用户名: 密码: 验证码:
成人简单—中等复杂程度先天性心脏病拷贝数变异的高分辨率遗传学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近30年来随着医学技术水平的进步和内、外科纠治水平的提高,85%罹患先天性心脏病(CHD)的儿童患者可以良好成活至生育年龄。在美国大约130万的成年人患有CHD,即成人先天性心脏病(ACHD),而这个数字正以每年5%的速度递增。美国心脏病协会根据ACHD的复杂程度,将ACHD分为简单、中等程度及复杂病变三个类别,其中简单至中等复杂程度的单纯性CHD(如房间隔缺损、室间隔缺损等)约占据ACHD的70%。这些病变的患者大多是在当地医院或者普通的社区医院就诊,并未进行过遗传测试或咨询,而遗传咨询和产前诊断对于这个群体非常重要。
     在本实验中,我们采用比较基因组杂交芯片技术方法来研究简单至中等复杂程度的的ACHD患者的基因拷贝数变异(CNVs)情况,并根据结果对相关患者进行了可能致病基因的筛查,为CHD的发病机制提供新的线索和理论依据,也有助于该类人群的遗传咨询和产前诊断。
     目的:研究分析简单-中等复杂程度成人先天性心脏病的基因拷贝数变异,并筛选其可能的致病基因,逐步建立表型与基因型的相关性。研究结果为患者的病因解释、个体化诊疗和遗传咨询等方面给予极大的帮助,以及对进一步阐明先心病的病因学机制研究打下基础。
     方法:本研究对100个患有不同种类的成人非复杂型的先天性心脏病的患者和65个健康对照组进行了全基因组比较基因组杂交芯片技术(array-CGH)分析,并应用另外一个array-CGH平台对有意义的实验结果进行了验证。根据实验结果对所有VSD患者进行了CRKL基因突变筛查。本研究收集ACHD患者和对照组的外周静脉血,采用酚-氯仿法提取全基因组DNA,标记并保存。基因芯片检测平台为Roche NimbleGen公司的array-CGH检测平台(Human CGH3x720K Whole-Genome Tiling v3.0array芯片,GenePix4000B分析仪,NimbleScanTM v2.6和NimbleGen’sSignalMapTM v1.9分析软件)。此平台共包含720,000个位点,探针之间的平均间隔是2509个碱基对。为了评估拷贝数变异增加或者减少,我们分别应用0.3和-0.3作为log2比率阈值。我们应用该平台检测所有研究对象的的全基因组DNA,并与美国国立医学图书馆的国家生物技术信息中心基因数据库、美国加州大学圣克鲁兹分校基因数据库中公布的基因序列相比较,并参考以上数据库中公布的区段性复制区域区域及正常的CNVs,除外其对数据的影响,并排除染色体片段拷贝数异常仅覆盖基因内含子的区域,从而整理出具有临床意义的染色体片段拷贝数异常的数据。我们又对检测出18q23,22q11.2,3q21.3的3位患者用另一个array-CGH平台(AgilentTechnologies DNA microarray4.2M)进行了验证。根据实验结果对22q11.2微缺失患者及其他VSD患者进行了CRKL基因突变筛查。
     结果:本研究通过array-CGH分析总共得到45个较大的CNVs,其中包括13个拷贝数缺失和32个拷贝数重复。该45个CNVs来自于36个ACHD样本中的40个独立位点,平均基因组大小是405.3kb。其中有39个CNVs仅存在于唯一一个患者。对照组样本中发现14个稀有而较大的CNVs。研究证明,在ACHD患者中出现稀有而较大的CNVs比健康对照组中的稀有而较大的CNVs频率高,但统计学显示无显著性差异(39/100vs.14/65, p=0.02)。在ACHD组中发现一例患者存在22q11.2微缺失,大小为0.7Mb,与经典3Mb的22q11.2微缺失有少量重叠。我们同既往报道过的有相同拷贝数异常区域的患者表型对比,本研究存在22q11.2微缺失的患者(10085)并不存在典型的DiGeorge综合征、颚心面综合征和圆锥动脉干异常面容综合征的心脏外表型。在45个CNVs中,其中3个CNVs中(22q11.2,18q23,3q21.3)发现有与心脏发育密切相关的基因(CRKL, NFATC1, PLXNA1)。其中CRKL参与心脏流出道和咽弓动脉的重建,NFATC1参与心脏瓣膜和心脏间隔的形态发生过程,而PLXNA1参与神经管的行程和心脏形态发生。在健康对照组的样本中,未发现有包含有与心脏发育相关的基因的CNVs。分析较大的CNVs在相同位点的发生率,我们发现有两位ACHD患者均存在16q23.1微重复。第一位患者100536是一位26岁的男性,他和他的父亲均有相同类型的ASD,且存在相同的16q23.1微重复。患者100183是一位存在PDA的男性患者,他也存在16q23.1的微重复,且与患者100536均包含基因WWOX。另一位也存在遗传性CHD的患者未发现存在拷贝数异常。此外,另两个染色体位点(9q22.33,6q24.1)分别存在于两个CHD病例中,但是无显著性差异(2/100vs.0/65, p=0.366, Fisher确切概率法)。本研究根据实验结果对22q11.2微缺失患者及其他VSD患者进行了CRKL基因突变筛查,结果显示所有VSD患者并无CRKL任何形式的基因突变。
     结论:本研究首次以简单-中等复杂程度成人先天性心脏病这个群体为研究对象。经Array-CGH分析100例简单-中等复杂程度ACHD患者及65例健康对照组,总共得到45个稀有且较大的CNVs。在ACHD组中发现一例VSD患者存在“非典型”远端22q11.2微缺失,而该患者不存在与22q11.2微缺失综合征相关的心脏外畸形。在其中3个CNVs (22q11.2,18q23,3q21.3)中发现有与心脏发育密切相关的基因(CRKL, NFATC1, PLXNA1)。研究发现了两位ACHD患者及其中一位患者的父亲均存在16q23.1微重复。基因筛查结果显示CRKL不是本例22q11.2微缺失患者的致病基因。研究结果有助于该类人群的遗传咨询和产前诊断,也为先天性心脏病的发病机制提供新的线索和理论依据。
In past decades, a new population of adults with congenital heart disease(ACHD) emerged who need specialized care. The American College ofCardiology developed a classification pattern to categorize ACHD patients,according to the disease complexity: simple, moderate, and complex lesions.Simple-to-moderate isolated CHD constitute approximately70%of A CHD.Genetic counseling about inheritance, including transmission of CHD tooffspring, is an important issue in this population. Most patients with ACHDhave not had genetic testing or counseling, especially for the simple or moderatelesions. Individuals with these lesions are commonly seen at regional ACHDcenters, or cared for in the general medical community.
     In this study, we used array-CGH to identify the simple-to-moderateisolated CHD. This study has immediate consequences for genetic counsellingand should pave the way for the elucidation of the pathogenetic mechanismsunderlying CHD.
     Objective: We assayed submicroscopic imbalances in adults with CHDfocusing on simple-to-moderate phenotypes, with no associated dysmorphisms,a group not previously examined. This CNVs profile provides a spectrum ofgenomic imbalances in this condition, and improves the CNV-phenotype correlations.
     Methods: A total of100adults with a diverse range of isolated CHD and65ethnically matched controls were screened using whole-genome arraycomparative genomic hybridization(array-CGH). Blood samples were collectedand genomic DNA was extracted using standard methods. High-resolutionoligonucleotide array comparative genomic hybridization (CGH) was performedusing a Human CGH3x720K Whole-Genome Tiling v3.0array, whichcontains720,000probes with a median probe spacing of2509base pair.Labeling and hybridization were performed following the manufacturer’sprotocol. The patient’s DNA and the reference DNA were labeled with eitherCyanine3(Cy-3) or Cyanine5(Cy-5) by random priming and then hybridizedto the chip via incubation in the MAUI hybridization system. The arrays werescanned (GenePix4000B) and analyzed by NimbleScanTM v2.6andNimbleGen’s SignalMapTM v1.9software. For the assessment of copy numbergains and losses, we used conservative log2ratio thresholds of0.3and-0.3,respectively. Genomic positions refer to human assembly NCBI36/hg18. TheCNVs smaller than20kb were not studied further. We have analyzed the controlpopulation using the same array design.
     Results: Altogether45large CNVs (13deletions and32duplications) wereobserved at40unique loci from36individuals with an average genomic size of405.3kb. Thirty-nine of the CNVs were unique, each seen in just one patient.Using the same computational algorithm,14putative rare large CNVs were identified. The frequency of rare large CNVs was greater in adult CHD casesthan in control cases, but the difference was not statistically significant (39/100vs.14/65, p=0.02). One patient had a0.7Mb22q11.2deletion, whichmarginally overlapped the common3Mb22q11.2deletion. The clinicalphenotype was examined and findings were compared with those previouslyreported on this genomic region. The patient with22q11.2deletion lacked anyextracardiac phenotype that typically associated with the DiGeorge,velocardiofacial and conotruncal anomaly face syndromes.These variants werenot listed in the Database of Genomic Variants nor found in controls. In three ofthese genomic imbalances (22q11.2,18q23,3q21.3), genes that play animportant role in cardiac development were implicated CRKL, NFATC1,PLXNA1, the latter has not been associated with human CHD before. CRKLwas associated with morphogenesis of cardiac valves and septum, NFATC1wasinvolved in the remodeling of the cardiac outflow tract and pharyngeal archarteries, and PLXNA1was associated with neural tube formation and cardiacmorphogenesis. There was no gene involved in heart development identified inthe CNVs for controls. Studying the occurrence of CNVs at the same loci in theremaining large CNVs, we revealed two patients with16q23.1microduplication.The first patient (100536) was a26-year-old male, both he and his father, whoshared the same cardiac phenotype of atrial septal defect (ASD), carried theidentical duplication of16q23.1. Case100183was a male with patent ductusarteriosus (PDA), he also had a duplication of16q23.1, which encompassed the same gene WWOX with100536. Additionally, CNVs at other two loci (9q22.33,6q24.1) were found in two CHD cases respectively, but the difference was notstatistically significant (2/100vs.0/65, p=0.366, Fisher’s exact test).
     Conclusion: For the mild-to-moderate phenotypes of isolated ACHD,spare genetic studies have been made.45large (>100kb) rare copy numbervariants (CNVs) were identified in36/100patients. These variants were notlisted in the Database of Genomic Variants nor found in controls. In three ofthese genomic imbalances (22q11.2,18q23,3q21.3), genes that play animportant role in cardiac development were implicated CRKL, NFATC1,PLXNA1, the latter has not been associated with human CHD before. This studydisclosed a0.7Mb22q11.2deletion, which marginally overlapped the common3Mb22q11.2deletions, in one patient with a ventricular septal defect withoutany extracardiac manifestation. Furthermore, we detected one inheritedaberration dup (16q23.1), previously unreported. We make a fine mapping ofchromosomal imbalances and genotype-phenotype comparisons of the clinicallywell-defined patients to seek loci and genes associated with ACHD.
引文
[1] Pierpont, M.E., et al. Genetic basis for congenital heart defects: currentknowledge: a scientific statement from the American Heart AssociationCongenital Cardiac Defects Committee, Council on CardiovascularDisease in the Young: endorsed by the American Academy of Pediatrics[J]. Circulation,2007,115(23):3015-3038.
    [2] Suzuki, Y.J. and T. Evans. Regulation of cardiac myocyte apoptosis by theGATA-4transcription factor [J]. Life Sci,2004,74(15):1829-1838.
    [3] Bruneau, B.G.. Chromatin remodeling in heart development [J]. CurrOpinGenet Dev,2010,20(5):505-511.
    [4] van der Bom, T., et al. The changing epidemiology of congenital heartdisease [J]. Nat Rev Cardiol,2011,8(1):50-60.
    [5] Wang, X., et al. Investigation of parvovirus B19in cardiac tissue frompatients with congenital heart disease [J]. Chin Med J (Engl),1999,112(11):995-997.
    [6] Galie`N, Manes A, Palazzini M, et al. Management of pulmonary arterialhypertension associated with congenital systemic-topulmonary shunts andEisenmenger’s syndrome [J]. Drugs,2008,68:1049-1066.
    [7] Galie`N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis andtreatment of pulmonary hypertension: the Task Force for the Diagnosisand Treatment of Pulmonary Hypertension of the European Society ofCardiology (ESC) and the European Respiratory Society (ERS), endorsedby the International Society of Heart and Lung Transplantation (ISHLT)[J]. Eur Heart J,2009,30:2493-2537.
    [8] Tomlinson T W, Scott C H, Trotman H L. Congenital cardiovascularlesions in children with trisomy21at the Bustamante Hospital forChildren [J]. Cardiol Young,2010,20(3):327-331.
    [9] Saenz de Buruaga JD, Taft LF, Dooley KJ, et al. Population based studyof congenital heart defects in Down syndrome [J]. Am J Med Genet,2008,80(3):213.
    [10] Freeman SB, Shah E, Valles V, et al. Down’s syndrome and congenitalheart disease (author’s transl.)[J]. An Esp Pediatr,2010,13(1):43.
    [11] Frid C, Bjorkhem G, Jonz on A, et al. Long term survival in children witharticular septal defect and common atrioventricular valvar orifice inSweden [J]. Cardiol Young,2009,14(1):24.
    [12] Dolk, H.,M. Loane, and E. Game, The prevalence of congenital anomaliesin Europe [J]. Adv Exp Med Biol,2010,686:349-364.
    [13] Dai, L., J. Zhu, J. Liang, et al. Birth defects surveillance in China[J].World J Pediatr,2011,7(4):302-310.
    [14] Gramellini, D., S. Fieni, and E. Vadora. Prenatal diagnosis of isolatedlimb defects: an updated review[J]. Fetal Diagn Then,2005,20(2):96-101.
    [15] Holt M, and S. Oram. Familial heart disease with skeletal malformations[J]. Br Heart J,1960,22:236-242.
    [16] Basson CT, Cowley GS, Solomon SD, et al. The clinical and geneticspectrum of the Holt-Oram syndrome (heart-hand syndrome)[J]. N Engl JMed,1994,330:885-891.
    [17] Lichiardopol C, Militaru C, Popescu B, et al. Holt-Oram syndrome [J].Rom J Morphol Embryol,2007,48(1):67-70.
    [18] Nora JJ, Nora AH, Sinha AK, et al. The Ullrich-Noonan syndrome(Turner phenotype)[J]. American Journal of Diseases of Children,1974,127:48-55.
    [19] Noonan JA. Hypertelorism with Turner phenotype. A new syndrome withassociated congenital heart disease [J]. American Journal of Diseases ofChildren,1968,116:373-380.
    [20] Jamieson CR, van der Burgt I, Brady AF, et al. Mapping a gene forNoonan syndrome to the long arm of chromosome12[J]. Nat Genet,1994,8(4):357-360.
    [21] Legius E, Schollen E, Matthijs G, et al. Fine mapping of Noonan/cardio-facio cutaneous syndrome in a large family [J]. Eur J Hum Genet,1998,6(1):32-37
    [22] Tartaglia M, Mehler EL, Goldberg R, et al. Mutations in PTPN11,encoding the protein tyrosine phosphatase SHP-2, cause Noonansyndrome [J]. Nat Genet,2001,29(4):465-468.
    [23] Tartaglia M, Gelb BD, Zenker M. Noonan syndrome and clinically relateddisorders [J]. Best Pract Res Clin Endocrinol Metab,2011,25(1):161-179.
    [24] Tartaglia M, Gelb BD, Disorders of dysregulated signal traffic through theRAS-MAPK pathway: phenotypic spectrum and molecular mechanisms[J]. Ann N Y Acad Sci,2010,1214:99-121.
    [25] Shchelochkov OA, Patel A, Weissenberger GM, et al. Duplication ofchromosome band12q24.11q24.23results in apparent Noonan syndrome[J]. Am J Med Genet A,2008,146A:1042-1048.
    [26] Yamagishi H. The22q11deletion syndrome. Keio J Med,2002,51(2):77.
    [27] Oskarsdottir S, Persson C, Enksson BO, et al. Presenting phenotype in100children with the22q11deletion syndrome [J]. Eur J Pediatr,2005,164(3):146-153.
    [28] DiGeorge AM. Discussions on a new concept of the cellular basis ofimmunology [J]. J Pediatr,1965,67:907.
    [29] Kitsiou-Tzeli S, Kolialexi A, Fryssira H, et al. Deletion of22q11.2deletion among139patients with DiGeorge/Velo-cardio-facial syndromefeatures [J]. In Vivo,2004,18(5):603-608.
    [30] Edelmann L, Pandita RK, Spiteri E, et al. A common molecular basis forrearrangement disorders on chromosome22q11[J].Hum Mol Genet,1999,8:1157-1167.
    [31] McDermid HE, Morrow BE. Genomic disorders on22q11[J]. Am J HumGenet,2002,70:1077-1088.
    [32] Carlson C, Sirotkin H, Pandita R, et al. Molecular definition of22q11deletions in151velo-cardio-facial syndrome patients[J]. Am J HumGenet,1997,61:620-629.
    [33] Shaikh TH, Kurahashi H, Saitta SC, et al. Chromosome22-specific lowcopy repeats and the22q11.2deletion syndrome: genomic organizationand deletion endpoint analysis[J]. Hum Mol Genet,2000,9:489-501.
    [34] Lindsay EA, Vitelli F, Su H, et al. Tbx1haploinsufficieny in the Di-George syndrome region causes aortic arch defects in mice [J]. Nature,2001,410:97-101.
    [35] Guris, D. L., Duester, G., Papaioannou, V. E., et al. Dose-dependentinteraction of Tbxl and Crkl and locally aberrant RA signaling in a modelof del22ql1syndrome[J]. Dev. Cell,2006,10,81-92.
    [36] Wessels, M.W., P.J. Willems. Genetic factors in non-syndromiccongenital heart malformations [J]. Clin Genet,2010,78(2):103-123
    [37] Bruneau, B.G., The developmental genetics of congenital heart disease [J].Nature,2008,451:943-948.
    [38] van der Bom, T., et al., The changing epidemiology of congenital heartdisease[J]. Nat Rev Cardiol,2011,8(1):50-60.
    [39] Patient R K, McGhee J D. The GATA family (vertebrates andinvertebrates [J]. Curr Opin Genet Dev,2002,12(4):416-422.
    [40] Arceci RJ, King AA, et al. Mouse GATA-4: a retinoic acid-inducibleGATA-binding transcription factor expressed in endodermally derivedtissues and heart [J]. Mol Cell Biol,1993,13:2235-2246.
    [41] Garg V, Kathiriya IS, et al. GATA4mutations cause human congenitalheart defects and reveal an interaction with TBX5[J]. Nature,2003,424:443-447.
    [42] Yu Chen, Zengqiang Han, et al: A Novel Mutation in GATA4Geneassociated with Dominant Inherited Familial Atrial Septal Defect [J]. JThoracic Cardiovascular Surg,2010,40:684-687.
    [43] U eyam a T, Kasahara H, Ishiwata T, et al. Myocardin expression isregulated by NKX2.5, and its function is required for cardiomyo-genesis[J]. Mol Cell Biol,2003,23:9222-9232.
    [44] Stennard FA, Costa MW, Elliott DA, et al.Cardiac T-box factor Tbx20directly interacts with Nkx2-5,GATA-4and GATA5in regulation of geneexpression in the developing heart [J]. Dev Biol,2003,262(2):206-224.
    [45] Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease causedby mutations in the transcription factor NKX2-5[J].Science,1998,281:108-211.
    [46] Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorph-ism in the human genome [J]. Science,2004,305:525-528.
    [47] Stranger BE, Forrest MS, Dunning M, et al. Relative impact of nucleotideand copy number variation on gene expression phenotypes [J]. Science,2007,315:848-853.
    [48] Wain LV, Armour JA, Tobin MD. Genomic copy number variation,human health and disease [J]. Lancet,2009,374:340-350.
    [49] Hochstenbach R, Buizer-Voskamp JE, Vorstman JA, et al. Genome arraysfor the detection of copy number variations in idiopathic mentalretardation, idiopathic generalized epilepsy and neuropsychiatric disorders:lessons for diagnostic workflow and research [J]. Cytogenet Genome Res,2011,135:174-202.
    [50] Fanciulli M, Norsworthy PJ, Petretto E, et al. FCGR3B copy numbervariation is associated with susceptibility to systemic, but not organ-specific, autoimmunity [J]. Nat Genet,2007,39:721-723.
    [51] Erdogan F, Larsen LA, Zhang L, et al. High frequency of submicroscopicgenomic aberrations detected by tiling path array comparative genomehybridization in patients with isolated congenital heart disease [J]. J MedGenet,2008,45:704-709.
    [52] Greenway SC, Pereira AC, Lin JC, et al. De novo copy number variantsidentify new genes and loci in isolated sporadic tetralogy of Fallot [J]. NatGenet,2009,41:931-935
    [53] Ferencz C, Boughman JA, Neill CA et al. Congenital cardiovascularmalformations: questions on inheritance [J]. Baltimore-Washington InfantStudy Group. J Am Coll Cardiol,1989,14:756-763.
    [54] Johnson MC, Hing A, Wood MK et al. Chromosome abnormalities incongenital heart disease [J]. Am J Med Genet,1997;70:292-298.
    [55] Saccone S, De Sario A, Delia Valle G et al: The highest geneconcentrations in the human genome are in telomeric bands of metaphasechromosomes [J]. Proc Natl Acad Sci U S A,1992,89:4913-4917.
    [56] Knight S.T, Flint J. Perfect endings: a review of subtelomeric probes andtheir use in clinical diagnosis [J]. J Med Genet,2000,37:401-409.
    [57] Shendure J. and H. Ji. Next-generation DNA sequencing [J]. NatBiotechnol,2008,26:1135-1145.
    [58] Pierpont, ME, Basson CT, Benson DW Jr, et al. Genetic basis forcongenital heart defects: current knowledge: a scientific statement fromthe American Heart Association Congenital Cardiac Defects Committee,Council on Cardiovascular Disease in the Young: endorsed by theAmerican Academy of Pediatrics [J]. Circulation,2007,115:3015-3038.
    [59] Suzuki, Y.J. and T. Evans. Regulation of cardiac myocyte apoptosis by theGATA-4transcription factor [J]. Life Sci,2004,74:1829-1838.
    [60] Ohki R, Yamamoto K, Ueno S. Gene expression profiling of human atrialmyocardium with atrial fibrillation by DNA microarray analysis [J]. Int JCardiol,2005,102:233-238.
    [61] K b S, Barth AS, Margerie D. Global gene expression in humanmyocardium-oligonucleotide microarray analysis of regional diversity andtranscriptional regulation in heart failure[J]. J Mol Med,2004,82:275-277.
    [62] Ohki-Kaneda R, Ohashi J, Yamamoto K. Cardiac function-related geneexpression profiles in human atrial myocytes [J]. Biochem Biophys ResCommun,2004,320:1328-1336.
    [63] Peng T, Sadusky T, Li Y. Altered expression of Bag-1in CoxsackievirusB3infected mouse heart [J]. Cardiovasc Res,2001,50:46-55.
    [64] Chenhao Fan, Dumitru A. Iacobas, Dan Zhou. Gene expression andphenotypic characterization of mouse heart after chronic constant orintermittent hypoxia [J]. Physiological Genomics,2005,22:292-307.
    [65] Barth AS, Merk S, Arnoldi E. Functional profiling of human atrial andventricular gene expression [J]. Pflugers Arch,2005,450:201-208.
    [66] Ellinghaus P, Scheubel RJ, Dobrev D. Comparing the global mRNAexpression profile of human atrial and ventricular myocardium withhigh-density oligonucleotide arrays [J]. J Thorac Cardiovasc Surg.2005,129:1383-1390.
    [67] Miertus J, Amoroso. A Microarray-based genetics of cardiacmalformations [J]. Ital Heart J,2001,2:565-567.
    [68] Kaynak B, von Heydebreck A, Mebus S, et al. Genome-Wide ArrayAnalysis of Normal and Malformed Human Hearts [J].Circulation,2003,107:2467-2474.
    [69] Redon R, Ishikawa S, Fitch KR et al. Global variation in copy number inthe human genome. Nature,2006,444:444-454.
    [70] Zhang F, Gu W, Hurles ME, et al. Copy number variation in human health,disease, and evolution. Annu Rev Genomics Hum Genet,2009,10:451-481.
    [71] lonita-Laza I, Rogers AJ, Lange C, et al. Genetic association analysis ofcopy-number variation (CNV) in human disease pathogenesis. Genomics,2009,93:22-26.
    [72] Warnes CA, Liberthson R, Danielson GK, et al. Task force1: thechanging profile of congenital heart disease in adult life [J]. J Am CollCardiol,2001,37:1170-1175.
    [73] Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation inthe human genome [J]. Nat Genet,2004,36:949-951.
    [74] Vermeesch JR, Melotte C, Froyen G, et al. Molecular karyotyping: arrayCGH quality criteria for constitutional genetic diagnosis [J]. J HistochemCytochem,2005,53:413-422.
    [75] Faguer S, Chassaing N, Bandin F, et al. A17q12chromosomalduplication associated with renal disease and esophageal atresia [J]. Eur JMed Genet,2011,54:e437-440.
    [76] Nagamani SC, Erez A, Shen J, et al. Clinical spectrum associated withrecurrent genomic rearrangements in chromosome17q12[J]. Eur J HumGenet,2010,18:278-284.
    [77] Goldmuntz E, Clark BJ, Mitchell LE, et al. Frequency of22q11deletionsin patients with conotrucal defects [J]. J Am Coll Cardiol,1998,32:492-498.
    [78] Guris DL, Fantes J, Tara D, et al. Mice lacking the homologue of thehuman22q11.2gene CRKL phenocopy neurocristopathies of DiGeorgesyndrome [J]. Nat Genet,2001,27:293-298.
    [79] Itsara A, Cooper GM, Baker C, et al. Population analysis of large copynumber variants and hotspots of human genetic disease [J]. Am J HumGenet,2009,84:148-161.
    [80] Yehya A, Souki R, Bitar F, et al. Differential duplication of an intronicregion in the NFATC1gene in patients with congenital heart disease [J].Genome,2006,49:1092-1098.
    [81] de la Cruz MV, Markwald RR. Embryological development of theventricular inlets. Septation and atrioventricular valve apparatus. In: de laCruz MV, Markwald RR, eds. Living morphogenesis of the heart. Boston:Birkhauser,1998:131-155.
    [82] Combs MD, Yutzey KE. VEGF and RANKL regulation of NFATc1inheart valve development [J]. Circ Res,2009,105:565-574.
    [83] Liu H, Dai L, Mao M, et al. Absence of association between lengthvariation of an intronic region in the NFATC1Gene and congenital heartdefects in a Han Chinese population [J]. DNA Cell Biol,2012,31:88-91.
    [84] Toyofuku T, Zhang H, Kumanogoh A, et al. Dual roles of Sema6D incardiac morphogenesis through region-specific association of its receptor,Plexin-A1, with off-track and vascular endothelial growth factor receptortype2[J].Genes Dev,2004,18:435-447.
    [85] Garcia-Minaur S, Fantes J, Murray RS, et al. A novel atypical22q11.2distal deletion in father and son [J]. J Med Genet,2002,39:E62.
    [86] Kurahashi H, Nakayama T, Osugi Y, et al. Deletion mapping of22q11inCATCH22syndrome: identification of a second critical region [J]. Am JHum Genet,1996,58:1377-1382.
    [87] Kurahashi H, Tsuda E, Kohama R, Nakayama T, Masuno M, Imaizumi K,Kamiya T, Sano T, Okada S, Nishisho I. Another critical region fordeletion of22q11: A study of100patients [J]. Am J Med Genet,1997,72:180-185.
    [88] Rauch A, Zink S, Zweier C, et al. Systematic assessment of atypicaldeletions reveals genotype-phenotype correlation in22q11.2[J]. J MedGenet,2005,42:871-876.
    [89] D’Angelo CS, Jehee FS, Koiffmann CP. An inherited atypical1Mb22q11.2deletion within the DGS/VCFS3Mb region in a child withobesity and aggressive behavior [J]. Am J Med Genet Part A,2007,143A:1928-1932.
    [90] Fernández L, Nevado J, Santos F, et al. A deletion and a duplication indistal22q11.2deletion syndrome region. Clinical implications and review[J]. BMC Med Genet,2009,10:48.
    [91] Verhagen JM, Diderich KE, Oudesluijs G, et al. Phenotypic variability ofatypical22q11.2deletions not including TBX1[J]. Am J Med Genet A,2012,158A:2412-2420.
    [92] Goldmuntz E, Clark BJ, Mitchell LE, et al. Frequency of22q11deletionsin patients with conotrucal defects [J]. J Am Coll Cardiol,1998,32:492-498.
    [93] Nora JJ, Nora AH X. Familial risk of congenital heart defect [J]. Am JMed Genet,1988,29:231-233.
    [94] Kobrynski L, Sullivan K. Velocardiofacial syndrome, DiGeorge syndrome:the chromosome22q11.2deletion syndromes [J]. Lancet,2007,370:1443-1452.
    [95] Bassett AS, Chow EWC, Husted J, et al. Clinical features of78adultswith22q11deletion syndrome [J]. Am J Med Genet,2005,138:307–313.
    [96] Amati F, Mari A, Digilio MC, et al.22q11deletions in isolated andsyndromic patients with tetralogy of Fallot [J]. Hum Genet,1995,95:579-582.
    [97] Digilio MC, Marino B, Dallapiccola B. Screening for22q11.2microdeletion in adults with tetralogy of Fallot [J]. Heart,2011,97:860.
    [98] Beauchesne LM, Warnes CA, Connolly HM, et al. Prevalence and clinicalmanifestations of22q11.2microdeletion in adults with selectedconotruncal anomalies [J]. J Am Coll Cardiol,2005,45(4):595-598.
    [99] Greenhalgh KL, Aligianis IA, Bromilow G, et al.22q11deletion: amultisystem disorder requiring multidisciplinary input [J]. Arch Dis Child,2003,88(6):523-524.
    [100] Korbie DJ, Mattick JS.Touchdown PCR for increased specificity andsensitivity in PCR amplification [J]. Nat Protoc,2008,3:1452-1456.
    [101] Benson DW, Silberbach GM, Kavanaugh-McHugh A, et al. Mutations inthe cardiac transcription factor NKX2.5affect diverse cardiacdevelopmental pathways. J Clin Invest,1999,104:1567-1573.
    [102] Garg V, Kathiriya IS, Barnes R, et al. GATA4mutations cause humancongenital heart defects and reveal an interaction with TBX5. Nature,2003,424:443-447.
    [103] Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1cause aorticvalve disease. Nature,2005,437:270-274.
    [104] Schubbert S, Zenker M, Rowe SL, et al. Germline KRAS mutations causeNoonan syndrome. Nature genetics,2006,38:331-336.
    [105] Tuzun E, Sharp AJ, Bailey JA, et al. Fine-scale structural variation of thehuman genome. Nat Genet,2005,37;727-732.
    [106] Sebat J, Lakshmi B, Troge J, et al. Large-scale copy numberpolymorphism in the human genome. Science,2004,305:525-528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700