用户名: 密码: 验证码:
超高分子量聚乙烯基导电复合材料的电/热性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物基PTC(Positive temperature coefficient)材料是一类具有重要理论和应用价值的新型功能材料,由于其独特的热电开关特性,及导电性能可调、质量轻、耐腐蚀、成本低、易成型加工等优点,可广泛应用于自控温电热器件、过流保护器和传感器等领域。但是目前聚合物基PTC材料在理论和实际应用方面还有待进一步研究和完善,如PTC效应机理、PTC强度的提高、NTC (Negative temperature coefficient)现象的消除以及高温稳定性和重现性的改进,PTC材料的自发热效率低等。
     本文首先利用凝胶结晶溶液方法制备了碳纤维(CF)和镀镍碳纤维(NiCF)填充的超高分子量聚乙烯(UHMWPE)导电聚合物复合材料,利用DSC, SEM, WAXS, DMA和凝胶含量测试等测试手段,研究了导电填料,伽马射线辐射交联,化学交联对材料导电及机械性能的影响。结果表明,NiCF比CF导电性更高,制备的材料的逾渗阈值低。伽马射线辐射交联能够提高材料的PTC效应,而化学交联能提高复合材料的导电性能和导电稳定性,并提高材料的机械性能。
     采用UHMWPE和乙烯基甲基丙烯酸甲酯共聚物(EMMA)为聚合物基体,CF为导电填料,利用凝胶结晶溶液方法制备了UHMWPE-EMMA-CF三元导电聚合物复合材料。利用DSC, SEM, WAXS, TGA, DMA,凝胶含量等表征测试手段,系统讨论了EMMA含量,CF含量和伽马射线辐射交联等因素对其导电性,热学性能,形貌特征,机械性能等的影响,并探讨了伽马射线辐射交联机理。结果表明伽马射线辐射处理在聚合物中形成了交联结构。辐射后材料的PTC强度显著提高,基体比例UHMWPE/EMMA为1/1的样品经500kGy辐射后PTC强度达到1010。NTC效应消失,PTC效应重复性提高。
     对UHMWPE-EMMA-CF导电聚合物复合材料的自发热性能进行了研究。结果表明,在相同的CF浓度和外加电压时,基体比例为1/6的样品的表面温度大于基体比例为1/1的。伽马射线辐射处理能显著提高材料的自发热性能。在外加电压为20V,基体比例为1/1的样品经500kGy辐射后其表面温度比未辐射样品提高约30℃。基体比例为1/1,1/3和1/6的样品对应的最佳伽马射线辐射剂量分别为1000kGy,500kGy和200kGy。
     通过聚合物体积热膨胀实验对聚合物导电复合材料的PTC效应的机理进行了探讨。结果表明体积膨胀是PTC效应的重要影响因素。材料的介电性能分析表明,材料电阻率和介电常数对温度、频率具有强烈依赖性。介电测试结果与复合材料直流PTC性能的实验结论一致,并从微观角度反映了结构的变化及伽马射线对复合材料导电性等性能的影响。
Polymeric PTC composite is a novel functional material with importance both in research and application fields. This kind of composites can be widely applied in many fields such as self-regulating heaters, over-current protectors and sensors due to their advantages as thermoelectrical-switching characteristic, adjustable conductivity, light weight, corrosion resistance, low cost and simple processing technique. However, further research and improvement are necessary for the PTC materials in both theory and practical application respects, which focus on the conductive mechanism, enhance of PTC intensity, elimination of NTC phenomenon and improvement of stability and reproducibility at high temperature, low heat efficiency and so forth.
     Firstly, carbon fiber (CF) or nickel-coated carbon fiber (Ni-CF) filled ultra-high-molecular weight polyethylene (UHMWPE) composites were prepared by gelation/crystallization method. DSC, SEM, WAXS, DMA and gel fraction measurements were employed to investigate the electrical and mechanical properties of composites with respect to the effect of content of fillers, gamma ray irradiation and chemical crosslink. Results demonstrated that lower percolation threshold value of composites was obtained by NiCF than CF due to its higher conductivity. PTC effect of composites was improved by gamma ray irradiation, while high and stable conductivity and mechanical properties were realized by means of chemical crosslink method.
     Secondly, CF filled UHMWPE and ethylene-methyl methacrylate (EMMA) blend composites were prepared by gelation/crystallization method in solutions with xylene and decalin as solvents, respectively. Then DSC, SEM, WAXS, TGA and DMA were carried out to investigate systematically the effect of factors such as content of EMMA, CF and gamma irradiation on the properties of electrical, thermal, mechanical properties and morphology as well, and the mechanism of gamma ray irradiation was discussed in detail. Results demonstrated that crosslinking structure was formed in the composites after irradiation. PTC intensity of irradiated composites increased, which of composites with matrix ratio of UHMWPE to EMMA reached the maximum of 1010 at 500kGy. NTC effect was removed, and reproducibility was improved by irradiation.
     Thirdly, self-heating property of UHMWPE-EMMA-CF composites was discussed in detail. It revealed that surface temperature of composites with matrix ratio of UHMWPE to EMMA of 1/6 was higher than that of composites with matrix ratio of 1/1 at the same concentration of CF and the set applied voltage. The self-heating property of composites was enhanced significantly by gamma ray irradiation. Surface temperature of irradiated composites with 500kGy and matrix ratio of 1/1 was 30℃higher than that of original composites at applied voltage of 20V. The optimal irradiation dose for composites with matrix ratio of 1/1,1/3 and 1/6 was 1000kGy,500kGy and 200kGy, respectively.
     Finally, thermal volume expansion experiment of UHMWPE-based composites was conducted to explore the mechanism of PTC effect of composites. Results indicated that volume expansion was one of the important factors but not the only one for PTC effect. On the other hand, results of dielectric property of composites showed that resistivity and dielectric parameters of composites were depend strongly on temperature and frequency. Results of dielectric analysis were in good agreement with that of PTC effect in mechanism of electrical conductivity. Furthermore, it reflected the change of microstructure and the effect of gamma ray irradiation on the electrical properties.
引文
[1]Zallen R. The physics of amorphous solids[M], A wildly interscience publication,1983,135-205.
    [2]Clingerman M L.A dissertation for Phd of Michigan Technological University [D],2001.
    [3]Bin Y, Xu T, Matsuo M. Electrical properties of polyethylene and carbon black particle blends prepared by gelation/crystallization from solution [J]. Carbon,2002 (40):195.
    [4]雷忠利,戚长谋,孟雅新,等。导电复合材料中的双逾渗行为及其应用[J].高分子通报,1996,3:69.
    [5]Aneli D N, Topchishvili, G M, The conductivity mechanism of electrically conductive polymer composites[J]. Int Polym Sci technol,1986,13:91-92.
    [6]Rajagopal C, Satyam M[J]. Studies on electrical conductivity of insulator-conductor composites[J], J Appl Phys,1978,49:5536.
    [7]Carmona F. Percolation in short fibres epoxy resin composites:Conductivity behavior and finite size effects near threshold [J]. Solid State Commun,1984,51:255.
    [8]Radhakrishnan S. Effect of fillers on the electrical conduction in polymers:theory of internal conduction mechanism [J]. Polym Commun,1985,36:153.
    [9]McCubbin W L. Conduction processes in polymers[J]. J Polym Sci, Part C:Polymer Symposia,1970, 30:181-193.
    [10]Cashell E M, Coey JMD, Wardell GE,et al. DC Electrical Conduction in Carbon Black Filled cis-Polybutadiene [J].J Appl Phys,1981,52:1542-1547.
    [11]Sichel E K, Gittleman j I, Sheng P, Transport properties of the composites materials carbon-poly(vinyl chloride) [J], Phys Rev B,1978,18:5712-5716.
    [12]Sheng P, Sichel E K, Gittleman, J I. Fluctuation induced tunneling conduction in carbon-polyvinylchloride composites [J], Phys Rev lett,1978,40,1197-1200
    [13]Van Beek L R H, Rubber Chem Technol,1964,37:348.
    [14]Kohler F, Resistance element, US Pat 3243753,1966.
    [15]Ohe K, Natio Y. A new resistor having an anomalously large positive temperature coefficient. Jpn [J]. J Appl Phys 1971,10(1):99-108.
    [16]Meyer J, Glass transition temperature as a guide to selection of polymers suitable for PTC materials [J]. Polym Eng Sci,1973,13(6):462-468.
    [17]Meyer J, Stability of polymer composites as positive-temperature-coefficient resistors [J]. Polym Eng Sci,1974,14:706-716.
    [18]Allak H K, Brinkman A W, Wood J, I-V characteristics of carbon black-loaded crystalline polyethylene [J]. J Mater Sci,1993,28:117.
    [19]Seager C H, Pike G E, Percolation and conductivity:A computer study. Ⅱ. Phys Rev B,1974, 10:1435.
    [20]Li R Q, Dou D Y, Miao J L, et al, Complicated resistivity-temperature behavior in polymer composites [J]. J Appl Polym Sci,2002,86:2217-2221.
    [21]Nakis M, Vaxman A, Resistivity behavior of filled electrically conductive crosslinked polyethylene [J]. J Appl Polym Sci,1984,29:1639.
    [22]Sau K P, Chaki T K, Khastgir D, Carbon fibre filled conductive composites based on nitrile rubber (NBR), ethylene propylene diene rubber (EPDM) and their blend [J]. Polymer 1998,39:6461.
    [23]Flandin L, Chang A, Nazarenko D, et al. Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers [J]. J Appl Polym Sci,2000,76:894.
    [24]Pramanik P K, Khastgir D, Saha T N, Conductive nitrile rubber composite containing carbon fillers: Studies on mechanical properties and electrical conductivity [J]. Composites,1992,23:183-191.
    [25]Miyasaka K, Watanabe K, Jojima E, et al. K, Electrical conductivity of carbon-polymer composites as a function of carbon content [J]. J Mater sci,1982,17:1610.
    [26]Foulger S H. Reduced percolation thresholds of immiscible conductive blends [J]. J Polym Sci:Part B:Polym Phys,1999,37:1899.
    [27]Sau K P, Chaki T K, Khastgir D, Conductive rubber composites from different blends of ethylene-propylene-diene rubber and nitrile rubber[J]. J Mater Sci,1997,32:5717-5724.
    [28]Zhang, C, Ma C N, Wang P, Sumita M. Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction[J].Carbon,2005,43:2544-53.
    [29]Gubbels F, Jerome R, teyssie Ph, et al. Selective localization of carbon black in immiscible polymer blends:a useful tool to design electrical conductive composites [J]. Macromolecules,1994, 27:1972-1974.
    [30]Gubbels F, Blacher S, vanlathem E, et al. Design of electrical conductive composites:key role of the morphology on the electrical properties of carbon black filled polymer blends [J]. Macromolecules, 1995,28:1559.
    [31]Tchoudakov R, Breuer O, Narkis M, Conductive polymer blends with low carbon black loading: Polypropylene/polyamide [J]. Polym Eng Sci,1996,36:1336
    [32]Yu G, Zhang M Q, Zeng H M, Interfacial phenomena in polymer based PTC material [J]. Composite Interfaces,1999,6:275-285.
    [33]Xu H P, Dang Z M, jiang M J,et al. Enhanced dielectric properties and positive temperature coeffient in the binary polymer composites with surface modified carbon black [J]. J Mater Chem,2008, 18:229-234.
    [34]Li Q, Siddaramaiah, Kim N H, Yoo G H, et al. Positive temperature coefficient characteristic and structure of graphite nano fibers reinforced high density polyethylene/carbon black nanocomposites [J]. Composites:Part B,2009,40:218-224.
    [35]Potschke P, Bharracharyya A R, Janke A. Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene[J]. Carbon,2004,42:965-969.
    [36]Watts, P C P, Hsu W K, Kotzeva V, et al. Fe-filled carbon nanotube-polystyrene:RCL composites [J]. Chem Phys Lett,2002,366:42-50.
    [37]He X J, Du J H, Ying Z, et al. Positive temperature coefficient effect in multiwalled carbon nanotube/high density polyethylene composites [J]. Appl Phys Lett,2005,86:062112
    [38]Liang G D, Tjong S C, lectrical properties of low density polyethylene/multiwalled carbon nanotube nanocomposites [J]. Mater Chem Phys,2006,100:1-5.
    [39]Lisunova M O, Mamunya Y P, Lebovka N I, et al. Percolation bahavior of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites [J]. Eur Polym J,2007,43:949-58.
    [40]Lee J H, Kim S K, Kim N H. Effect of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon black-filled high density polyethylene nanocomposites [J]. Scripta Mater,2005,1119-22..
    [41]Adib F, Chechian K, Liu G, et al. Polymer grafted carbon black primarily for use in positive temperature coefficient over-current protection devices [P]. US patent,20030096888,2003-05-22.
    [42]Tang H, Chen X G, Luo Y X. Studies on the PTC/NTC effect of carbon black filled low density polyethylene composites. Eur Polym J,1997,33:1383-6.
    [43]Jia W, Chen X, Li S. Effects of irradiation on PTC performance of LDPE/EPDM blends filled with carbon blacks[J]. J Appl Polym Sci 1996;60(13):2317-2320.
    [44]Narkis M, Ram A, Flashmer F. Electrical properties of carbon black filled polyethylene [J]. Polym Eng Sci,1978,18:649-653.
    [45]Sumita M, Szkata K, Asai S, et al. Dispersion of filler and the electrical conductivity of polymer blends filled with carbon black[J]. Polym Bull,1991,25:265-271.
    [46]Feng J, Chan C M. Carbon-filled immiscible blends of PVDF and HDPE [J]. Polym Eng Sci,1999, 39:1207.
    [47]Feng J Y, Chan C M. Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers [J]. Polymer,2000,41:4559-4565.
    [48]Mironi H, Narkis M.Thermo-electric behavior of carbon black-containing PVDFv/ UHMWPE and PVDFv/X-UHMWPE blends [J]. Polym Eng Sci,2001,41:205.
    [49]Xi Y, Ishikawa H, Bin Y Z, Matsuo M, Positive temperature coefficient effect of LMWPE-UHMWPE blends filled with short carbon fibers. Carbon,2004,42:1699-1706.
    [50]Charlesby A, Pinner S H. Analysis of the Solubility Behaviour of Irradiated Polyethylene and Other Polymers [J]. Proc R Soc,1959, A249:367.
    [51]Charlesby A, Atomic Radiation and Polymers [M]. Oxford:Pergamon Press,1960.136-181; Solubility and molecular size distribution of crosslinked polystyrene [J]. J Polym Sci,1953, 11:513-520.
    [52]陈欣方,刘克静,唐敖庆。吉林大学学报。1977,4:39-55.
    [53]张万喜,孙家珍,钱保功。辐射研究与辐射工艺学报,1984,2(4):1-10
    [54]张利华,杜娜。聚合物辐射交联机理与其结构和运动的多重性[J].辐射研究与辐射工艺学报,2004(22):129-138.
    [55]Qian B G, Xu G F, Yu B S. Transitions and Relaxations of Polymers [M]. Beijing:Science Press, 1986.
    [56]Zhang L H, Qi Y C, Chen D L. Radiation effects on crystalline polymers—Ⅰ. Crystallinity dependence of chemical reaction in irradiated polyamide-1010 [J]. Radiat Phys Chem,1990, 36:743-746.
    [57]Zhang L H, Zhang H F, Chen D L. WAXD and SAXS study on gamma-radiation damage to polyamide-1010 crystal structure[J]. Radiat Phys Chem,1996,47(4):523-526.
    [58]赵文伟,徐俊,孙家珍。共混聚合物辐射效应研究的进展[J]。高分子通报,1992,3:129-137.
    [59]Minkova L, Nikolova M. Thermomechanical and some mechanical properties of irradiated films prepared from polymer blends [J]. Polym Degrad Stab.1987,18:189.
    [60]Harnischfeger P, Kinzel P, Jungnickel B J. The influence of electron irradiation on the mechanical properties of polypropylene/EPDM rubber blends [J]. Macromol Chem,1990,175:157.
    [61]Tbomas S, Gupta B R, De S K, Thomas K T. Studies on mechanical properties and fractography of γ-ray irradiated blends of plasticized poly(vinyl chloride) and thermoplastic copolyester elastomer [J]. Radiat Phys Chem,1986,28:283.
    [62]Akhtar S, De P P, De S K. Tensile failure of γ-ray irradiated blends of high-density polyethylene and natural rubber [J]. J Appl Polym Sci,1986,32:4169.
    [63]Spadaro G, Acierno D, calderaro E. Tensile properties of y-irradiated LDPE-iPP blends [J]. Radiat Phys Chem,1984,23:445-448.
    [64]Sawatari C, matsuo M. Development of high-modulus polyethylene with heat-resistant properties [J]. Polym J,1987,19:1365.
    [65]Trijan M, Daro A, Tacobs R, David C. Degradation of polymer blends:Part V-Compatibility and photo-oxidation of LDPE-LLDPE blends in natural weathering conditions:A differential scanning calorimetry study[J]. Polym Degrad Stab,1990,28:275.
    [66]Bhateja S K, Andrews E H. Radiation-induced crystallinity changes in polyethylene blends [J]. J Mater sci,1986,20:2839.
    [67]Mironi-Haepaz I, Narkis M. Electrical behavior and structure of polypropylene/ultrahigh molecular weight polyethylene/carbon black immiscible blends[J]. J Appl Polym Sci,2001,81:104-115.
    [68]Song YH, Zheng Q. Conduction stability of high-density polyethylene/carbon black composites due to electric field action[J]. Eur Polym J,2005(41):2998-3003.
    [69]Kim J, Kang P H, Nho Y C. Positive temperature coefficient behavior of polymer composites having a high melting temperatu[J].J Appl polym Sci,2004,92:394-401.
    [70]Srivastava N K, Ranttan S, Mehra R M. Polym Eng Sci,2009,1136-1142.
    [71]Agari Y, Uno T. Thermal conductivity of polymer filled with carbon materials:Effect of conductive particle chains on thermal conductivity [J]. J Appl Polym Sci,1985,30:2225-2235.
    [72]Droval G, Feller J-F, Salagnac P, Glouannec P. Thermal conductivity enhancement of electrically insulating syndiotactic poly(styrene) matrix for diphasic conductive polymer composites [J]. Polym Adv Technol,2006,17:732-745.
    [73]El-Tantawy F, kamada K, Ohnabe H. A novel way of enhancing the electrical and thermal stability of conductive epoxy resin-carbon black composites via the Joule heating effect for heating-element applications [J]. J Appl Polym Sci,2003,87:97-109.
    [74]Tavman I H. Thermal and mechanical properties of copper powder filled polyethylene composites [J]. Powder Technol,1997,91:63-67.
    [75]Rusu M, Sofiana N, Rusu D. Mechanical and thermal properties of zinc powder filled high density polyethylene composites [J]. Polym Test,2001,20:409-417.
    [76]Chen Y M, Ting J M. Ultra high thermal conductivity polymer composites [J]. Carbon,2002, 40:359-362.
    [77]Sombatsompop N, Wood A K. measurement of thermal conductivity of polymers using an improved Lee's disc apparatus [J]. Polymer Testing,1997,16:203-223.
    [78]Dos Santos W N, Gregorio R. Hot-wire parallel technique:a new method for simutaneous determination of thermal properties of polymers [J], J Appl Polym Sci,2002,85:1779-1786.
    [79]Badawy M M. Effect of sulphur on both thermal and dielectric properties of pre-compressed FEF black-loaded SBR vulcanizates [J]. Polym Test,1996,15:507-515.
    [80]Mamunya Y P, Davydenko V V, Pissis P, et al. Electrical and thermal conductivity of polymers filled with metal pawders [J]. Eur Polym J,2002,38:1887-1897.
    [81]Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems [M]. Proc. R.Soc. London A,1957,241:376-396.
    [82]Hatta H, Taya M. Effective thermal conductive of a misoriented short fiber composite [J]. J Appl Phys 1985,58:2478-2486.
    [83]Hasselman D P H, Johnson L F. Effective thermal conductive of composites with interfacial thermal barrier resistance [J]. J Comp Mater.1987,21:508-515.
    [84]Every A G, Tzou Y, Hasselman D P H, et al. The effect of particle size on the thermal conductivity of ZnS/diamond composites [J]. Acta Metall Mater.1992,40:123-129
    [85]Dunn M L, Taya M, The effective thermal conductivity of composites with coated reinforcement and the application to imperfect interfaces [J]. J Appl Phys.1993,73:1711-1722.
    [86]Dunn M L, Taya M, Hatta H, et al. Thermal conductivity of hybrid short fiber composites [J]. J Comp Mater,1993,27:1493-1519.
    [87]Im W J, Taya M, Nguyen M N. Electrical and thermal conductivities of a silver flake/thermosetting polymer matrix composite [J]. Mech mater,2009,41:1116-1124.
    [88]Feller J F, Chauvelon P, Linossier I, et al. Characterization of electrical and thermal properties of extruded tapes of thermoplastic conductive polymer composites [J]. Polymer Testing,2003, 22:831-837.
    [89]Strumpler R, Maidorn G, Rhyner J. Fast current limitation by conducting polymer composites [J]. J Appl Phys,1997,81:6786-6794.
    [90]Cole K S, Cole R H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics [J]. J Chem Phys.1941,9:341.
    [91]Boettcher C J F, Bordewijk P. Theory of electric polarization, Vol II, Elservier, Amsterdam, 1978,62.
    [92]Davidson D W, Cole R H. Dielectric Relaxation in Glycerin [J]. J Chem Phys.1950,18:1417.
    [93]Havriliak S, Negami S. A complex plane analysis of a-dispersions in some polymer systems [J]. J Polym Sci,1966,4:99-117.
    [94]Xi Y, Bin YZ, Chiang C K, et al. Dielectric effects on positive temperature coefficient composites of polyethylene and short carbon fibers [J], Carbon,2007:1302-1309.
    [95]Chan CM, Cheng CL, Yuen MMF. Electrical properties of polymer composites prepared by sintering a mixture of carbon black and ultra-high molecular weight polyethylene powder [J]. Polym Eng and Sci,1997,37(7):1127-1136.
    [96]Miercaynska A, Friedrich J, Maneck H E, Boiteux G, Jeszka J K. Segregated network polymer/carbon nanotubes composites[J]. Central Eur J Chem,2004,2 (2):363-370.
    [97]Gao JF, Li ZM, Peng S, Yan DX. Temperature-resistivity behavior of CNTs/UHMWPE composites with a two-dimentional conductive network[J].Polym Plast Technol Eng,2009,48:478-481.
    [98]Chen Q; Xi Y; Bin Y; Matsuo M. Electrical and dielectric properties in carbon fiber-filled LMWPE/UHMWPE composites with different blend ratios [J]. J Polym Sci, Part B:Polym Phys, 2008,46:359-369.
    [99]Sawatari C, Ozaki F, Kimura M, Ogita T, Matsuo M. Crosslinking effect of ultrahigh molecular weight polyethylene-low molecular weight polyethylene blend films produced by gelation/crystallization from solutions [J]. Colloid Polym Sci,1991,269:795-806.
    [100]Sawatari C, Nishikido H, Matsuo M. Temperature dependence of mechanical and mophological properties of ultra-high molecular weight polyethylene cross-linked by electron beam irradiation [J]. Colloid Polym Sci,1988,266:316-323.
    [101]Kim S, Kang P H, Nho Y C, Yang O B. Effect of electron beam irradiation on physical properties of ultrahigh molecular weight polyethylene[J]. J Appl Polym Sci,2005,97:103-116.
    [102]Deng M, Latour RA, Drews MJ, Shalaby SW. Effect of gamma irradiation, irradiation environment, and postirradiation aging on thermal and tensile properties of ultrahigh molecular weight polyethylene fibers[J]. J Appl Polym Sci,1996,61:2075-2084.
    [103]Sawatari C, Matsuo M. Dynamic mechanical behavior of ultradrawn polyethylene films produced by gelation/crystallization from solution [J]. Colloid Polym Sci,1985,263:783-790.
    [104]Matsuo M, Sawatari C. Development of high-modulus polyethylene with heat-resistant properties [J]. Macromolecules,1987,20:1745-1747.
    [105]Shen FW, Mckellop HA, Salovey R. Irradiation of chemically crosslinked ultrahigh molecular weight polyethylene[J]. J Polym Sci, Part B:Polym Phys,1996,34:1063-1077.
    [106]Xu CY, Bin YZ, Agari Y, Matsuo M. Morphology and electric conductivity of cross-linked polyethylene-carbon black blends prepared by gelation/crystallization from solutions [J]. Colloid Polym Sci,1998,276:669-679.
    [107]Lewis G. Properties of crosslinked ultra-high-molecular-weight polyethylene [J]. Biomaterials,2001, 22:371-401.
    [108]Ikada Y, Nakamura K, Ogata S, et al. Characterization of ultrahigh molecular weight polyethylene irradiated with Y-rays and electron beams to high doses[J].J Polym Sci,Part A:Polym Chem,1999, 37:159-168.
    [109]Santos Alves A. L, Nascimento L. F. C., et al. Influence of weather and gamma irradiation on the mechanical and ballistic behaviors of UHMWPE composite armor[J]. Polym test,2005(24):104-113.
    [110]Izumi Y, Nishi M, Seguchi T, et al. Effect of molecular orientation on the radiolysis of polyethylene in the presence of oxygen[J].Radiat Phys Chem 1991,37:213.
    [111]Choudhury, M.; Hutchings, I. M. The effects of irradiation and ageing on the abrasive wear resistance of ultra high molecular weight polyethylene[J].Wear 1997,203-204.
    [112]Deng, M.; Shalaby, W. S. Effects of gamma irradiation, gas environments, and postirradiation aging on ultrahigh molecular weight polyethylene[J]. J Appl Polym Sci,1995,58:2111-2119.
    [113]Brandrup J.; Immergut E. H.; Grulke E. A. Polymer handbook.4th ed. New York:Wiley,1999.
    [114]Heaney M B. Measurement and Interpretations of Nonuniversal Critical Exponents in Disordered Conductor-Insulator Composites.[J].Phys Rev B,1995,52,12477-12480.
    [115]Chekanov Y, Ohnogi R, Asai S, Sumita M. Positive temperature coefficient effect of epoxy resin filled with short carbon fibers[J]. Polym J,1998,30,381-387.
    [116]Heaney M B. Electrical transport measurements of a carbon black-polymer composite[J]. Physica A, 1997,241:296-300.
    [117]Matsuo M, Inaba K. Morphological and Mechanical Properties of Nylon 6 Gel and Melt Films [J]. Polym J,1988,20:965-978.
    [118]Matsuo M, Sato R, Yanagida N, Shimizu Y. Deformation mechanism of Nylon 6 gel and melt films estimated in terms of orientation distribution function of crystallites [J]. Polymer,1992,33: 1640-1648.
    [119]Chapleau N, Mohanraj J, Ajji A, Ward IM. Roll-drawing and die-drawing of toughened poly(ethylene terephthalate). Part 1. Structure and mechanical characterization [J]. Polymer,2005,46: 1956-1966.
    [120]Matsuo M, Sawatari C. Morphological and mechanical properties of poly(ethylene terephthalate) gel and melt films in terms of the crystal lattice modulus, molecular orientation, and small angle X-ray scattering distribution [J]. Polym J,1990,22:518-538.
    [121]Xu C Y, Agari Y, Matsuo M. Mechanical and Electric Properties of Ultra-High-Molecular Weight Polyethylene and Carbon Black Particle Blends [J]. Polym J,1998,30(5):372-380.
    [122]Kawai H, Suehiro S, Kyu T, Shimomura A. Polym Eng Rev,1983,3:109.
    [123]Bin Y, Yamanaka A, Chen Q, Xi Y, Jiang X, Matsuo M. Polym J,2006,39:598-608.
    [124]Isaji S, Bin Y, Matsuo M. Electrical and self-heating properties of UHMWPE-EMMA-NiCF composite films [J]. J Polym Sci:Part B:Polym Phys,2009,47(13):1253-1266.
    [125]Narkis M, Ram A, Stain Z. Electrical properties of carbon black filled cross linked polyethylene [J]. Polym Eng and Sci,1981,21(16):1049-1054.
    [126]Vilcakova J, Saha P, Quadrat O. Electrical conductivity of carbon fibers/polyester resin composites in the percolation threshold region [J]. Eur Polym J,2002,38(12):2343-2347.
    [127]Mamunya Y P, Muzychenko Y V, Lebedev E V, Boiteus G, Seytre G, Boullanger C, et al. PTC effect and structure of polymer composites based on polyethylene/polyoxymethylene blend filled with dispersed iron [J]. Polym Eng and Sci,2007,47(1):34-42.
    [128]Yacubowicz J, Narkis M, Benguigui L. Electrical and dielectric properties of segregated carbon black-polyethylene systems.[J] Polym Eng Sci,1990,30:459-468.
    [129]Klason C, Kubat J. Anomalous behavior of electrical conductivity and thermal noise in carbon black-containing polymers at Tg and Tm [J]. J Appl Polym Sci,1975,19(3):831-845.
    [130]Yi X S, Shen L, Pan Y. Thermal volume expansion in polymeric PTC composite:a theoretical [J]. Comp Sci Tech,2001,61(7):949-956.
    [131]Wang BX, Yi X S, Pan Y, Shan HF. Volume expansion dependence of PTC effect of carbon black loaded polymer composite [J]. J Mater Sci Lett,1997,16(24):2005-2007.
    [132]Zhao Z D, Yu W X, He X J, Chen X F. The conduction mechanism of carbon black-filled poly(vinylidene fluoride) composite [J]. Mater Lett,2003; 57(20):3082-3088.
    [133]Mclachlan D S. An equation for the conductivity of binary mixtures with anisotropic grain structures[J].J Phys C:Solid State Phys,1987,20:865.
    [134]Mclachlan D S. Measurement and analysis of a model dual-conductivity medium using a generalised effective-medium theory[J]. J Phys, C:Solid State Phys,1988,21:1521.
    [135]Zhang C, Han H F, Yi XS, et al. Selective location of the filler and double percolation of Ketjenblack filled high density polyethylene/isotactic polypropylene blends[J]. Compos Interface,1999,6: 287-296.
    [136]Zhang C, Yi X S, Hui H,et al. Selective location and double percolation of short carbon fiber filled polymer blends:high density polyethylene/isotactic polypropylene [J]. Mater Lett,1998,36:186-190.
    [137]Ma L, Bin Y, Sakai Y, Chen Q,et al. Morphology and Mechanical Properties of Copolymer Ethylene-Methyl Methacrylate Films as a Function of Temperature Estimated by Polarized Light Scattering, X-ray, and 13C NMR[J]. Macromolecules,2001,34:4802-4814.
    [138]Ma L, Suzuki T, He C, Bin Y, Kurose H, Matsuo M. Molecular Mobility of Amorphous Chain Segments of Ethylene-Methyl Methacrylate Copolymer Films as a Function of Temperature Estimated by Positron Annihilation, X-ray Diffraction, and 13C NMR[J]. Macromolecules,2003, 36:8056-8065.
    [139]Ma L, Azuma M, He C, Suzuki T, Bin Y, Matsuo M, Characteristics of Ultradrawn Blend Films of Ethylene-Methyl Methacrylate Copolymer and Ultrahigh Molecular Weight Polyethylene Prepared by Gelation/Crystallization from Solutions Estimated by X-ray, Positron Annihilation, and 13C NMR[J].Macromolecules,2004(37):7673-7682.
    [140]Balberg I. Tunneling and nonuniversal conductivity in composite materials [J]. Phys.Rev.Lett.1987,59:1305-1308.
    [141]Flandin L, Brechet Y, Cavaille J Y, Electrically conductive polymer nanocomposites as deformation sensors[J]. Composite Sci Technol,2001,61(6):895-901.
    [142]Mohanraj G T, Chaki A, Chakraborty D, et al. Effect of some service conditions on the electrical resistivity of conductive styrene-butadiene rubber-carbon black composites[J].J Appl Polym Sci, 2004,92(44):2179-2188.
    [143]Stauffer D. Introduction to percolation theory,1987, Talyor and Francis, London, p 89.
    [144]Zhang W, Abbas Am Dehghani S, et al. Carbon based conductive polymer composites[J]. J Mater Sci,2007,42:3408-3418.
    [145]Balberg I, Bozowski S. Percolation in a composite of random stick-like conducting particles[J]. Solid State commun,1982,44:551-554.
    [146]Stinchcombe R B. Conductivity and spin-wave stiffness in disordered systems-an exactly soluble model[J]. J. Phys. C:Solid State Phys,1974,7:179.
    [147]Abeles B, Pinch H L, Gittleman J I. Percolation conductivity in W-Al2O3 granular metal films[J]. Phys Rev Lett,1975,35(4):247-250.
    [148]Stauffer D, "Introduction to percolation theory", Taylor& Franics, London & Philadelphia 1985, p.68.
    [149]Clerc J P, Girand G, Laugier J M, et al. The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models[J]. Adv Phys,1990,39:191-309.
    [150]Carmona F, Prudhon P, Barreau F. Percolation in short fibres epoxy resin composites:Conductivity behavior and finite size effects near threshold[J].Solid State Commun,1984,51 (4):255-257.
    [151]Levon K, Margolina A, Patashinsky AZ. Multiple percolation in conducting polymer blends [J]. Macromolecules,1993,26(15):4061-4063.
    [152]Bin Y, Yamanaka A, Chen Q, Xi Y, etc. Morphological, Electrical and Mechanical Properties of Ultrahigh Molecular Weight Polyethylene and Multi-wall Carbon Nanotube Composites Prepared in Decalin and Paraffin[J]. Polym J,2007(39):598-609.
    [153]Farid El-Tantawy. Joule heating treatments of conductive butyl rubber/ceramic superconductor composites:a new way for improving the stability and reproducibility[J]. Eur Polym J. 2001,37:565-574.
    [154]Mironi-Harpaz, I, Narkis, M. Thermoelectric behavior (PTC) of carbon black-containing TPX/UHMWPE and TPX/XL-UHMWPE blends[J]. J Polym Sci Part B:Polym Phys 2001,39(12): 1415-1428.
    [155]Matsuo M, Ma L, Azuma M,et al. Characteristics of Ultradrawn Polyethylene Films as a Function of Temperature Estimated by the Positron Annihilation Lifetime Method[J]. Macromolecules,2002, 35:3059-3065.
    [156]Tchoudakov R, Nakis M, Siegmann A, et al. Electrical conductivity of polymer blends containing liquid crystalline polymer and carbon black[J].Polym Eng Sci,2004,44(3):528-540.
    [157]Breuer O, Tzur A, Nakis M, et al. HIPS/γ-irradiated UHMWPE/carbon black blends:Structuring and enhancement of mechanical properties[J]. J Appl Polym Sci,1999,74(7):1731-1744.
    [158]Feller J F. Conductive polymer composites:Influence of extrusion conditions on positive temperature coefficient effect of poly(butylene terephthalate)/poly(olefin)-carbon black blends[J]. J Appl Polym Sci,2004,91(4):2151-2157.
    [159]Song Y H, Pan Y, Zhen Q, Yi X S. The electric self-heating behavior of graphite-filled highdensity polyethylene composites[J].2000,38,1756-1763.
    [160]Chung DDL. Materials for thermal conduction [J].Appl Therm Eng,2001,21 (16):1593-1605.
    [161]F El-Tantawy, Kamada K, Ohnabe H. In situ network structure, electrical and thermal properties of conductive epoxy resin-carbon black composites for electrical heater applications[J]. Mater Lett, 2002,56:112-126.
    [162]Isaji S, Bin Y Z, Matsuo M,Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films[J]. Polymer,2009,50:1046-1053.
    [163]Park D M, Hong W H, Kim S G, Kim H J. Heat generation of filled rubber vulcanizates and its relationship with vulcanizate network structures[J]. Eur Polym J,2000,36,2429-2436.
    [164]Doljack F A. PolySwitch PTC devices-a new low-resistance conductive polymer-based PTC device for overcurrent protection[J]. IEEE Trans Compos, Hybrids Manuf Technol,1981, Vol CHMT-4, No 4.
    [165]Yacubowicz J, Narkis M. Dielectric behavior of carbon black filled polymer composites [J]. Polym Eng Sci,1986,26:1568-1573.
    [166]Hindermann-Bischoff M, Ehrburger-Dolle F. Electrical conductivity of carbon black-polyethylene composites experimental evidence of the change of cluster connectivity in the PTC effect[J]. Carbon, 2001,39:375-382.
    [167]Lee G J, Suh K D. Study of electrical phenomen in carbon black-filled HDPE composite [J]. Polym Eng Sci,1998,38:471-477.
    [168]Dyre J C, Shroder T B. Universality of ac conduction in disordered solids[J]. Rev Mod Phys,2000, 72,873-892.
    [169]Bottger H, Bryskin U V.Hopping conduction in solids.Berlin:Akademie Verlag,1985, pp169-213.
    [170]Tchmutin A, Ponomarenko A T, Shevchenko V G,et al. Electrical transport in 0-3 epoxy resin-barium titanate-carbon black polymer composites[J]. J Polym Sci, Part B:Polym Phys,1997, 36:1847-1856.
    [171]Tsangaris G M, Psarras G C, Manolakaki E. DC and AC conductivity in polymeric particulates composites[J]. Adv Compos Lett,1999,8(1):25-29.
    [172]Psarras G C, Manolakaki E, Tsangaris G M. Electrical relaxations in polymeric particulate composites of epoxy resin and metal particles[J]. Compos Part A:Appl Sci Manufact,2002, 33:375-384.
    [173]Vijayalakshmi Rao R, Shridhar M H. Interfacial polarization in poly(4-vinyl pyridine)/NiPc/I2 composites[J]. Mater Lett,2002,55:34-40.
    [174]Vijayalakshmi R R, Shridhar M H. Effect of P-toluene sulphonic acid on the dielectric properties of mobile ions[J].J Non-Cryst Solids,1994,172-174:1395-407.
    [175]Dyre J C. The random free-energy barrier model for ac conduction in disordered solids[J]. J Appl Phys.1988,64(5):2456-2468.
    [176]Popielarz R, Chiang C K, Nozaki R, et al.Dielectric properties of polymer/ferroelectric ceramic composites from 100Hz to 10GHz[J].Macromolecules,2001,34:5910-5915.
    [177]Polymer Handbook,2nd ed. Wiley Interscience:New York,1975,pp Ⅲ-241-Ⅲ-244.
    [178]Myth C P. Dielectric behavior and structure. New York:McGramHill Book Company Inc; 1955.191-192.
    [179]Crum N G. Read B E, Williams G. Anelastic and dielectric effects in polymeric solids. New York: John Wiley and Sons; 1967,211-212.
    [180]Ku CC, Liepins D. Electrical properties of polymers. Munich:Hanser Publishers,1987,34-40.
    [181]Roldughin V I, Vysotskii V V. percolation properties of metal filled polymer films,structure and mechanisms of conductivity[J].Prog Org Coat,2000,39:81-100.
    [182]Tsangaris G M,Psarras G C, Kouloumbi N, et al. Evaluation of the dielectric behavior of particulate composites consisting of a polymer matrix and a conductive filler[J]. Mater Sci Technol,1996, 12:533-538.
    [183]Abd-El Ghany S, Abd-El Salam M H, Nasr G M.Study of dielectric properties of particulate blends[J]. J Appl Polym Sci,2000,77:1816-1821.
    [184]Tsangaris G M, Psarras G C. Permittivity and loss of composites of epoxy resin and Kevlar fibres[J]. Adv Compos Lett,1995,4(4):125-128.
    [185]Bin Y, Agari Y, Marsuo M. Morphology and electrical conductivity of the ultrahigh-molecular-weight polyethylene-low molecular weight polyethylene-carbon black composites prepared by gelation/crystallization from solutions[J]. Colloid Polym Sci,1999,277,452-461.
    [186]Tsangaris G M, Psarras G C. The dielectric response of a polymeric three-component composite[J]. J mater Sci,1999,34:2151-2157.
    [187]Springett B E. Effective medium theory for the ac behavior of a random system[J]. Phys Rev lett, 1973,31(24):1463-1465.
    [188]McLachlan D S, Hwang J H, Mason T O. Evaluation dielectric impedance spectra using effective media theories[J]. J Electroceram,2000,5(1):37-51.
    [189]Lux F. Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials[J]. J Mater Sci,1993,28:285-301.
    [190]Soares B G, leyva M E, Barra G M O,et al.Dielectric behavior o polyanilline synthesized by different techniques[J]. Eur Polym J,2006,42:676-686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700