用户名: 密码: 验证码:
伺服直驱泵控液压系统及其节能机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伺服直驱泵控液压技术是一种新型传动技术,具有节能、高效、宽调速范围、高可靠性、低噪音、易实现计算机数字控制等诸多优点,在成形加工装备领域有着广泛的潜在的应用。但伺服直驱泵控液压系统属于容积调速,且包含了驱动器和电机环节,使得整个系统存在响应慢、控制特性差等难点问题,本文围绕这些难点问题进行了深入系统的研究,并对伺服直驱泵控液压技术的节能机理进行了深入探讨。
     建立了伺服直驱泵控液压系统的数学模型,对主要参数对于伺服直驱泵控液压系统的性能影响进行了仿真分析和开环阶跃响应实验研究;对伺服直驱泵控液压系统和进口节流阀调速系统进行了能耗分析和对比实验研究;研究了可拓控制、神经网络模型预测控制等智能控制策略在伺服直驱泵控液压系统中的应用;研究了伺服直驱泵控液压系统的节能机理,设计了一种伺服直驱泵控液压机并对其动态性能和能耗进行了仿真和实验研究;研究了伺服直驱泵控液压驱动技术在传统压铸机节能改造中的应用并通过仿真和实验进行了节能机理研究。本文的主要贡献包括以下几个部分:
     (1)针对电液伺服系统快速性、稳定性和精确性存在矛盾的问题,提出了一种多模态可拓控制方法,根据提取的系统特征信息,建立特征状态可拓关联函数,由关联度来划分测度模式选择不同的控制模态,在不同控制论域内分别采用不同的控制策略,通过多模态可拓控制切换器实现分段控制,使每一种控制策略在其能够有效控制的范围内达到理想的控制效果,从而兼顾系统快速性、稳定性和精确性的要求。该系统具有较快的响应速度和对参数变化的鲁棒性,并能实现高精度控制,为电液伺服系统的智能控制提供了新的途径。
     (2)针对传统控制策略的滞后性和液压系统强非线性、参数时变等特点,将神经网络模型预测控制应用于伺服直驱泵控液压系统中,提出了伺服直驱泵控液压系统神经网络预测控制。设计了控制系统结构并进行了仿真研究,该系统能实现在线自学习,比常规PID控制和模糊控制等控制策略具有更好的自适应能力和控制性能。
     (3)建立了伺服直驱泵控液压系统的数学模型和能耗分析仿真方法,对该系统的响应速度、精度和稳定性进行了理论分析,提出了提高其动态性能的措施;研究了伺服直驱泵控液压系统的节能机理。与切削加工不同,成形加工呈现出周期尖峰的负载特性,为适应这一特性,普通液压驱动系统无论是容积调速还是节流调速,均不可避免地存在能量损失;而伺服直驱泵控液压系统依靠伺服电机的速度、扭矩控制,主动适应变化的负载特性,可实现最大限度节能。
     (4)设计了2000kN多功能伺服直驱泵控液压机液压系统,开发了首台样机。结合一种具体的金属板材拉深工艺,对伺服直驱泵控液压机的工作性能和节能机理进行了理论分析、数值仿真和实验研究。其主要节能环节在于保压减少溢流和待机时电机停转。研究表明,该液压机可实现位移(速度)或压力的双闭环控制,可优化工艺程序;较同型号普通液压机节能20%以上,数值模拟与实验结论较好地吻合。
     (5)设计了8000kN压铸机伺服直驱泵控改造方案并付诸实施。对该系统的节能机理进行了仿真和实验研究。实验表明,改造后的压铸机节能达46.3%,提高生产效率5%,数值模拟与实验结论较好地吻合。其节能的主要环节在于伺服直驱泵控液压驱动技术解决了动力源和变负载的匹配问题,减少了节流损耗和溢流损耗;而生产率的提高的主要原因在于蓄能器补液阶段和空行程阶段电机加速。
     鉴于国内目前尚无商品化伺服直驱泵控液压机和压铸机产品,本文的研究为该类新产品的开发提供了理论基础和技术指导,具有重要的理论和实用价值。
Direct drive pump-controlled servo hydraulic technology is a new transmission technology with advantages such as energy-saving, high efficiency, wide timing range, high reliability, low noise and being easy to realize digital control, and it has broad and potential application in forming equipment field. But direct drive pump-controlled servo hydraulic system is a kind of volume velocity governing, along with including the part of driver and motor, it has main key problems of long response time and imperfect control performance. Deep and systematic researches have been done centered on the difficult problems, and the applications of direct drive pump-controlled servo hydraulic technology in forming equipment and its energy-saving mechanism have been thoroughly explored
     The mathematical model of direct drive pump-controlled servo hydraulic system was built, simulations and open-loop step experiments were held to analyze and research the affect that main parameters exert on the performance of direct drive pump-controlled servo hydraulic system. The energy consumption analysis and experiment of the two systems, which are pump-controlled speed governing system and hydraulic speed governing system with inlet throttle, are given. The applications of intelligent control strategies, including extension control and neural network predictive control, were studied. The application of direct drive pump-controlled servo hydraulic technology in hydraulic press was researched, a pump-controlled servo hydraulic press was designed and its dynamic performance and energy consumption simulation and experiment was made. The application of direct drive pump-controlled servo hydraulic technology in retrofitting traditional die casting machines are given, and the simulation and experiment were made. Concretely, the dissertation's main contributions are as follows:
     (1) Aiming at the contradiction between rapid response, stability and accuracy in position control of pump-controlled electro-hydraulic servo system, a multi-mode extension control electro-hydraulic servo system was proposed. According to the characteristic information of the system, correlation function was established by multi-mode extension control switch. The movement process was divided into three parts according to correlative degree, different control mode is used in different domain to realize subsection control. Every control mode could get ideal result in its effective control domain. Multiple requirements of control system are considered and the goals of rapid, smooth and accurate positioning could be got. The system had rapid response and strong robustness, and can realize high precision control. It provides a new way for the intelligent control of electro-hydraulic system.
     (2) Aiming at the hysteresis of traditional control strategy and the strong nonlinearity and time-varying parameters of hydraulic systems, neural network model predictive control was applied to direct drive pump-controlled servo hydraulic system, the structure of control system was designed and the simulation research was carried out. The system can realize on-line self-learning, compared with traditional PID control and fuzzy control, it has better self-adaptive ability and control precision.
     (3) Mathematical model and energy consumption simulation method for direct drive pump-controlled servo hydraulic system have been built, and the measures to improve its dynamic performance have been proposed on the basis of analyzing its response speed and precision stability theoretically; the energy-saving mechanism of direct drive pump-controlled servo hydraulic system have been researched. Unlike cutting, load of forming process presents periodical peak-like feature, to fit it, the traditional hydraulic drive system exists energy loss inevitably no matter volume speed governing or cutting speed governing are adopted; however, relying on controlling speed and torque to fit actively the varying load, direct drive pump-controlled servo hydraulic system can save energy to the full.
     (4) The hydraulic system of the2000kN multi function direct drive pump-controlled servo hydraulic press was designed and the first prototype was developed. Taking a specific metal sheet deep-drawing process as an example, the working principle and energy-saving mechanism were analyzed theoretically and simulated numerically and researched by experiment. The main energy-saving links lies in reducing the overflow in keeping pressure stage and stopping the motor in standby stage. The study shows the hydraulic press can realize position (speed) and pressure double closed-loop control, and can optimize the process program. Compared to same type of traditional hydraulic press, over20%energy can be saved, the simulations were in agreement with the experiments.
     (5) The direct drive pump-controlled servo retrofitting scheme for8000kN die casting machine was given and carried out. The energy-saving mechanism was researched by simulation and experiment. The experiment shows that the retrofitted die casting machine can save46.3%energy and improve production efficiency by5%. The simulation was identical with the experiment. The main energy-saving links lays that direct drive pump-controlled servo hydraulic technology solved the problem of the match between the power source and the varying load, lowering the throttling loss and the overflow loss; the main reason for improving the production was speeding up the motor during the accumulator adding oil.
     Given at present there are not commercial direct drive pump-controlled servo hydraulic presses and die casting machines in China, the research of the paper provides theoretical basis and technological guidance for the development of such new products and possesses important theory and application value.
引文
[1]姚绪梁.现代交流调速技术[M].哈尔滨:哈尔滨工程大学出版社,2009.
    [2]彭天好.变频泵控马达调速及补偿特性的研究[D].浙江大学,2003.
    [3]李崇坚.交流同步电机调速系统[M].北京:科学出版社,2006.
    [4]Blaschke, F.; Bohm, K. A method of field measurement in the control of convertor controlled asynchronous machines[J]. Messen Steuern Regeln mit Automatisierungspraxis.1975,18(12):AP278-80.
    [5]M.Depenbrock. Direct self-control (DSC) of convertor-fed three-phase machines with high dynamic performance[J]. ETZ Archiv,1985,7(7): 211-18.
    [6]涂婉丽.直接容积控制电液伺服系统动态性能研究[D].哈尔滨工业大学.2005
    [7]L. zhong, M. F. Rahman, W. Y. Hu, K. W. lim. Analysis of direct torque control in permanent magnet synchronous motor drives [J]. IEEE Trans. On SMC, No.8,1997.
    [8]Lewis F L, Abdallah C T, Dawson D M. Control of Robotic Manipulators [M]. Maxwell Macmillan,1993.
    [9]Sebe N, Lew M S, Cohen I, et al. Emotion recognition using a Cauchy Naive Bayes classifier [C]. Proc.16th International Conf. Pattern Recognition, vol.1:17-20,2002.
    [10]Passino K M. Bridging the gap between conventional and intelligent control [J]. IEEE control Systems Magazine,1993,13(3):12-18.
    [11]Linkens D A Nyongesa H 0. Intelligent systems in intelligent control: an appraisal of fuzzy, neural and genetic algorithm control applications [J]. IEE Proc.-Control Theory Appl,1996,143(4):367-386.
    [12]Saradis G N, Preface. In Antsaklis P J, Passino K M (Ed). An Introduction to Intelligent and Autonomous Control [J]. Kluwer Academic Pubisher, 1993.
    [13]李士勇.模糊控制、神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,2006:4-5.
    [14]Zadeh L A. Fuzzy Sets [J]. Information and Control,1965 (8):338-353.
    [15]Zadeh L A. Fuzzy algorithm [J]. Information and Control,1965 (12): 94-102.
    [16]许力.智能控制与智能系统[M].北京:机械工业出版社,2007.
    [17]魏东.非线性系统神经网络参数预测及控制[M].北京:机械工业出版社,2008.
    [18]Su H T, McAvoy T J, Werbos P J. Long-Term Predictive Chemical Processes Using Recurrent Neural Networks [J]. Industrial Application of Chemical Engineering Research,1992,31(8):1338-1352.
    [19]Buescher K L, Baum C C.A Two-Timescale Approach to Nonlinear Model Predictive Control[C]. Proceedings of American Control Conference. Seatle,1995:2250-2256.
    [20]Namarreno J M, Vega P. Neural Predictive Control:Application to a High Nonlinear System[C]. Proceedings of 13th IFAC World Conference. San Francisco,1996:19-24.
    [21]Najim K, Rusnak A, Meszaros A. Constrained Long-Range Predictive Control Based on Artificial Neural Networks[J]. System Science,1997,28(2): 1211-1226.
    [22]张日东,王树青.基于神经网络的非线性系统多步预测控制[J].控制与决策,2005,20(3):332-336.
    [23]蔡文,杨春燕,何斌.可拓学基础理论研究的新进展[J].中国工程科学,2003,5(2):80-87.
    [24]蔡文,杨春燕,林伟初.可拓工程方法[M].北京:科学出版社,2000.
    [25]蔡文,杨春燕,何斌.可拓逻辑初步[M].北京:科学出版社,2003.
    [26]杨春燕,蔡文.可拓工程研究[J].中国工程科学,2000,2(12):90-96.
    [27]汪明慧,船舶操纵系统的自适应模糊可拓控制研究[D].广东工业大学,2010.
    [28]王行愚,李健.论可拓控制[J].控制理论与应用,1994,11(1):125-128.
    [29]李健,王行愚.一种新型的专家系统—可拓专家系统[J].华东化工学院学报,1993,19(5):617-621.
    [30]潘东,金以慧.可拓控制的探索与研究[J].控制理论与应用,1996,(13)3:305-311
    [31]张吉文,余永权.物元模型可拓控制的控制算法实现[J].广东自动化与信息工程,2000,3:5-7.
    [32]余永权.可拓检测技术[J].中国工程科学[J].2001,3(4):88-93.
    [33]余永权,张吉文.可拓检测的方案生成[J].中国工程科学,2002,4(1):64-68.
    [34]鲁庆,余永权.相关物元及其在可拓检测中的应用[J].广东工业大学学报,2005.22(2):58-63.
    [35]王万良,吴刚.分层多变量可拓控制器及其应用[J].广东工业大学学报,1999,4:102-105.
    [36]翁庆昌,陈珍源.非线性系统的自适应可拓控制器设计[J].中国工程科学,2001,3(7):54-58.
    [37]张永,吴晓蓓.一类多变量自校正系统的可拓控制[J].南京理工大学学报,2002,26(5):486-489.
    [38]刁晨,陈希平.基于可拓控制的离散变结构系统的组合控制[J].计算机仿真,2007,24(2):130-133.
    [39]陈珍源,翁庆昌.基于滑模控制的可拓控制器设计[J].中国工程科学,2001,3(9):48-51.
    [40]张洪波.直接电液伺服系统理论分析及实验研究[D].哈尔滨工业大学,2004.
    [41]李洪人.液压控制系统[M].北京:国防工业出版社,1990.
    [42]Radek Mansek. Simulation of an Electrohydrualic load-sensor-ing system with ac motor and frequency changer[C]. Hamburg:Pro. c of 1st FPNI-Phd Sypm,2000:311-324.
    [43]K. Grotenburg, F. Koch,. I. Erlich.Modeling and dynamic simulation of variable speed pump storage units incorporated into the german electic power system[J].EPE Trondheim,2001,8(1):66-67.
    [44]U.Bachmann. Variable speed pumping a guide to successful applications[J]. Journal of fluid contol,1998,10(1):50-62.
    [45]Katsuhiko Ogata, Modern contol engineering (Third Edition) [M]. Bejing:Publishing House OF Electroinics Industry,2000.
    [46]S.A rimotoa ndS ugum.R obustnesso fle arningc ontrolfo rro botm anipulators.Pro c.1990IE EEI nt. C onf. R obA utumn.1990, (5):1318.
    [47]刘庆和.电液伺服直接驱动装置,电液压技术资料简编[M],哈尔滨:哈尔滨工业大学出版社,1999:1-3.
    [48]L. zhong, M. F. Ra hman, W. Y. Hu, K. W. Li m. A nalysis of direct torque control in permanent magnet sy nchronous motor drives. IEEE Trans. On SMC No.8,1997.
    [49]苏文海.电液棍合动力机构及其位置控制研究[D].哈尔滨工业大学.2003.
    [50]王世明,李天石.交流变频容积调速回路的特性与速度控制[J].机床与液压.1999,(5):22-23.
    [51]胡东明.液压电梯变转速闭式电液系统速度控制特性研究[D].浙江大学.2009.
    [52]Kalmanje Krishnakumar. Micro-genetic Algorithms for Stationary and Non-stionary Function Optimization[J]. Intel ligent Control and Adaptive Systems,1989(1196):289-296.
    [53]Masanori ITO, Noriki, HIROSE, Etsuro SHIMIZU. Main Engine Revolution Control for Ship with Direct Drive Volume Control System. [M] TOKYO,2000:253.
    [54]Jahns, T. M. Van Nocker, R. C.High-performance EHA controlsu sing an interior permanent magnet motor. Aerospace and Electronic Systems, IEEE Transactions on[J],1990,26:534-542.
    [55]YUTAKA Tanaka, KAZUO Nakano, NAOYUKI Yamamoto. Energy saving hydraulic power source usinginverter—motor drive[A].First JHPS International Symposium on Fluid Power Tokyo [C]. Tokyo:Centennial Memorial Hall Tokyo Institute of Technology,1989:83-90.
    [56]YUTAKA Tanaka, KAZUO Nakano. Variable speed control of hydraulic pump for energy savings [A]. Proceedings of the Ind International Symposium on Fluid Power Transmission and Control [C]. Beijing, Beijing Institute of Technology,1991:124-128.
    [57]YUTAKA Tanaka, TETSUJ I Machda, KAZUO Nakano. Speed and displacement control of pump system for energy saving [A]. Proceedings of the 2nd International Symposium on Fluid Power Transmission and Control [C]. Shanghai:Shanghai Science & Technolo Literature Publishin House,1995:12-16.
    [58]B. Kazmeier, D. G. Feldman, et al. Electro-hydrostatic low power linear drive-system perfomance and controls to minimize power consumption. Proceedings of the 3nd international symposium on Fluid Power transmission and control, Hangzhou, P.R.China,1997.
    [59]Helduser, S., Ruhlicke, I. Antriebssysteme mit drehzahlveranderharen Pumpen. AIN-AbschluBbericht Nr.25/B 9953,1996.
    [60]Helduser. S., Neuhert. Th. Elekrohydraulisehe Antriebssysteme mlt drehzahlveranderbarenPumpen VDMA-AbschluBbericht. Eresden2001.
    [61]Nenbert. Th., Helblg, A. RegeibarnPumpenantriebe verbessern Spritzgie Bmaschinen. Maschiaenmarkt43/2000.
    [62]M. ITO, H. SA TO, Y Maeda. Direct Drive Volume Control of Hydraulic System and its Application to the S teering System of Ship. FLUCOME'97, Hayama3 (1):445-450.
    [63]Masanori. ITO, Noriki, HIROSE, Etsuro. SHIMIZU. Main Engine Revolution Control for Ship with Direct Drive Volume Control System. ISME TOKYO, 2000. Volume II:26-31.
    [64]徐绳武.从节能看液压传动控制系统发展的三个阶段[J],液压气动与密封,2005,(5):22.
    [65]姜继海,苏文海,刘庆和,直接容积控制电液伺服系统[J],军民两用技术与产品,2003,9:44.
    [66]United States Patent, Patent Number:US4593792.
    [67]AHN Kyoung Kwan. New Energy Saving Hybrid Actuator and Application to Mechanical System.R esearch Report in HIT University.2005,4.
    [68]Hong Sun, T. George, C. Chiu. Nonlinear Observer Based Force Control of Electro-HydraulicA ctuators. Proceedings of the American Control Conference. Sand iego, Califonria.1999:764-768.
    [69]Zavala Eddie, Fiber. Optic Experience with the Smart Actuation System on F18 Systems Research Aircraft, NASA TM-97-206224:7.3,9-25.
    [70]Achim Helbig. In jection moulding machine with electric-hydrostatic drives.3rd intenrational fluid power co nference. Aachen, Germany,20 02:23-33.
    [71]John A. Anderson. VARIABLE DISPLACEMENT ELECRO-HYDROSTATIC ACTUATOR. NAECON91'IEEE National Aerospace and electronics Conference Dayton.19 91:529-534.
    [72]智峰二代全闭环精密伺服节能注塑机.广东佳明机器有限公司.2011.
    [73]王吉龙.基于变频技术的液压调速系统控制方案的仿真研究.大连海事大学.2006.
    [74]黄方平,变频闭式液压动力系统的设计及应用研究[D],浙江大学,2005,2:8
    [75]黄方平,徐兵,采用节能缸的变频闭式液压升降系统的研制[J],2005,2:22-24.
    [76]彭天好,杨华勇,徐兵.变频回转液压系统的动态特性仿真.机床与液压.2001,(3):7-9.
    [77]张一丁,徐兵,丁惠公.变转速泵控液压缸实验仿真分析.液压与气动.2003,(1):18-20.
    [78]彭天好,徐兵,杨华勇.变频泵控马达调速系统遗传算法PID控制.液压与气动,2003,(11):1-3.
    [79]黎勉,罗勇武等.交流变频调速在液压系统中的应用[J].机床与液压.1997,6:16-17.
    [80]何寄平,孙友松,郑洪波,黎勉,查晓春,泵控伺服液压机节能分析[C],第四届锻压装备与制造技术论坛论文集,2009.8:137-139.
    [81]Su Wenhai, Jiang Jihai. Direct drive volume control electro-hydraulic servo ship rudder[J]. Key Engineering Materials,2010,439-440: 1388-1392.
    [82]姜继海,苏文海,张洪波,刘庆和.直接容积控制电液伺服系统及其在船舶舵 机上的应用[J].中国造船.2004,4:56-58.
    [83]姜继海,涂婉丽,曹健.直接容积控制电液伺服系统动态性能研究[J].液压与气动.2005,8:29.
    [84]祁晓野,付永领,王占林.功率电传机载作动系统方案分析[J].北京航空航天大学学报.1999,(4):426-430.
    [85]付永领,徐步力,那波.一种新型无伺服阀电液伺服执行器[J],机床与液压.2002,(7):44-45.
    [86]李军,付永领,裴忠才,王占林等.电静液传动系统中BLDCM的仿人智能PID复合控制[A].第二十三届中国控制会议(CCC04).江苏无锡.2004年8月10-13日.
    [87]权龙.基于可调速电动机的高动态节能型电液动力源[J].中国机械工程.2003,(7):606-609.
    [88]郑建明,赵升吨,魏树国.开关磁阻电机直接驱动容积控制技术在液压机上的应用[J].锻压装备与制造技术,2008,1:11.
    [89]Wei S. G., Zhao S. D., Zheng J. M.. Self-tuning dead-zone compensation fuzzy logic controller for a switched-reluctance-motor direct-drive hydraulic press[J]. Proceedings of the Institution of Mechanical Engineers, Par Ⅰ,2009,223(15):647-656.
    [90]王世明,曹阳,李天石.交流变频容积调速伺服系统的FNN控制[J].液压气动与密封.1999,(6):18-20.
    [91]Zheng Jianming. Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press [J]. Control Engineering Practice,2009,17(12):1398-1404.
    [92]Zheng Jianming, Zhao Shengdun, Wei Shuguo. Fuzzy iterative learning control of electro-hydraulic servo system for SRM direct-drive volume control hydraulic press[J], Journal of Central South University of Technology (English Edition),2010,17(2):316-322.
    [93]Zhoujialong, ZhaoMingyang. Simulation Analysis of Direct Drive Volume Control of Electro-hydraulic Servo System. Proceedings of ISFP'2007: 5th International Symposium on Fluid Power Transmission and Control. June 6-8,2007, Beidaihe. China.
    [94]Yu Yang, Shi Boqiang. Design and simulation of direct drive volume control actuator[J]. Applied Mechanics and Materials,2012,155-156: 162-166.
    [95]彭天好,徐兵,杨华勇.变频液压技术的发展及研究综述.浙江大学学报(工学版),2004,38(2):216-220.
    [96]Cui Bowen, Zhou Jihua, RenZhang. Modeling and simulation of permanent magnet synchronous motor drives [C]. Electrical Machines and Systems. 2001:905—908. ICEMS 2001. Proceedings of the Fifth International Conference.
    [97]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社,2003.
    [98]杨玉涛,张小栋.高速电磁阀模型建立及响应特性研究[J],测控技术,2008,27(6):86-89.
    [99]任杉,李玮,韩青.基于MATLAB的阀控缸伺服系统仿真分析[J],装备制造技术,2009,(9):32-33.
    [100]张静.MATLAB在控制系统中的应用[M].北京:电子工业出版社,2007.
    [101]张磊,毕靖,郭莲英MATLAB实用教材.北京:人民邮电出版社,2008.
    [102]窦满锋,刘卫国.高效节能稀土永磁同步电机设计技术研究[J].西北工业大学学报,2004.22(3):355-358.
    [103]李大寅,周舟,朱宁迪.永磁同步伺服电机在注塑机中的应用[J].橡塑技术与装备,2005,31(7):58-60.
    [104]杨春燕,蔡文.可拓工程[M].北京:科学出版社,2007.
    [105]Primary Research on Extension Control [A]. LI jian, WANG xingyu. Pro. of International Conference on Information and Systems[C]. AMSE 1991, Hangzhou, China:19911:392—395.
    [106]杨刚.可拓控制的算法改进及其仿真研究[D].广州:广东工业大学,2009.
    [107]张德丰MATLAB模糊系统设计[M].北京:国防工业出版社,2009.
    [108]张红军,张翔,佟明明.线性插值模糊控制及其在PLC上的实现[J].计算机测量与控制,2008,16(11):1632-1634.
    [109]郑洪波,孙友松,黎勉等.伺服直驱泵控电液伺服系统建模与动态特性仿真[J].锻压技术,2011,36(5)66-70.
    [110]崔伟荣.永磁同步电动机功率因数的仿真分析[D].南京:南京航空航天大学,2006.
    [111]王卫卫.材料成形设备[M].北京:机械工业出版社,2004.
    [112]孙友松,周先辉,黎勉等.交流伺服压力机及其关键技术[J],锻压技术,2008,33(4):1-8.
    [113]许明,金波,沈海阔等,基于能量调节的电液变转速控制系统中能量调节器的分析与设计[J].机械工程学报,2010,46(4):136-142.
    [114]何存兴.液压元件[M].北京:机械工业出版社,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700