用户名: 密码: 验证码:
微纳光波导倏逝场耦合结构及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波导耦合是一个经典课题,随着光子技术朝着集成化方向发展,它又被赋予了新的意义。作为集成光子器件的最基本单元,微纳米光波导一直是人们关注的对象,而微纳米光纤与SOI(silicon-on-insulator)波导近年来更是成为研究的热点,这主要得益于以下两个原因:第一,由于Si与SiO2或空气之间存在很大的折射率差,使得光场被紧紧地约束在Si波导中,从而可以把器件做得更小,将更多的光功能模块集成在同一个芯片内;第二,微纳光纤作为典型的微纳光波导,具有低损耗、强倏逝场以及色散参量可调等优点,使其在光电子领域内具有广泛的潜在应用价值,特别是微纳光纤具有与普通单模光纤天然融合的特点,使其成为集成光子芯片与光纤通信系统和网络之间的纽带。
     集成光子芯片封装以及片上或片间光互联的一个关键问题是光波导之间的耦合。在一个集成系统中,不同波导的几何结构或材料可能相同,也可能完全不同,这为耦合带来很大的挑战。本文以微纳光波导为出发点,着力探讨基于微纳光波导的高效耦合结构及其耦合特性。为此,我们设计了锥形微纳光纤耦合结构、微纳光纤与锥形SOI波导耦合结构以及基于锥形微纳光纤的多波导耦合结构,文中详细地介绍了这些结构的设计、制作方法以及它们的新颖特性。
     首先,论文对现有的波导耦合结构进行了分类。从耦合特征角度可分为强耦合与弱耦合;从耦合方式角度可分为纵向耦合与侧向耦合;从耦合工艺与技术角度可分为直接准直耦合、模场修正端面耦合以及利用其它辅助结构进行耦合等。并逐一阐述了每一类耦合结构的特点,以及它们的研究进展。
     其次,论文在理论上对几种不同材料、不同结构的微纳光波导的模场及其耦合进行了分析。主要针对常见的平板波导、硅基条形波导以及微纳光纤波导,深入讨论了它们的模场分布以及倏逝场特点。从纵向耦合和侧向耦合两种耦合类型出发,详细分析了微纳米光波导的耦合机理,讨论了决定耦合效率的主要因素,为接下来的耦合结构设计做了理论铺垫。在这部分,我们将微波领域的传输线理论引入到光通信波段,并将其应用于微纳光波导耦合结构的分析。实践证明,该方法对于耦合结构及其它微纳光子器件的设计、分析都具有重要的参考价值。文中还介绍了几种用于耦合结构设计的数值方法,并对本文用到的有限元法进行了详细的说明。
     然后,论文从实验和数值计算两个方面分析了基于微纳光波导的耦合问题。第一,通过大量实验,深入研究了两根同结构同材料的锥形微纳光纤波导之间的耦合特性。详细介绍了基于锥形微纳光纤的倏逝场耦合结构的设计,分析了锥形微纳米光纤波导的几何参数对耦合特性的影响,并给出了相关参数的优化原则。此外,本文还介绍了基于锥形微纳光纤耦合器的具体制作工艺和步骤,并利用实验室自制的微纳光纤制备系统制取了高效率的耦合结构。测试结果表明,其耦合效率最高可达95%。与传统的耦合结构不同,本部分所述结构,理论上可以通过优化其几何参数,使耦合效率随叠合长度收敛于任意所需要的值,这一特点可以大大降低设计中对加工精度的要求。第二,利用数值计算方法仿真了不同结构不同材料微纳波导之间的耦合特性。针对现有标准单模光纤与硅基波导耦合技术存在的问题,本文设计并仿真分析了一种基于微纳米光纤与锥形SOI波导的倏逝场耦合结构。文中深入地分析了微纳光纤的直径、锥形SOI波导的锥体长度、锥体顶端的宽度以及两波导之间的叠合长度等几何参数对耦合特性的影响,给出了参数优化的原则。针对不确定因素造成的实际加工出来的器件在参数上与设计要求不完全吻合的问题,文中着重分析了该结构主要几何参数的容错率。分析结果表明,直径为800nm的微纳光纤与锥体长度仅为4.5μm,厚度为220nm的锥形SOI波导耦合,当它们的叠合长度超过4μm后,其耦合效率保持在90%以上。并且,该结构的3dB工作带宽在300nm以上,各主要参数的容错率完全满足现有加工工艺的要求。文中随后还介绍了该结构的加工工艺流程,阐述了制造该结构的可行性。该结构解决了已有耦合技术在封装、加工、容错率、带宽、效率等方面存在的缺陷,在光互联、集成光子芯片封装中具有潜在的重要应用价值。
     接下来,基于上述相关理论、实验和仿真分析研究的成果,制作了一种新颖的多光束功率合成器,它是一种基于锥形微纳光纤的多波导倏逝场耦合结构的全新器件。在光通信以及片上光互联领域内,通常要求功率合束器高效率、低成本以及单模工作,传统的耦合结构很难兼具以上特点。本文所述的结构成功地解决了这一问题,同时还具有结构简单、制作容易、波长无关等特点,使得该结构在光电子领域具有非常重要的潜在应用价值。文中主要介绍了2×1、3×1和4×1三种功率合束器,并详细地分析了它们对相干光和非相干光的合束性能。利用锥形微纳光纤制备装置,我们得到了上述三种功率合束器,并测试了它们的合束性能。实验中,我们分别观测了它们对非相干光和相干光的合束情况,结果表明,它们对非相干光的合束效率可达90%。理论和实验都表明,对相干光的合束,即使在不采用锁相技术的情况下,其效率也可达80%~90%。
     最后,对论文工作进行了总结和展望。
As the fundamental element of integrated photonics, micro/nano opticalwaveguides (MNOW), including micro/nano optical fiber (MNOF) andsilicon-on-insulator (SOI) waveguide, have attracted widely attention, inrecent years. Due to the high refractive index contrast between siliconwaveguide core and air/silica substrate, the light field is confined in a verysmall size, which offers an excellent foundation for high density photonicintegration. And the MNOF, featured with low-loss, strong evanescent fieldand the compatibility with single-mode fibers, is the most promising methodfor the optical interconnects.
     A key issue for on-chip or inter-chip optical interconnection is thecoupling between waveguides. In this dissertation, we focus our research onthe analysis and design of highly-efficient coupling structures.
     First, we classify the coupling structures according to the couplingmechanism and technique, etc. The research progress is also reviewed.
     Secondly, we analyze theoretically the mode fields of several kinds ofmicro/nano optical waveguides with different structure or materials. Themode field distribution and the evanescent field characteristics for the slabwaveguide, the silicon strip waveguide and micro/nano fiber waveguide havebeen discussed in this section. The coupling mechanisms between micro/nanooptical waveguides are also introduced in detail. Several factors, determiningthe coupling efficiency of couplers, are discussed, which pave the way for thenext sections on the design of coupling structures. In addition, thetransmission-line model is proposed to analyze the coupling between two micro/nano wagveguides.
     Next, we study the coupling characteristics of micro/nano opticalwaveguides by using experiment and simulation method respectively. Acoupling structure consisting of two conical micro/nano fibers (CMNFs) withthe same structure and material is experimentally demonstrated. Distinct fromuniform micro/nano fibers (UMNFs), the coupling efficiency depends on notonly the overlapping length between two CMNFs but also the tapering angleof the CMNFs. With the increase of overlapping length, the couplingefficiency gradually converges to a stable value, with its convergence speeddetermined by the angle of the CMNFs. Experimental result shows theconvergent coupling efficiency can be larger than95%. And experimentalresults also show that the coupling characteristics of CMNFs are dependenton overlapping length and taper angle, which verify the simulationconclusions. Meanwhile, the coupling characteristics of the couplerconsisting of two waveguides with different materials and structure are alsosimulated. The proposed structure is characterized by high couplingefficiency, wavelength insensitivity, large misalignment tolerance, and easyfabrication. Theoretical analysis and numerical simulation results show thatcoupling efficiency of>90%can be achieved with a taper length of~4.5μm.With these advantages, we believe the proposed coupling structure can beused for optical packages of silicon photonic chips.
     And then, using the prior results of the theory, experiment andsimulation, we propose a novel multi-beam power combiner which is anevanescent field-based coupling structure by using tapered micro-nano fibers.Traditionally, it is difficult to realize the power combiner by using opticalfiber coupler. However, in our experiment, we find a novle structure tocombine optical power from two or more fibers into one fiber by usingtapered micro-nano fiber. It shows that the maximum power combingefficiency can be higher than90%. The combining efficiency is overlaplength dependence. As long as the overlap length is long enough (~7mm), astable high combining efficiency can always be achieved. The presented optical power combiners with the advantages of easy fabrication, low-loss,low-cost, and wavelength insensitivity can find potential applications inmicro/nano photonic devices, optical communications and opticalinterconnects.
     Finally, a conclusion and expectation are made for the dissertation
引文
1. Intel. Available from: http://techresearch.intel.com/ResearchAreaDetails.aspx?Id=26.
    2. Rong, H., et al., A cascaded silicon Raman laser. Nature photonics,2008.2(3): p.170-174.
    3. Rong, H., et al., A continuous-wave Raman silicon laser. Nature,2005.433(7027): p.725-728.
    4. Kang, Y., et al., Monolithic germanium/silicon avalanche photodiodes with340GHz gain-bandwidth product. Nature photonics,2008.3(1): p.59-63.
    5. Alduino, A., et al. Demonstration of a high speed4-channel integrated siliconphotonics WDM link with hybrid silicon lasers: OSA/IPR/PS2010. p. PDIWI5.
    6. Liao, L., et al. Silicon photonic modulator and integration for high-speedapplications. IEEE International Electron Devices Meeting,2008. IEDM2008.
    7. Yariv, A.,现代通信光电子学.2009,电子工业出版社.
    8. J Marcatili, E., Dielectric rectangular waveguide and directional coupler forintegrated optics. Bell Systems Technical Journal,1969.48(21): p.2071-2102.
    9. Yariv, A., Coupled-mode theory for guided-wave optics. IEEE Journal of QuantumElectronics,1973.9(9): p.919-933.
    10. Huang, K., S. Yang, and L. Tong, Modeling of evanescent coupling between twoparallel optical nanowires. Applied optics,2007.46(9): p.1429-1434.
    11. Wang, G., et al., Theoretical investigation of nanowaveguide-based optical couplerusing mode expansion transfer matrix. Microwave and Optical Technology Letters.52(5): p.1123-1129.
    12. Hardy, A. and W. Streifer, Coupled mode theory of parallel waveguides. Journal ofLightwave Technology,1985.3(5): p.1135-1146.
    13. Marcatili, E., Improved coupled-mode equations for dielectric guides. IEEE Journalof Quantum Electronics,1986.22(6): p.988-993.
    14.吴重庆,光波导理论.2nd ed.2005:清华大学出版社.
    15. Bulmer, C., et al., High-fficiency flip-chip coupling between single-mode fibers andLiNbO3channel waveguides. Applied Physics Letters,1980.37(4): p.351-353.
    16. Murphy, E. and T. Rice, Low-loss coupling of multiple fiber arrays to single-modewaveguides. Journal of Lightwave Technology,1983.1(3): p.479-482.
    17. Kunde, J., et al., Versatile Multifiber Optical Connectivity Solution: From Conceptto Realization. Journal of Lightwave Technology,2007.25(2): p.562-570.
    18. Bogert, G., E. Murphy, and R. Ku, Low crosstalk4×4TiLiNbO3optical switch withpermanently attached polarization maintaining fiber array. Journal of LightwaveTechnology,1986.4(10): p.1542-1545.
    19. Yamada, Y. and M. Kobayashi, Single-mode optical fiber connection to high-silicawaveguide with fiber guiding-groove. Journal of Lightwave Technology,1987.5(12): p.1716-1720.
    20. Lestra, A. and J.Y. Emery, Monolithic integration of spot-size converters with
    1.3-um lasers and1.55-um polarization insensitive semiconductor opticalamplifiers. IEEE Journal of Selected Topics in Quantum Electronics,1998.3(6): p.1429-1440.
    21. Johnson, J., et al., Monolithically integrated semiconductor optical amplifier andelectroabsorption modulator with dual-waveguide spot-size converter input. IEEEJournal of Selected Topics in Quantum Electronics,2000.6(1): p.19-25.
    22. Li, L.H., et al. Monolithically integrated low-loss three-dimensional spot-sizeconverter and silicon photonic waveguides constructed by nanotuned Bosch processand oxidation. J. Micro/Nanolith. MEMS MOEMS2011. p.023002.
    23. Liu, J., et al. Fused biconical tapered technique based light beam coupling betweena single mode fiber and a high nonlinearly photonic crystal fiber. Conference onOptical Fiber Communication2009. OFC2009.
    24. Yang, L., et al., Characteristic analysis of tapered lens fibers for light focusing andbutt-coupling to a silicon rib waveguide. Applied optics,2009.48(4): p.672-678.
    25. Hasegawa, T., T. Nagashima, and N. Sugimoto. A simple tapered bismuth-basednonlinear optical fiber for low-loss coupling to single-mode silica fibers.Conference on Optical Fiber Communication2006. OFC2006.
    26. Kundu, M. and S. Gangopadhyay, Laser diode to monomode elliptic core fiberexcitation via hemispherical lens on the fiber tip: Efficiency computation by ABCDmatrix with consideration for allowable aperture. Optik-International Journal forLight and Electron Optics,2006.117(12): p.586-590.
    27. Marcuse, D., Gaussian approximation of the fundamental modes of graded-indexfibers. JOSA,1978.68(1): p.103-109.
    28. Gong, S.H., et al., Effect of varying pore size of AAO films on refractive index andbirefringence measured by prism coupling technique. Optics Letters.36(21): p.4272-4274.
    29. Hibbins, A.P., et al., Prism coupling to'designer'surface plasmons. Opt. Express,2008.16: p.20441-20447.
    30. Taillaert, D., et al., An out-of-plane grating coupler for efficient butt-couplingbetween compact planar waveguides and single-mode fibers. IEEE Journal ofQuantum Electronics,2002.38(7): p.949-955.
    31. Worthing, P. and W.L. Barnes, Efficient coupling of surface plasmon polaritons toradiation using a bi-grating. Applied Physics Letters,2001.79: p.3035.
    32.张克潜and李德杰,微波与光电子学中的电磁理论.2nd ed.2002:电子工业出版社.
    33. Morales, A.M. and C.M. Lieber, A laser ablation method for the synthesis ofcrystalline semiconductor nanowires. Science,1998.279(5348): p.208.
    34. Kohler, R., et al., Terahertz semiconductor-heterostructure laser. Nature,2002.417(6885): p.156-159.
    35. Beck, M., et al., Continuous wave operation of a mid-infrared semiconductor laserat room temperature. Science,2002.295(5553): p.301.
    36. VG Kozlov, V.B. and S. PE Burrows, Laser action in organic semiconductorwaveguide and double-heterostructure devices. Nature,1997.389(6649): p.362-364.
    37. Datta, S. and B. Das, Electronic analog of the electr-optic modulator. AppliedPhysics Letters,1990.56(7): p.665-667.
    38. Liu, A., et al., A high-speed silicon optical modulator based on ametal-oxide-semiconductor capacitor. Nature,2004.427(6975): p.615-618.
    39. Shi, Y., et al., Low (sub-1-volt) halfwave voltage polymeric electro-optic modulatorsachieved by controlling chromophore shape. Science,2000.288(5463): p.119.
    40. Dragone, C., An N×N optical multiplexer using a planar arrangement of two starcouplers. IEEE Photonics Technology Letters,1991.3(9): p.812-815.
    41. Bachmann, M., P. Besse, and H. Melchior, General self-imaging properties in N×Nmultimode interference couplers including phase relations. Applied optics,1994.33(18): p.3905-3911.
    42. Vlasov, Y., W.M.J. Green, and F. Xia, High-throughput silicon nanophotonicwavelength-insensitive switch for on-chip optical networks. Nature photonics,2008.2(4): p.242-246.
    43. Tanabe, T., et al., All-optical switches on a silicon chip realized using photoniccrystal nanocavities. Applied Physics Letters,2005.87(15): p.151112-151112-3.
    44. Nakamura, S., Y. Ueno, and K. Tajima,168-Gb/s all-optical wavelength conversionwith a symmetric-Mach-Zehnder-type switch. IEEE Photonics Technology Letters,2001.13(10): p.1091-1093.
    45. Asobe, M., T. Kanamori, and K. Kubodera, Applications of highly nonlinearchalcogenide glass fibers in ultrafast all-optical switches. IEEE Journal ofQuantum Electronics,1993.29(8): p.2325-2333.
    46. Little, B.E., et al., Microring resonator channel dropping filters. Journal ofLightwave Technology,1997.15(6): p.998-1005.
    47. Deslandes, D. and K. Wu, Single-substrate integration technique of planar circuitsand waveguide filters. IEEE Transactions on Microwave Theory and Techniques,2003.51(2): p.593-596.
    48. Little, B., et al., Very high-order microring resonator filters for WDM applications.IEEE Photonics Technology Letters,2004.16(10): p.2263-2265.
    49. Liu, Z., et al., High-efficiency guided-mode resonance filter. Optics Letters,1998.23(19): p.1556-1558.
    50.马春生,光波导模式理论.2nd ed.2007:吉林大学出版社.
    51. Tong, L., J. Lou, and E. Mazur, Single-mode guiding properties ofsubwavelength-diameter silica and silicon wire waveguides. Opt. Express,2004.12(6): p.1025-1035.
    52. Chuang, S.L., A coupled mode formulation by reciprocity and a variationalprinciple. Journal of Lightwave Technology,1987.5(1): p.5-15.
    53. Streifer, W., M. Osinski, and A. Hardy, Reformulation of the coupled-mode theory ofmultiwaveguide systems. Journal of Lightwave Technology,1987.5(1): p.1-4.
    54. Matuschek, N., F. Kartner, and U. Keller, Exact coupled-mode theories formultilayer interference coatings with arbitrary strong index modulations. IEEEJournal of Quantum Electronics,1997.33(3): p.295-302.
    55. Chuang, S.L., Application of the strongly coupled-mode theory to integrated opticaldevices. IEEE Journal of Quantum Electronics,1987.23(5): p.499-509.
    56. Engheta, N., Circuits with light at nanoscales: Optical nanocircuits inspired bymetamaterials. Science,2007.317(5845): p.1698-1702.
    57. Engheta, N. and A. Salandrino, Circuit elements at optical frequencies:Nanoinductors, nanocapacitors, and nanoresistors. Physical review letters,2005.95(9): p.95504.
    58. Jackson, J.D., Classical Electrodynamics.1999: Wiley.
    59. Alù., A. and N. Engheta, All optical metamaterial circuit board at the nanoscale.Physical review letters,2009.103(14): p.143902.
    60. Feit, M. and J. Fleck Jr, Light propagation in graded-index optical fibers. Appliedoptics,1978.17(24): p.3990-3998.
    61. Chung, Y. and N. Dagli, An assessment of finite difference beam propagationmethod. IEEE Journal of Quantum Electronics,1990.26(8): p.1335-1339.
    62. Koshiba, M., Y. Tsuji, and M. Hikari, Time-domain beam propagation method andits application to photonic crystal circuits. Journal of Lightwave Technology,2000.18(1): p.102.
    63.金建铭,电磁场有限元方法.1998:西安电子科技大学.
    64.王秉中,计算电磁学.2002:科学出版社.
    65.葛德彪,电磁波时域有限差分方法.2nd ed.2006:西安电子科技大学出版社.
    66.赵奎,有限元简明教程.2009:冶金工业出版社.
    67.徐斌, MATLAB有限元结构动力学分析与工程应用.2009:清华大学出版社.
    68. Tong, L., et al., Subwavelength-diameter silica wires for low-loss optical waveguiding. Nature,2003.426(6968): p.816-819.
    69. Lou, J., L. Tong, and Z. Ye, Modeling of silica nanowires for optical sensing. OpticsExpress,2005.13(6): p.2135-2140.
    70. Sumetsky, M., Optical fiber microcoil resonators. Optics Express,2004.12(10): p.2303-2316.
    71. Sumetsky, M., et al., Optical microfiber loop resonator. Applied Physics Letters,2005.86: p.161108.
    72. Luan, F., et al., Photoinduced whispering gallery mode microcavity resonator in achalcogenide microfiber. Optics Letters.36(24): p.4761-4763.
    73. Jiang, X., et al., Demonstration of optical microfiber knot resonators. AppliedPhysics Letters,2006.88: p.223501.
    74. Yu, W., et al., A tunable all-fiber filter based on microfiber loop resonator. AppliedPhysics Letters,2008.92: p.191112.
    75. Yeom, D.I., et al., Low-threshold supercontinuum generation in highly nonlinearchalcogenide nanowires. Optics Letters,2008.33(7): p.660-662.
    76. Birks, T., et al. Supercontinuum generation in tapered fibres. Lasers andElectro-Optics,2002. CLEO '02.
    77. Turke, D., et al., Coherence of subsequent supercontinuum pulses generated intapered fibers in the femtosecond regime. Optics Express,2007.15(5): p.2732-2741.
    78. Foster, M.A., et al., Nonlinear optics in photonic nanowires. Optics Express,2008.16(2): p.1300-1320.
    79. Grubsky, V. and A. Savchenko, Glass micro-fibers for efficient third harmonicgeneration. Optics Express,2005.13(18): p.6798-6806.
    80. Grubsky, V. and J. Feinberg, Phase-matched third-harmonic UV generation usinglow-order modes in a glass micro-fiber. Optics communications,2007.274(2): p.447-450.
    81. Wiedemann, U., et al., Measurement of submicrometre diameters of tapered opticalfibres using harmonic generation. Optics Express.18(8): p.7693-7704.
    82. Broderick, N., Optical Snakes and Ladders: Dispersion and nonlinearity inmicrocoil resonators. Optics Express,2008.16(20): p.16247-16254.
    83. Li, Y. and L. Tong, Mach-Zehnder interferometers assembled with opticalmicrofibers or nanofibers. Optics Letters,2008.33(4): p.303-305.
    84. Sumetsky, M., How thin can a microfiber be and still guide light? Optics Letters,2006.31(7): p.870-872.
    85. Engheta, N., Circuits with light at nanoscales: optical nanocircuits inspired bymetamaterials. Science,2007.317(5845): p.1698.
    86. Hong, Z., et al. Transmission-line model for analyzing the coupling between twoparallel micro/nano-fibers: Wireless and Optical Communications Conference(WOCC),2010.
    87. Tong, L., et al., Photonic nanowires directly drawn from bulk glasses. OpticsExpress,2006.14(1): p.82-87.
    88. Brambilla, G., V. Finazzi, and D. Richardson, Ultra-low-loss optical fibernanotapers. Optics Express,2004.12(10): p.2258-2263.
    89. Brambilla, G., Optical fibre nanowires and microwires: a review. Journal of Optics.12: p.043001.
    90. Ward, J.M., et al., Heat-and-pull rig for fiber taper fabrication. Review of scientificinstruments,2006.77: p.083105.
    91. Shi, L., et al., Fabrication of submicron-diameter silica fibers using electric stripheater. Opt. Express,2006.14(12): p.5055-5060.
    92.黄宏嘉,保持圆偏振态的光纤和它的制备方法.1994:发明专利,中国.
    93. Birks, T.A. and Y.W. Li, The shape of fiber tapers. Journal of LightwaveTechnology,1992.10(4): p.432-438.
    94. Sherwood-Droz, N., et al., Optical4x4hitless silicon router for opticalNetworks-on-Chip (NoC). Opt. Express,2008.16: p.19395-19395.
    95. Yang, M., et al., Non-blocking4x4electro-optic silicon switch for on-chip photonicnetworks. Optics Express.19(1): p.47-54.
    96. Available from: http://image.baidu.com.
    97. Pogossian, S.P., L. Vescan, and A. Vonsovici, The single-mode condition forsemiconductor rib waveguides with large cross section. Journal of LightwaveTechnology,1998.16(10): p.1851-1853.
    98.余金中,半导体光电子技术.1st ed.2003:化学工业出版社.
    99. Chu, A. and S. Hong, Buried Sol-gel/SiON Waveguide Structure for PassiveAlignment to Single-Mode Fiber on Si Substrate. IEEE Photonics TechnologyLetters,2007.19(1): p.45-47.
    100. Vivien, L., et al., Design, realization, and characterization of3-D taper forfiber/micro-waveguide coupling. IEEE Journal of Selected Topics in QuantumElectronics,2006.12(6): p.1354-1358.
    101. Lee, K.K., et al., Mode transformer for miniaturized optical circuits. Optics Letters,2005.30(5): p.498-500.
    102. Dai, D., S. He, and H.K. Tsang, Bilevel mode converter between a silicon nanowirewaveguide and a larger waveguide. Journal of Lightwave Technology,2006.24(6):p.2428.
    103. Sure, A., et al., Fabrication and characterization of three-dimensional silicon tapers.Optics Express,2003.11(26): p.3555-3561.
    104. Loh, T.H., et al., Ultra-compact multilayer Si/SiO2GRIN lens mode-size converterfor coupling single-mode fiber to Si-wire waveguide. Optics Express.18(21): p.21519-21533.
    105. Roelkens, G., et al., High efficiency diffractive grating couplers for interfacing asingle mode optical fiber with a nanophotonic silicon-on-insulator waveguidecircuit. Applied Physics Letters,2008.92: p.131101.
    106. Chen, X., C. Li, and H.K. Tsang, Fabrication-tolerant waveguide chirped gratingcoupler for coupling to a perfectly vertical optical fiber. IEEE PhotonicsTechnology Letters,2008.20(23): p.1914-1916.
    107. Ang, T., et al., Highly efficient unibond silicon-on-insulator blazed grating couplers.Applied Physics Letters,2000.77: p.4214.
    108. Wang, B., J. Jiang, and G.P. Nordin, Embedded slanted grating for vertical couplingbetween fibers and silicon-on-insulator planar waveguides. IEEE PhotonicsTechnology Letters,2005.17(9): p.1884-1886.
    109. Masanovic, G.Z., V.M.N. Passaro, and G.T. Reed, Dual grating-assisted directionalcoupling between fibers and thin semiconductor waveguides. IEEE PhotonicsTechnology Letters,2003.15(10): p.1395-1397.
    110. Tao, S., et al., Improving coupling efficiency of fiber-waveguide coupling with adouble-tip coupler. Optics Express,2008.16(25): p.20803-20808.
    111. Lu, Z., Efficient fiber-to-waveguide coupling through the vertical leakage from amicroring. Optics Letters,2007.32(19): p.2861-2863.
    112. Dillon, T., et al., Fiber-to-waveguide coupler based on the parabolic reflector.Optics Letters,2008.33(9): p.896-898.
    113. Eggleton, B., et al., Microstructured optical fiber devices. Optics Express,2001.9(13): p.698-713.
    114.施敏(著) and陈军宁(译),半导体制造工艺基础.1st ed.2007,安徽:安徽大学出版社.
    115. Mu, J., C. Xu, and W.P. Huang, An optical power combiner/wavelengthdemultiplexing module for hybrid WDM FTTX. Optics Express,2009.17(6): p.4791-4797.
    116. Yamada, H., et al., Vertical-coupling optical interface for on-chip opticalinterconnection. Optics Express.19(2): p.698-703.
    117. Fan, T., Laser beam combining for high-power, high-radiance sources. IEEEJournal of Selected Topics in Quantum Electronics,2005.11(3): p.567-577.
    118. Shen, T. and D. Rogovin, Coherent beam combination at interfaces via surfacepolariton effects. Physical review letters,1988.61(8): p.951-954.
    119. Ma, Y., et al., Coherent beam combination of1.08kW fiber amplifier array usingsingle frequency dithering technique. Optics Letters.36(6): p.951-953.
    120. Uberna, R., A. Bratcher, and B.G. Tiemann, Coherent polarization beamcombination. IEEE Journal of Quantum Electronics.46(8): p.1191-1196.
    121. Noordegraaf, D., et al. All-fiber7×1signal combiner for incoherent laser beamcombining. Proceedings of SPIE,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700