),On the identification of active constraints,SIAM J.Numer.Anal.,25:1197-1211,1988.
    [25]M.J.C(?)inovas,A.L.Dontchev,M.A.L(?)pez,J.Parra,Metric regularity of semi-infinite constraint systems,Math.Programming,104:329-346,2005.
    [26]M.J.C(?)novas,M.A.L(?)pez,J.Parra,Upper semicontinuity of the feasible set mapping for linear inequality systems,Set-Valued Anal.,10:361-378,2002.
    [27]M.J.C(?)novas,M.A.L(?)pez,J.Parra,Stability in the discretization of a parametric semi-infinite convex inequality system,Math.Oper.Res.,27:755-774,2002.
    [28]M.J.C(?)novas,M.A.L(?)pez,J.Parra,M.I.Todorov,Stability and well-posedness in linear semi-infinite programming,SIAM J.Optim.,10:82-98,1999.
    [29]A.Charnes,W.W.Cooper,K.O.Kortanek,Duality,Haar programs and finite sequence spaces,Proc.Natl.Acad.Sci.,48:783-786,1962.
    [30]Q.Chen,D.Chu,R.Tan,Optimal control of obstacle for quasi-linear elliptic variational bilateralproblems,SIAM J.Control Optim.,44:1067-1080,2005.
    [31]X.Chen,M.Fukushima,Expected residual minimization method for stochastic linear complementarity problems,Math.Oper.Res.,30:1022-1038,2005.
    [32]X.Chen,S.Xiang,Computation of error bounds for.P-matrix linear complementarity problems,Math.Programming,106:513-525,2006.
    [33]X.Chen,C.Zhang,M.Fukushima,Robust solution of monotone stochastic linear complementarity problems,Math.Programming,117:51-80,2009.
    [34]F.H.Clarke,Optimization and Nonsmooth Analysis,Wiley,New York,1983.
    [35]I.D.Coope,M.A.Watson,A projected Lagrangian algorithm for semi-infinite programming,Math.Programming,32:337-356,1985.
    [36]R.W.Cottle,Note on a fundamental theorem in quadratic programming,J.Soc.Ind.Appl.Math.,12,1964.
    [37]R.W.Cottle,G.B.Dantzig,Complementary pivot theory in mathematical programming,in:G.B.Dantzig,A.EVeinott,eds,Mathematics of the Decision Sciences,Part 1,American Mathematical Society,Providence,115,1968.
    [38]R.W.Cottle,J.S.Pang,R.E.Stone,The Linear Complementarity Problem,Academic Press,New York,1992.
    [39]L.Cromme,Strong Uniqueness:a far reaching criterion for the convergence of iterative procedures,Numer.Math.,29:179-193,1978.
    [40]J.M.Danskin,The Theory of Max-Min and its Applications to Weapons Allocations Problems,Springer-Verlag,New York,1967.
    [41]G.B.Dantzig,R.W.Cottle,Positive(semi-)definite programming,in:J.Abadie,ed.Nonlinear Programming,Amsterdam:North-Holland,55,1967.
    [42]S.Deng,Some remarks on finite termination of descent methods,Pac.J.Optim.,1:31-37,2005.
    [43]M.Ehrgott,M.M.Wiecek,Saddle points and pareto points in multiple objective programming,J.Global Optim.,32:11-33,2005.
    [44]F.Facchinei,A.Fischer,V.Piccialli,Generalized Nash equilibrium problems and Newton methods,Math.Programming,117:163-194,2009.
    [45]F.Facchinei,J.S.Pang,Finite-Dimensional Variational Inequalities and Complementarity Problems,Ⅰ and Ⅱ,Springer Verlag,New York,2003.
    [46]H.Fang,X.Chen,M.Fukushima,Stochastic R_0 matrix linear complementarity problems,SIAM J.Optim.,18:482-506,2007.
    [47]M.C.Ferris,Weak sharp minima and penalty functions in mathematical programming,PhD thesis,University of Cambridge,Cambridge,1988.
    [48]M.C.Ferris,Finite termination of the proximal point algorithm,Math.Programming,50:359-366,1991.
    [49]M.Fukushima,Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems,Math.Programming,53:99-110,1992.
    [50]R.N.Gasimov,Augmented Lagrangian duality and nondifferentiable optimization methods in nonconvex programming,J.Global Optim.,24:187-203,2002.
    [51]R.N.Gasimov,A.M.Rubinov,On augmented Lagrangians for optimization problems with a single constraint,J.Global Optim.,28:153-173,2004.
    [52]M.A.Goberna,M.A.L(?)pez,Topological stability of linear semi-infinite inequality systems,J.Optim.Theory Appl.,89:227-236,1996.
    [53]M.A.Goberna,M.A.L(?)pez,Linear Semi-Infinite Optimization,Wiley,Chichester,1998.
    [54]M.A.Goberna,M.A.L(?)pez,Semi-Infinite Programming:Recent Advances,Dordrecht,Boston,London:Kluwer Academic Publishers,2001.
    [55]M.A.Goberna,M.A.L(?)pez,Linear semi-infinite programming theory:An updated survey,European J.Oper.Res.,143:390-405,2002.
    [56]I.Griva,R.Polyak,Primal-dual nonlinear rescaling method with dynamic scaling parameter update,Math.Programming,106:237-259,2006.
    [57]G.G(u|¨)rkan,A.Y.(O|¨)zge,S.M.Robinson,sample-path solution of stochastic variational inequalities,Math.Programming,84:313-333,1999.
    [58]A.Haar,(U|¨)ber lineare Ungleichungen,Acta Mathematica Szeged,2:1-14,1924.
    [59]A.Hantoute,M.A.L(?)pez,A complete characterization of the subdifferential set of the supremum of an arbitrary family of convex functions,J.Convex Anal.,15:831-858,2008.
    [60]A.Hantoute,M.A.L(?)pez,C.Z(?)linescu,Subdifferential calculus rules in convex analysis:A unifying approach via pointwise supremum functions,SIAM J.Optim.,19:863-882,2008.
    [61]P.T.Harker,J.S.Pang,Finite-dimensional variational inequality and nonlinear complementarity problems:A survey of theory,algorithms and applications,Math.Programming,Ser.B,48:161-220,1990.
    [62]R.Henrion,J.Outrata,Calmness of constraint systems with applications,Math.Programming,104:437-464,2005.
    [63]M.R.Hestenes,Multiplier and gradient methods,J.Optim.Theory Appl.,4:303-320,1969.
    [64]R.Hettich,K.O.Kortanek,Semi-infinite programming:theory,methods,and applications,SIAM Rev.,35:380-429,1993.
    [65]R.Hettich,G.Still,Second order optimality conditions for generalized semi-infinite programruing problems,Optimization,34:195-211,1995.
    [66]X.X.Huang,X.Q.Yang,A unified augmented Lagrangian approach to duality and exact penalization,Math.Oper.Res.,28:524-532,2003.
    [67]X.X.Huang,X.Q.Yang,Further study on augmented Lagrangian duality theory,J.Global Optim.,31:193-210,2005.
    [68]A.Iottle,Necessary and sufficient for a local minimum,part 3:second-order and augmented Lagrangian,SIAM J.Control Optim.,17:266-288,1979.
    [69]A.D.Ioffe,V.H.Tikhomirov,Theory of Extremal Problems:Studies in Mathematics and its Applications,Elsevier North-Holland,1979.
    [70]F.John,Extremum problems with inequalities as subsidiary conditions,Studies and Essays:Courant Anniversary Volume,Interscience Publisher,New York,pp.187-204,1948.
    [71]H.Th.Jongen,J.-J.R(u|¨)ckmann,O.Stein,Generalized semi-infinite optimization:a first order optimality condition and examples,Math.Programming,83:145-158,1998.
    [72]A.Jourani,Hoffman's error bounds,local controllability,and sensitivity analysis,SIAM J.Control Optim.,38:947-970,2000.
    [73]H.Kawasaki,An envelope-like effect of infinitely many inequality constraints on second order necessary conditions for minimization problems,Math.Programming,41:73-96,1988.
    [74]E.Klerk,Aspects of Semidefinite Programming:Interior Point Algorithms and Selected Applications,Dordrecht:Kluwer Academic Publishers,2002.
    [75]V.L.Levin,Application of E.Helly's theorem to convex programming,problems of best approximation and related questions,Math.USSR.SB.,8:235-247,1969.
    [76]E.Levitin,R.Tichatschke,A branch-and-bound approach for solving a class of generalized semi-infinite programming problems,J.Global Optim.,13:299-315,1998.
    [77]D.Li,Zero duality gap for a class of nonconvex optimization problems,J.Optim.Theory Appl.,85:309-323,1995.
    [78]D.Li,Saddle-point generation in nonlinear nonconvex optimization,Nonlinear Anal.,30:4339-4344,1997.
    [79]D.Li,X.L.Sun,Convexification and existence of saddle point in a pth-power reformulation for nonconvex constrained optimization,Nonlinear Anal.,47:5611-5622,2001.
    [80]D.Li,X.L.Sun,Existence of a saddle point in nonconvex constrained optimization,J.Global Optim.,21:39-50,2001.
    [81]C.Li,X.Wang,On convergence of the Gauss-Newton method for convex composite optimization,Math.Programming,91:349-356,2002.
    [82]G.Lin,Combined Monte Carlo sampling and penalty method for stochastic nonlinear complementarityproblems,Math.Comput.,2009.
    [83]G.Lin,X.Chen,M.Fukushima,New restricted NCP functions and their applications to stochastic NCP and stochastic MPEC,Optimization,56:641-653,2007.
    [84]G.Lin,M.Fukushima,New reformulations for stochastic nonlinear complementarity problems,Optim.Methods Softw.,21:551-564,2006.
    [85]C.Ling,L.Qi,G.Zhou,L.Caccettac,The SC~1 property of an expected residual function arising from stochastic complementarity problems,Oper.Res.Lett.,36:456-460,2008.
    [86]Y.Liu,C.H.Tseng,K.L.Teo,A unified quadratic semi-infinite programming approach to time and frequency domain constrained digital filter design,Comm.Inform.Syst.,2:399-410,2002.
    [87]M.L(?)pez,G.Still,Semi-infinite programming:Invited review,European J.Oper.Res.,180:491-518,2007.
    [88]O.L.Mangasarian,A simple characterization of solution sets of convex programs,Oper.Res.Lett.,7:21-26,1988.
    [89]O.L.Mangasarian,J.Ren,New improved error bounds for the linear complementarity problem,Math.Programming,66:241-255,1994.
    [90]P.Marcotte,D.Zhu,Weak sharp solutions of variational inequalities,SIAM J.Optim.,9:179-189,1998.
    [91]R.Mifflin,Semismooth and semiconvex functions in constrained optimization,SIAM J.Control Optim.,15:957-972,1977.
    [92]B.S.Mordukhovich,Variational Analysis and Generalized Differentiation I,Springer,New York,2006.
    [93]Q.Ni,C.Ling,L.Q.Qi,K.L.Teo,A truncated projected Newton-type algorithm for largescale semi-infinite programming,SIAM J.Optim.,16:1137-1154,2006.
    [94]K.F.Ng,W.H.Yang,Regularities and their relations to error bounds,Math.Programming,99:521-538,2004.
    [95]K.F.Ng,X.Y.Zheng,Global Weak Sharp Minima on Banach Spaces,SIAM J.Control Optim.,41:1868-1885,2003.
    [96]J.S.Pang,Error bounds in mathematical programming,Math.Programming,79:299-332,1997.
    [97]M.Patriksson,A unified framework of descent algorithms for nonlinear programs and variational inequalities,Ph.D.thesis,Department of Mathematics,Linkrping Institute of Technology,Link(o|¨)ping,Sweden,1993.
    [98]J.M.Peng,Equivalence of variational inequality problems to unconstrained optimization,Math.Programming,78:347-355,1997.
    [99]E.Polak,Optimization:Algorithms and Consistent Approximations,Springer-Verlag,New York,1997.
    [100]E.Polak,J.O.Royset,Algorithms for finite and semi-infinite min-max problems using adaptive smoothing techniques,J.Optim.Theory Appl,119:421-457,2003.
    [101]E.Polak,J.O.Royset,On the use of augmented Lagrangians in the solution of generalized semi-infinite min-max problems,Comput.Optim.Appl.,31:173-192,2005.
    [102]E.Polak,A.L.Tits,A recursive quadratic programming algorithm for semi-infinite optimization problems,Appl.Math.Optim.,8:325-349,1982.
    [103]B.T.Polyak,Introduction to Optimization,Optimization Software,New York,1987.
    [104]R.Polyak,Modified barrier functions:Theory and methods,Math.Programming,54:177-222,1992.
    [105]M.J.D.Powell,A method for nonlinear constraints in minimization problems,in Optimization.R.Fletcher(Ed.) New York:Academic Press,pp.283-298,1969.
    [106]L.Q.Qi,A.Shapiro,C.Ling,Differentiability and semismoothness properties of integral functions and their applications,Math.Programming,102:223-248,2005.
    [107]L.Q.Qi,J.Sun,A nonsmooth version of Newton's method,Math.Programming,58:353-367,1993.
    [108]L.Q.Qi,S.-Y.Wu,G.L.Zhou,Semismooth Newton methods for solving semi-infinite programming problems,J.Global Optim.,27:215-232,2003.
    [109]R.Reemtsen,J.-J.R(u|¨)ckamann,Semi-infinite Programming,Kluwer Academic Publishers,Boston,Massachusetts,1998.
    [110]R.T.Rockafellar,Convex Analysis,Princeton University Press,Princeton,1970.
    [111]R.T.Rockafellar,Augmented Lagrange multiplier functions and duality in nonconvex programming,SIAM J.Control Optim.,12:268-285,1974.
    [112]R.T.Rockafellar,Marginal values and second-order necessary conditions for optimality,Math.Programming,26:245-286,1983.
    [113]R.T.Rockafellar,Directional differentiability of the optimal value function in a nonlinear programming problem,Math.Programming,21:213-226,1984.
    [114]R.T.Rockafellar,Lagrangian multipliers and optimality,SIAM Rev.,35:83-238,1993.
    [115]R.T.Rockafellar,,J.-B.Wets,Variational Analysis,Springer-Verlag,Berlin,1998.
    [116]J.O.Royset,E.Polak,A.D.Kiureghian,Adaptive approximations and exact penalization for the solution of generalized semi-infinite min-max problems,SIAM J.Optim.,14:1-34,2003.
    [117]A.M.Rubinov,X.X.Huang,X.Q.Yang,The zero duality gap property and lower semicontinuity of the perturbation function,Math.Oper.Res.,27:775-791,2002.
    [118]A.M.Rubinov,X.Q.Yang,Lagrangian Type Functions in Constrained Non-convex Optimization,Kluwer,Massachusettes,2003.
    [119]J.-J.R(u|¨)ckmann,A.Shapiro,First-order optimality conditions in generalized semi-infinite programming,J.Optim.Theory Appl.,101:677-691,1999.
    [120]J.-J.R(u|¨)ckmann,A.Shapiro,Second-order optimality conditions in generalized semi-infinite programming,Set-Valued Anal.,9:169-186,2001.
    [121]J.-J.R(u|¨)ckmann,O.Stein,On linear and linearized generalized semi-infinite optimization problems,Ann.Oper.Res.,101:191-208,2001.
    [122]S.H.Schmieta,F.Alizadeh,Associative and Jordan algebras,and polynomial time interiorpoint algorithms for symmetric cones,Math.Oper.Res.,26:543-564,2001.
    [123]S.H.Schmieta,EAlizadeh,Extension of primal-dual interior point algorithms to symmetric cones,Math.Programming,96:409-438,2003.
    [124]A.Shapiro,On Lipschitzian stability of optimal solutions of parameterized semi-infinite programs,Math.Oper.Res.,19:743-752,1994.
    [125]A.Shapiro,On duality theory of convex semi-infinite programming,Optimization,54:535-543,2005.
    [126]M.V.Solodov,P.Tseng,Some methods based on the D-gap function for solving monotone variational inequalities,Comput.Optim.Appl.,17:255-277,2000.
    [127]O.Stein,First order optimality conditions for degenerate index sets in generalized semi-infinite programming,Math.Oper.Res.,26:565-582,2001.
    [128]O.Stein,Bilevel Strategies in Semi-infinite Programming,Kluwer,Boston,2003.
    [129]O.Stein,G.Still,On optimality conditions for generalized semi-infinite programming problems,J.Optim.Theory Appl.,104:443-458,2000.
    [130]G.Still,Generalized semi-infinite programming:theory and methods,European J.Oper.Res.,119:301-313,1999.
    [131]G.Still,Generalized semi-infinite programming:numerical aspects,Optimization,49:223-242,2001.
    [132]G.Still,Discretization in semi-infinite programming:the rate of approximation,Math.Programming,91:53-69,2001.
    [133]G.Still,Solving generalized semi-infinite programs by reduction to shnpler problems,Optimization,53:19-38,2004.
    [134]M.Studniarski,D.E.Ward,Weak sharp minima:characterizations and sufficient conditions,SIAM J.Control Optim.,38:219-236,1999.
    [135]X.L.Sun,D.Li,K.Mckinnon,On saddle points of augmented Lagrangians for constrained nonconvex optimization,SIAM J.Optim.,15:1128-1146,2005.
    [136]D.Sun,L.Q.Qi,On NCP-functions,Comput.Optim.Appl.,13:201-220,1999.
    [137]Y.Tanaka,M.Fukushima,T.Ibaraki,A globally convergent SQP method for semi-infinite nonlinear optimization,J.Comput.Appl.Math.,23:141-153,1988.
    [138]F.G.V(?)zquez,J.-J.R(u|¨)ckmann,Extensions of the Kuhn-Tucker constraint qualification to generalized semi-infinite programming,SIAM J.Optim.,15:926-937,2005.
    [139]F.G.V(?)zquez,J.-J.R(u|¨)ckmann,O.Stein,G.Still,Generalized semi-infinite programming:A tutorial,J.Comput.Appl.Math.,217:394-419,2008.
    [140]M.Volle,On the subdifferential of an upper envelope of convex functions,Acta Math.Vietnam.,19:137-148,1994.
    [141]C.Y.Wang,J.Y.Han,The stability of the maximum entropy method for nonsmooth semi-infinite programming,Sci.China Ser.A,42:1129-1136,1999.
    [142]C.Y.Wang,X.Q.Yang,X.M.Yang,Nonlinear Lagrange duality theorems and penalty function methods in continuous optimization,J.Global Optim.,27:473-484,2003.
    [143]C.Y.Wang,X.Q.Yang,X.M.Yang,Optimal value functions of generalized semi-infinite minmax programming on a noncompact set,Sci.China Ser.A,48:261-276,2005.
    [144]G.W.Weber,Generalized semi-infinite optimization:on some foundations,J.Comput.Technol.,4:41-61,1999.
    [145]J.H.Wu,M.Florian,P.Marcotte,A general descent framework for the monotone variational inequality problem,Math.Programming,61:281-300,1993.
    [146]Z.L.Wu,S.Y.Wu,Weak sharp solutions of variational inequalities in Hilbert spaces,SIAM J.Optim.,14:1011-1027,2004.
    [147]Z.L.Wu,S.Y.Wu,G(?)teaux differentiability of the dual gap function of a variational inequality,European J.Oper.Res.,190:328-344,2008.
    [148]Z.L.Wu,J.J.Ye,Sufficient conditions for error bounds,SIAM J.Optim.,12:421-435,2001.
    [149]N.Yamashita,K.Taji,M.Fukushima,Unconstrained optimization reformulations of variational inequality problems,J.Optim.Theory Appl.92:439-456,1997.
    [150]X.Q.Yang,X.X.Hung,A nonlinear Lagrangian approach to constrained optimization problems,SIAM J.Optim.,11:1119-1149,2001.
    [151]X.Q.Yang,K.L.Teo,Nonlinear Lagrangian fimctions and applications to semi-infinite programs,Ann.Oper.Res.,103:235-250,2001.
    [152]C.Z(?)linescu,Convex Analysis in General Vector Spaces,World Scientific,2002.
    [153]J.Z.Zhang,C.Y.Wang,N.H.Xiu,The dual gap fitnction for variational inequalities,Appl.Math.Optim.,48:129-148,2003.
    [154]X.Y.Zheng,K.F.Ng,Linear regularity for a collection of subsmooth sets in Banach spaces,SIAM J.Optim.,19:62-76,2008.
    [155]X.Y.Zheng,X.Q.Yang,Lagrange multipliers in nonsmooth semi-infinite optimization problems,Math.Oper.Res.,32:168-181,2007.
    [156]X.Y.Zheng,X.Q.Yang,Weak sharp minima for semi-infinite optimization problems with applications,SIAM J.Optim.,18:573-588,2007.
    [157]Y.Y.Zhou,X.Q.Yang,Some Results about Duality and Exact Penalization,J.Global Optim.,29:497-509,2004.
    [158]韩继业,修乃华,戚厚铎,非线性互补理论与算法,上海科学技术出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700